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New exact solution to the Einstein-Dirac equations
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A new exact solution to the Einstein-Dirac equations is presented. The solution represents neutrinos
moving in a static plane-symmetric curved space-time which the neutrinos themselves generate.

I. INTRODUCTION

Neutrinos have been of great interest recently in
connection with general relativity. Twenty years
ago, Brill and Wheeler' discussed the Dirac equa-
tion in curved spacetime, and in the following dec-
ade the theory was formulated in terms of ortho-
normal Cartan frames by Lichnerowicz' and by
Brill and Cohen, ' making it possible to solve the
Einstein-Dirac equations with a minimum of labo'r.

The Cartan formalism was used by Davis and
Ray~ to find a particular solution of the Einstein-
Dirac equations for neutrinos. In this communi-
cation we present a more general solution with
the same metric form but with a wave function
which depends on both x and t. (The wave func-
tion of Davis and Ray depended only on x.)

We use the conventions of Jauch and Rohrlich'
for the Dirac y matrices. We use units in which
5 =c =1; and we use the notation of Brill and
Wheeler' with regard to gt, g*, and V&g, although
we denote the time coordinate by 0 instead of 4.

We seek a simultaneous solution of the Einstein-
Dirac equations:

and &u, =e "8/8z. We seek a solution for p of the
form gc(x}e '~', where (e is a spinor function of
x, and v is a positive real number.

II. THE DIRAC EQUATION

In this section we solve the Dirac equation for
neutrinos. Before we can write down the Dirac
equation, we need to know the matrices 1"„which
appear in the formula for the covariant derivatives:
V&g =to&(g) —F&g, where I'&==ey „„y„y"and y"„„
are the Ricci rotation coefficients, while y" are
the usual flat-space Dirac matrices. (See Ref. 3
for definitions and further discussion. ) Repeated
Greek indices are summed from 0 to 3. For the
metric (4}, the F„are

&e-u+i yoyl

r, =0,

The Dirac equation becomes an equation for ge:

1
+P V 2gP V~ ~G+P V

y~v„y+ ~q =0, (2)

c = [i&o y'yc —(v' + eu')] ge .

The solution of (6) is

(c(x) =exp[i&uy'y'x —(v+eu)]g„

(6)

d s-' =e~ (dx' -d t') +e'" (dy'+dz'), (4)

in which u and v are functions only of x. This is
the same form as the metric used by Davis and
Ray' (however, our u and v are different functions
of x). We use the orthonormal frame defined by

co =e dt, a) =e dx, co =e dg, M =e 4z.

Hence, &ue =e "8/8 t, &o, =e "8/8 x, v, =e "8/8 y,

with

T„,=.[0'r„v.-4+0'r. v„4
—(V~/ )y vg —(Vv) ) y p$] ~ (3)

The derivation of Eq. (3) is discussed by Brill and
Wheeler, Bs well as by Fletcher.

The metric' is

where (, is an arbitrary constant spinor. g may
now be written as

g =e '"'"~"(cos&ux+iy y sin&ox) e (8)

T,c =T„=-,'e "y~( 4i(ay~) y-,

T»=T~=4e "g [-2i&uy +y y ye(v' -u'}]g,
(10)

(11)

T, =T =-'e "q [-2i(oy'+y y'y (v' -u')]p. (12)

All other components are identically zero.

III. THE ENERGY-MOMENTUM TENSOR

Equation (3) can be used to calculate the compo-
nents of T„,. The results are

Tee=T»=~e "g (4i&uy')g, (9)
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IV. THE EINSTEIN EQUATIONS tions (27) through (30) and (22). The solutions are

In this section we use the Einstein field equa-
tions (1) to find u, v, and (t/, . From Eq. (9), T"„=0
The Einstein equations become

(.I
(31}

Rpy=87TQTpy ~ (13)

The nonvanishing components of the Ricci tensor
for the metric (4) are

Boo =e (u + 2'li .v ) t

e-2u [uv + 2vv 2uI vt + 2(vl)2]

B„=R„=-e '" [v" +2(v')']

(14)

(1s)

(16)

The above results for T„,and R„„, together with
the Einstein field equations in the form (13), tell
us that

where s, q, and y are arbitrary real numbers.
These solutions satisfy the Einstein-Dirae equa-
tions provided that the constraint 8)(Ga&g g, =ac
(which comes from Boo= 8)(GTOO.. and 8„=8)/GT»)
is met.

To summarize, we have found the solutions

(t) =e "(+" "/( cos (xt)+iy y sin&ox)

Tpg Tp2 Tp3 0

Rpp R

A„-R„-O.
Equation (19) has the solution

(17}

(18)

(19)
with

x e

v =—,
' ln(ax+ b), (20) u = -4 ln(ax + b) + cx +d (33}

where a and 5 are constants of integration. Next
we solve (18) simultaneously with (14), (15), and
(20) to find that

u = -~ in(ax+ b) +cx+d (21)

4.*r'r'4. = o,

g*[y y A(x) +iy y B(x)]y, =0,
(t/v*[y y A(x)+i y y B(x)]gv =0,

(22)

(23)

(24)

in which a and b are the same constants as in (20),
but c and d are new integration constants.

We now set the To; [Eqs. (10)-(12)] equal to zero
[see Eq. (17)], using Eq. (8) to express g in terms
of g, . This yields

v =—, in(ax + b) . (34)

All components of T» are zero except T,p and T»,
which are equal.

e-(v+v/2)e i(u t ~eirp-

V. PHYSICAL INTERPRETATION

What physical situation does our solution (32)
represent, and why should T» be zero'P To answer
these questions, g must be rewritten in a more en-
lightening form, with x dependence of the form ei "
and e '"". The two solutions become

in which

A =2(0 cos2(dx+(v' -u') sin2arx

and

B=2(d sin2(dx —(v' -u') cos2&ux.

(2s)

(26)

()
e'~"eie+ . ' e-i~"e (35)

Equations (23) and (24) will certainly be satisfied'
lf e-(v+v/2)e i&@tt/eit'-

(27)

(28)

(29) x es tuxeiS+ e-i axe-i S

(',i &,
') (36)

(30)

We want a simultaneous solution of the five equa-
in which t, q, and e are real. When g is written
in this form, Eq. (9) becomes
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2+-(2v+ 2u)
pp 11 (37)

and the equations Rpp 87TGTpp and R11 8mGT» are
satisfied if

ac = 64mgrur'. (38)

If we replace u and v by zero in (35) and (36)
(the "flat-spacetime limit" }, we can compare
these wave functions with the usual plane-wave
solution to the Dirac equation in flat spacetime,
which may be written in the form

all components of T„„. This means that we may
apply (41) separately to the e' " and e '"" terms
and then add the results to obtain the total T„,.
Furthermore, in both (85') and (36') the e'~" and
e '"" terms have equal values of lCl'+lDl'. From
the form of (41), we see that the, contributions to
TO1 from the two terms have opposite signs and
cancel, whereas for Tpo and T» the two contribu-
tions have the same sign.

Another interesting quantity is the probability
flux, S"=iffy "( F.or the flat-spacetime wave
function (39),

»=(lcl +IDI )
2"

P + m
(42)

kp'+m j p'+m

-i(P'+ iP')
l(

iP'
P +m }P +mj

(39}

where C and D are arbitrary real or complex
numbers. We will denote the "flat-spacetime
limits" of (35) and (36) by (35'} and (36').

If we set m =0, po=&o, and p'=p'=0, (39) be-
comes

1~P — -g v t + gp1xe
(d

(40)

Then, setting p~=&o and C =D in (40) yields the
e'"" term in (35'), while setting P~ =-&o and C =D

yields the e '~" term in (85'). Similarly, we can
obtain the two terms of (86') by setting p = a+ and

C = -D. Thus, each of our two solutions reduces,
in the limit of flat spacetime, to a linear combin-
ation of two beams of neutrinos, traveling in the
+x and -x directions.

In flat spacetime, the wave function (39) has the
energy-momentum tensor

For the superposition of two beams, (35') or (36'),
moving in flat spacetime with opposite momentum,
the S' are zero but S' is positive. Similarly, for
the curved-spacetime wave function (35) or (36),
all components of S"are zero except S' (which is

go 8 +2~ -(2v + u ) (43)

VI. BOUND STATES?

Another interesting question is whether the wave
function, (35) or (36), represents a bound state.
How do g, T"", and S"behave as x-+~?

The metric is

To acquire a still better understanding of our
solutions, we may obtain information about the
helicities of the neutrino beams, using the helicity
projection operators —,'(1+iy, ) and 2(1 —iy, ) We.
find that in one solution the beam traveling in the
x direction is entirely positive helicity and the
beam traveling in the -x direction is completely
negative helicity; in the other solution the situ-
ation is reversed. The experimentalists have ob-
served only one helicity, so it may be that neither
of the solutions presented here is physically real-
izable.

T =2(lcl'+IDl') P"P" .P II P'+m ' (41)
ds'=( axe)+"'e'~e"(dx'-dt )

+ (ax+ b)(dy'+dz') . (44)

[This was calculated from Eq. (3).j We cannot
apply (41) directly to a wave function, such as
(35'), which is a superposition of terms with dif-
ferent four-momenta, because (3) is bilinear —not
linear —in P; there may be cross terms. How-
ever, it can be shown that for both (35') and (36'),
in flat spacetime, the cross terms are zero, for

Because of the square root, we must have x&-p/a
if a&0, x& b/a if a&0. A-t x=-5/a, the coordinate
system has a singularity. However, we still do not
know if the actual spacetime is singular —it may be
possible to extend the spacetime beyond x =-5/a by
using a different coordinate system. To investi-
gate this possibility, we calculate R 8„„.

=-u"e '" = =a'(ax+5) "'e '
1pl

fI 202 =R», = —u'v'e '" =[—,a'(ax+&) ' '- —,ac(ax+5) ~']e"
(45)

(46)
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f11,»—-ft11 = —[v" +v'(v-u)']e '"=[—',a'(ax+b) '/'+ —', ac(ax+b) ']e '

ft' „=-(v')'e '"=='a'(ax+b} "'e '~ "
323

(4V)

{48)

All other components either are zero or can be ob-
tained from the symmetries of the Riemann tensor.

Now consider the invariant quantity B»„R"t'".
This is found to be

I

then by Eq. (32),

(;.)
e ' 4d [dda'(ax+ b) +4a'c'(ax+b) ],

which is infinite when ax+b =0. Hence, the space-
time cannot be extended beyond x = -b/a.

The constraint ac =64mg+r2 forces a and c to
have the same sign, since v&0. Now, |{}contains
the exponential factor e '"'"'", while Too and T»
contain e ""'~' and S contains e ""'"'. But
u==,' ln(ax+b)+cx+d, v=-,' ln(ax+b), so

(ax+ b)-s/se-(c/2}x

T«and T„-(ax+ b) ~'e '
S'- (ax+b) "'e

If a&0, then c&0 and the exponential factors de-
crease as x , while if a&0 then c&0 and the
exponential factors decrease as x -. Both
cases are analogous to bound states.

It should also be noted that all nonzero compo-
nents of R "»„also approach zero exponentially as
~x~ -; spacetime becomes flat at large distances.

g =(ax+b) ~"
~
e'~e~ '.

1/2e2cxeM(dx2 dt2) +b(dy2+de2) (51)

If r =0, then we have the uninteresting case of
empty flat spacetime in a non-Cartesian coordi-
nate system. If co =0 but x 4 0, then we again use
Eg. (32) to find

Neither the wave function g nor the neutrino prob-
ability density S is zero, but T„„iszero: We have
"ghost neutrinos" in curved spacetime, very simi-
lar to the "ghost neutrinos" discussed by Davis
and Hay. ' But we understand why these "ghost
ne'utrinos99 make no contribution to T» —they have
zero energy.

If instead a=0, then spacetime is flat, since by
Eqs. (45) through (48), the ft "B„„areall zero. The
metric is

VII. SPECIAL CASES OF THE SOLUTION b-3/8 e "d/2 e-(r:/2}rr irPii (52)
Up to this point we have not discussed the pos-

sibility of a, c, v, or x being zero. Even if some
of these quantities are zero, our solutions are still
valid, ' provided that ac = 64@Geor'.

Recall that |t} is proportional to r [Eqs. (35) and

(36)], T«and T» are proportional to vr' [Eq.
(37)], and So is proportional to r' [Eg. (43)].

If c=0but a00, the metric is

(ax+ b) ~'eM(dx' -d t') + (ax+ b)(dy'+de') . (49)

According to Eqs. (45) through (48), spacetime is
still curved. [By a simple coordinate transforma-
tion,

dx}}'I 1 —b

a

t =e "t" z =z"
9

the metric (49) becomes the metric of Davis and

Hay, '
(bxrr + 1)-1/2 (dxrr2 dt rr2) + (yxrr + 1)(d~rr2+derr2)

after we set b =ae~. ]
Because c =0, either r or co must be zero. If

r =0, then tt} is zero, so we have a vacuum solution
of the Einstein field equations. If F40, but m =0,

The wave function (52) in the metric (51) is an
example of "ghost neutrinos" in flat spacetime.
It should be possible to perform a transformation
to Cartesian coordinates [to determine whether
(52) represents the constant spinor solution to the
Dirac equation in Cartesian coordinates, or some-
thing more interesting]. The following coordinate
transformation accomplishes this:

t' =b ~/4e"c 'e~ sinhct,

x' =b "'e"c 'e coshct,

yt bl/2y

bl/2

(53)

(54)

(55}

(56)

Here, the primed coordinates are Cartesian co-

ordinates

s.
Next, we transform the wave function g, given

by Eq. (52) in the unprimed coordinate system. To
find the necessary spacetime-dependent Lorentz
transformation of the basis vectors, we apply the
orthonormal basis vectors e& to the primed coordi-
nates written as functions of the unprimed coordi-
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nates in Eqs. (53) through (56). Thus,

ar (f') =fr~4e e " (b ~4e"c 'e sinhct)et

= coshct ~

ar, (t') = sinhct,

ar, (x'}= sinhct,

a),(x'}= coshct,

g' =(cosh 2cf -y2ylsinh2ct)g,

where g is given by (52). The result is

(5V)

and all others are zero. The matrix of.the a]2(x'")
represents the Lorentz transformation of the basis
vectors. The spinor transformation corresponding
to this Lorentz transformation' is

f)-2/2 e t&/2 cit/te &4/-2-»

1 ~ ~s coshact+iqsinh&ct

6 s coshgct+iq sinhgct

5 is sinh2ct+ q cosh2ct (58)

-is sinh2ct+ q cosh&ct

Although Eq. (58) should be written in terms of the primed coordinates, it is already evident that our
"ghost neutrino" solution in Qat spacetime is not merely a constant spinor in Cartesian coordinates. By
inverting the equations (53) through (56), we obtain the following (which is valid for x" —f"&0, x' &0, f' &0,
c&0):

ql(tt xt yt zl) (35c) 1/2e&t/t

[xt + (xt2 t t2)l/2] 1/2

+ [xt + (xt2 f.t2)1/2] 1/2

s
(»" —t")»' »t(tt' -(»"-t")"']"']

[x —(x t2 f 2)l/2] 1/2

r
+ 2 [Xt (Xt2 f t2)l/2] 1/2

2 [xt (xt2 f )2)1/2] 1/2

q
(»" —t ) ("+(»'t tt")]»)»

. +[Xt + (Xt2 tt2)V2] 1/2

(59)

VIII. GHOST NEUTRINOS

Davis and Hay4 found that with the metric form
(4) and g =]tr(x), the only possible solutions (with
ge0) were "ghost neutrino" solutions: T»=0
We find that if g =P,( )ex' ' and &d&0, we never
have "ghost" solutions (even if we do not require
that the Einstein equations be satisfied), since by
Eq. (9), T20=are™]t*g.

If we consider a slightly more general wave func-
tion (but with the same metric form),
g =g,(x, y, z) e '"', an identical calculation shows
that T„ is still are "g*g. As long as ar&0, we
never have "ghost neutrinos. "

We repeat that in Sec. VII, we have given a solu-

tion with a) =0 (zero-energy neutrinos) and c =0,
with a nonvanishing "ghost neutrino" wave function
having the same dependence on x as the "ghost
neutrino" wave function of Davis and Ray. Simi-
larly, the current vector S" is not zero, and our
metric is the same. Furthermore, in the zero-
energy neutrino case we have given an example of
"ghost neutrinos" even in flat space.

ACKNOWLEDGMENTS

One of us (S.M.C.) is indebted to Professor Peter
Lax for his hospitality at the Courant Institute of
Mathematical Sciences. This work was supported
in part by a grant from the National Science Foun-
dation.



KAY 8, . PECHF iNLCK AND JEFFB.KY M. COHEN 19

D, B.BrOl and J.A. Wheeler, Bev. Mod. Phys. 29, 465
(1957).

A. Lichnerowicz, BuO. Soc. Math. France 92, 11 (1964);
A. Lichnerowicz, Ann. Inst. Henri PoincarV1, 222
(1964); A. Lichnerowicz, Relativity Groups and Top-
aRgy (Gordon and Breach, New York, 1964), p. 823.

3D. B.Brill and J.M. Cohen, J. Math. Phys. 7, 238
(1966).

~T. M. Davis and J. B. Bay, Phys. Rev. D 9, 331 (1974).
5J. M. Jauch and F. Bohrlich, The Theory of Photons

and Electrons (Springer, New York, 1976), Appendix
A2.

6J. Q. Fletcher, Rev. Mod. Phys. 32, 65 (1960).
VA. H„Taub, Ann. Math. 53, 472 (1951).
BThat Eqs. (27) through (3%0 are necessary as well as

sufficient for (23) and (24) to be satisfied can be seen
from the following argument (note, we are excluding
the case co=0):
(a) There is no (real) value of x for which A and B are
both zero. This is because-A=0 when cot 2cox
=- (v'- e')/2(. u. while B=-0 when cot 2~x= 2'/(v'- I').
(b) There are an infinite number of values of x for
which & = 0, and an infinite number for which B= 0, in

any infinite range of x (such as x&-5/a or x& —b/a).
This is most easily shown by solving A=O and B=0
graphically: we plot y = cot 2cux and y = (1/2&v) g aAcn+ b)
—c] on the same graph, and the intersections are the
values of x for which A(x) =0. A similar argument ap-
plies to B.
(c) Thus, in any infinite range of x, there are values of
x for which B= 0 but A & 0. Substituting such a value
into (23) yieMs (27) and (29). By interchanging A and B
in this argument, we obtain (28) and (30).

~However, if co = 0 we have not found all possible solu-
tions. In particular, we do not obtain the solution of
Davis and Bay as a special case. This is because there
are fewer constraints on the solutions when co = 0; for
instance, TD& is automatically zero I,see Eq. (9)] and
does not have to be set equal to zero.
See, for example, the discussion of the Lorentz covar-
iance of the Dirac equation in flat spacetime by. J.J.
Sakurai, Advanced Quantum Mechani cs (Addison-Wes-
ley, Beading, Mass. , 1967), Sec. 3-4. However, Sa-
kurai uses a different convention for the y matrices,
and he uses.ict for the time coordinate.


