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Using the most recent data on radiative decays V —:.my of vector mesons, the overall effect of RI, p, p,
and J exchange contributions to K, ~yy is determined more stringently. For cutoff masses of A = 25@ and
A = 100'„where p, is the pion mass, the corrections to the rate estimated, using the unitarity relation with
2m dominant state, are 1.9%%uo and 16/o respectively.

To date, there is a paucity of experimental in-
formation on the decay. of the short-lived neutral
kaon into two photons. The most recent experi-
ment, done in 19'73, on the decay was carried out
by Barmin et al.' It establishes the branching
ratio

I'(K, - 2y)/I'(Ka —all) & 4.0 x 10 ',
with 90/p confidence level. The importance of the
decay lies not only on the possibility of observing
CI' violation, ' but also on the ground that it mani-
fests the mechanism of higher-order weak and
electromagnetic interactions.

The status of theoretical considerations is as
follows:

(a) Unitarity-relation calculations' assuming a
dominant two-pion state yield I'(Ka- yy} =2.6
&&10'/sec. The Particle Data Group' has averaged
the results of several high-precision experiments,
which are compatible with each other, on the Ks
mean life. The average value is (0.8923 +0.002)
~10 ' sec. Using this in the unitarity relation
calculations, the predicted branching ratio is

yy} =2.53xlo-'
1"(Ks - all)

which is well below the experimental upper bound.
(b) Gaillard and I.ees found that in a free-{luark

model in gauge theories, Es - yy is suppressed.
(c) In the exact-SU(3) limit, Ka —yy is forbidden

by U-spin conservation. '
(d) Vector-meson-exchange contributions due to

{c, p, and P to the Ka - yy rate had been estima-
ted by the author' using the then available data in
the ceo- t{{ y, p' - tr'y, and Q- troy. Only the up-
per bounds on the last two decays were available
at that time and the calculations were done as-
suming they were the actual rates. It was found
that the contributions did not alter in any signi-
ficant way the result of the unitarity relation cal-
culations with dominant 2m intermediate state.
However, since then, the rate for v-n y has been

L~R. = ~AIR {IR

L„r„=-teA[g, s„p,j+e'A„A"Q, r{{{, (5)

for the vertices in the diagram in Fig. I, it is
straightforward to write down the corresponding
matrix element I,. Using Cutkosky's rule and
dispersion relation, we get

ImH„(s)=2 o.(&) —,lnp, 1 +p

Rev„{s{=2a{I)- — ——+ — w' —In -'

I
1 1 1+P

2rrs it' s 1- p

('f)

where

p. =pion mass, lVJ~ =Ks mass 5 =M~2

4~2&). ls
o{=—' p= 1—

S

Numerical evaluations, using updated data on
Es —~m gives

updated, ' the exact rates for p - tr y, ' Q-I'y, s

g - tr'y, ' ' and 4- trey" have been measured.
The purIpose of tQis short paper is to make use

of the new data on the vector-meson radiative de-
cays to determine mox'e stringently their contri-

utions to the &,- yy rate. We 'shall, write X
instead of Ks indicating that we are ass0'ming CI'
conservation in the decay.

For clarity we would like to summarize the re-
sults of Ref. 'i: The Lorentz invariant. matrix
element M that satisfies gauge invariance and
Bose statistics can be written as

M=&(s)[(c, ~ e,)(k, k, ) —(e, ~ k, )(e, ~ k, )j, (3)

where &, and &, refer to the polarization and mo-
mentum four-vectors, respectively, of the &th

photon. . Assuming the. dominance of the 2m inter-
mediate state and the interaction Lagrangians
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FIG. 2. The Feynman diagrams for X& yy with vec-
tor-meson exchange in mar yy scattering part.

FIG. 1. The three Feynman diagrams contributing to
perturbation calcu1ations of X& yy with m interchange.
The seagull term is needed for gauge invariance.

1+P(Q') =— —", z' ——, ln ——, [in(~, )]' ——,[1n(+,)]'s '- 1-P

' =2.16x10-}(cmMeV2) ) (8)

+ Li(u, ) +-,'Li(—,)
——,'Li(u, ') I,

P(Q",A) =ln „—Pin

(14)

(15)

" = —1.23x10 '(cmMeV') '

which yields the rate

I' (K, - yy) =2.26x10 /sec (10)

4p2 1/2 2/2
P & v m

I)"(Ii'}=(1—
) V=)

( ~)(

that agrees with previous calculations. '
ln the calculations for the contributions of the

vector mesons a&, p, Q, and J, we consider the
Lag rangians

I

~v+P ~v- P
1-P ' ' I+/ (16)

+

mv

and Eq. (4) in the vertices of the Feynman diagram
in Fig. 2. The explicit expressions for ImH~ and
BeHv are

The Li functions are the dilogarithm functions;
A is the cutoff mass. Since we have included the
J particle (m~=2. 3g), the cutoff values A =25',
and A =100', were used in the evaluation of
ReHv(1) and ReHv(2). The results are tabulated
in Table I, where we have made use of the follow-
ing- data:

where"

(12)

(13)

I'(~ - y) ))=8.8%1'(&L)- all) =8.8% (10.1 MeV)

=0.89 MeV,

I'(p - v y)=35 keV,

I'((t) - v'y) =0.14%1'((())- all) =0.14%(4.1 Me V)

=5.74 key,
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TABLE I. Values of ImH&/(Nc), ReH& (1)/(hc), and ReN& (2)/(Sc) for u, p, 8, J' exchanges and their algebraic
sums ~

p
e
J

Im H~/(Sc) 2

[, (cm Mev')"

-4.81x 10 ~

-2.89x10 4

-8.60x10 ~

—3.].6x XO '~

— ~ ", =-5.&ox10-'I H
(Ic)~

Re Hy (1)/{Ic)2
I, (cm MeV2)" ~]

—4.03x10 3

-2.&7xlo 4

+1.96 x 10"4

+1.29x 10"7

g- ReHv (1)

v

Re Hp (2)/(8'c) 2

t(cmMeV2) ~]

-3.96x10 2

-2.38 x 10"3

+9.56 x 10"5

+1.26 x 10"7

I'(J —nay) =7.8x10 ' I'(J —all)

='7.3x10 '(0.069 MeV}

=5.04 eV.

We note that e contributes the most and 4 the
least.

If we denote by II~ the sum of the vector mesons
and w-exchange contributions,

with the corresponding rates

I'r(1 }= 2.21 x 10'/sec,

I r(2) =2.61x10'/sec,

and percentage differences

I'r (1) —I",
F

(20)

(21)

(22}

=2.11x10 '(cmMeV) '

1.27x 10-' (cm MeV')-'

=-1.65x10 ' (cmMeV) '

(17)

(18)

(19)

1 (2) —I', '

7r

Therefore, the overall effect of the vector con-
tributions is to change the rate due to n exchange
alone by 1.9% and 16/g for cutoff masses A =25li
and A =100',, respectively.
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