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An analytic form for the quark-antiquark interaction potential is proposed based on the renormalization-

group equation of quantum chromodynamics((QCD)and the confinement assumption. With validity of the

nonrelativistic approximation assumed, energy spectra, leptonic decay width, and E1 transition rates are

computed. The results are compared with experimental data of Q and 'p resonances. A possible spin-spin

interaction of non-@CD origin is then discussed.

I. INTRODUCTION

Many seemingly unconnected theories have grown
out of SU(3) color gauge theory [quantum chromo-
dynamics (QCD)] . These include asymptotically
free (and renormalization-group), confinement,
and instanton theories. The possibility of com-
bining them within a single experimentally veri-
fiable framework appeared with the discovery of
the (/Z and T particles.

There have been various attempts to understand
the tii/J' and T systems in terms of a quark-anti-
quark nonrelativistic potential. '"' Although gross
features of the systems have been explained in
this way, the problem of connecting the potential
with QCD remains.

Recently, in an interesting article, Celmaster
and Henyey' proposed an approximation scheme
which incorporates the asymptotically free ex-
pansion of the renorrnalization-group equation and
current linear -confinement assumptions. Using
the renormalization-group equation they obtained
the potential from a numerical integration of the
running coupling constant. ' Then they calculated
the jS-2$ energy-split dependence on quark mass.
Since this is a reasonable approach, we have at-
tempted to derive an analytic form for the paten-
tial within their scheme and then use this to an-
alyze g/Z and T data in more detail. In another
direction, the failure of the relativistic QCD poten-
tial to explain the observed splitting of the singlet
and triplet S states led Wilczek and Zee' to suggest
a large spin-spin interaction due to instantons.
This interaction should be part of a complete an-
alysis and we will touch upon it in this article.

In Sec. 11, we derive the analytic form for the

potential based on the renormalization-group equa-
tion solution of Celmaster and Henyey. In Sec. III,
we examine various ways of constructing the poten-
tial and determining parameters in the analytic
form. These potentials are used to analyze experi-
mental data and discuss results in Sec. IV. Fin-
ally, in Sec. V, the effect of a possible instanton
spin-spin interaction is examined.

II. ANALYTIC FORM OF QCD POTENTIAL

The quark interaction potential is the Fourier
transform of n(q')/q' where n =g'/4tt is the running
coupling constant. ' This constant satisfies the re-
normalization-group equation~a

d(n/2tt) (n) P
d(lnq') (2it) g

'

where

(2.1)

—= -b, (n/2tt) — b( n/2) its+ ~ ~ . (2.2)

The coefficients b, and b, in the SU(3) gauge group
are given by't

bt =(—, —st) and b, =—( —", —s'Ny), (2.3)

where N& is the number of quark flavors. The con-
dition of asymptotic freedom, 5, & 0, then limits'&
«16 and the above expansion corresponds to q'
The behavior at q' 0 involves the confinement
properties and, in particular, a linear potential
corresponds to n -A/q or sP/g--l.

Following Celmaster and Henyey, ' the behavior
of p/g at q'-0 and qs-~ is connected with a Pade
approximation which results in the expression

d(n/2rt) n ,b(sn /2)tt( n/2-i+inc/2tt)

d(lnqs) 2st bs (n/2tt) +(b sbsnso/2tt) n/2tt+ bsno/2rt
(2.4)
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(2.7)

For this limit n~(0) is defined as the slope of the
Begge trajectories in the naive rotating-string
model' [c(„'(0)=0.9 GeV-']. This can be used to
find a relationship between uo and A in (2.5) above.
Taking q'-0, (2.5) reduces to n =A/q' which cor-
responds to~' V(r) = —', Ar. Therefore, A =3/47/nz'(0)
and from (2.5) and the value of o.s(0) we have

2&~+~2~&y & =0 2652 GeV'~ (2.8)

The remaining parameter (c.o or A) can be deter-
mined from experimental data at a particular mo-
mentum.

In order to find an analytic form for the potential
I/'(r}, we consider the asymptotic behavior of (2.5),

2r
o-'(q)= 2+

b~ 1nq2

c/(q') =&/q'+ ~(q'),

~(q') =(& —&q'+ )

where

8 = —(1 + b2/bg ) o.'0
=2m

5g

(2.9}

(2.1o)

(2.11)

C=, 1 2b,(1+b,/b, ')

+(1+b,/b, ') b, (o.,/2v)' . (2.12)

A simple analytic expression which interpolates
between the two limits above is given by

5 q b~ln(a+bq') ',

where

21r 1
1na

(2.13)

(2.14)

C b

alna ' (2.15)

where (ao/2w) is an arbitrary constant. Solving
for gy

2
e2((/ban(~ /~) [2/(1 + ~ /~)] (1+b2/bg )

(2.5)

where A = an integration constant. The potential in
coordinate space is given by

&(~(=
~ f ~(s') &~. (26)

0

In the limit ~

The potential in the asymptotic free region is ob-
tained from Eqs. (2.9) and (2.6), and

0

Kith x=qx, we have

-8 [ 2(/ 1 sinx dx
3v . b, ln(1/r') + lnx' x

4 2m 1
~ ~o 3 Q~ x lm'2 (2.1V)

(2.19)

where

B= — and p, = Ma/b.
b~ lnd

(2.20)

For large r, the dependence of the argument of
the logarithm in (2.19) is actually fke ""/r(lnr)'+ d],
however, we can neglect the variation of lm' and
incorporate it into the constant k. The dominance
of the linear term and exponential damping in the
argument of the logarithm favor this simplification.
Equations- (2.18) and (2.19) are general in that dif-
ferent forms for n((q2) correspond to the same I/'(r}

form with different parameters. For example,

a(q*) 1/ln(j f(a,. +brq*()

corresponds to the form (2.19) with p, = min, .[(a,. /
b,.)'/'] and 5(q') ~ 1/ln(a+ bq') correspor/ds to
i/, = ]./~2(a/b)~'. Owing to this indeterminacy, we
determined the parameters p, and 0 by numerical
integration of the Fourier transform (2.6) using
(2.5) at r =0.5 and r =2.0. The remaining param-
eter d depends only upon the number of Qavor and
the experimentally determined constant no.

No definitive way of choosing the number of flavor
exists in this formalism. It is unclear whether the
total number of Qavor or the number suitable to a
particular quark system should be used. There-
fore, we consider three possibilities: (1) X& =num-
ber of flavor =3, (2) Nz = 6, and (3) dividing the
momentum space into N& =2-6 regions. In the third
case, the two constants in the expression for n(q')
are determined by continuity of a(q2) and o('(q~) at

Using Eq. (2.13), we show in the Appendix that,
fol f'~ooy

4~ e"~a/b P

V'(r)--2' 1-21nagb/a3f' r lnr '
(2.18)

An interpolation between the two asymptotic lim-
its as expressed in Eqs. (2.1V) and (2.18) is given
by
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the region boundaries. All cases have similar re-
sults and there is no conclusive way to choose
among them in the g, T range.

III. DETERMINATION OF THE POTENTIAL

To determine the potential, we must determine
the parameters in the equation

2 2g 1
T b, ln(ke ~"/r+d) o

(3.1)

V(r) = 0 1768r.

0.9308 1
ln(1. 216e ""'"/r+2.495) r '

Potentials for the cases 1a and 1b are shown in Fig.
2.

In case 2 (Nz = 6), the procedure for la [ce(2 GeV)/
2n'=0. 085] resulted in C =0 [C is given in Eq.
(2.12)]. Instead of this procedure, we impose the
condition C =0 to obtain ao and A. As in the pre-
vious cases, a numerical integration of n(q')
from Eqs. (2.5) and (2.6) is used to calculate p.

and k. Relevant parameters are shown in Table
I. The potential form is then

For X&=3, we call o(2 GeV)/2m=0. 085 and 0.075
cases la and lb, respectively. Then, Eqs. (2.8),
(2.5), and either the experimental result a(2 GeV)/
2m =0.085 (case la) or 0.075 (case lb) are used to
calculate a, and A. Also, 6, and 5, depend on the
number of flavors assumed. These parameters are
given in Table I. As mentioned above, parameters
p, and k are determined from the Fourier integral
of 5(q')/qe at r =0.5 and r = 2.0. The graphs of
n(q') in these cases are shown in Fig 1. .

In case la [n(2 GeV)/2m. =0.085], the potential
is given by

V(r) =0.1768r

0.9308 1
In[(0.6962/y) e-o.zuor +1 9228] y

(3.2)

(we use GeV units here and subsequently). In case
lb [o.(2 GeV)/2v 0.075], the potential is given by

1.2-
(s)

1.0

0.8

0.6

0.4

0.2

0 ~ s ~ sr sl ~ s s s ~ ~ ~ I

.Of 0.1 1.0
q2 [(

30 100 1000
Gev/c) ]

FIG. 1. The function e™(q2)= n(q ) —A/q . Case la:
N~=3 and n(2 GeV)/2''=0. 085; case 1b: N&=3 and
0'(2 GeV)/2~ = 0.075; case 2: N&= 6 and n(2 GeV)/2m
=0.085; case 3: N&=2-6 (or 0-6) and o. (2 GeV)/2'.
= 0.085.

4m

b, In(a +bq)
(3.5)

In case 3, the division of the flavor regions in
momentum space was determined by the thresholds
for new quarks and the assumption that the ratios
of successive quark masses is constant. The
choice of region boundaries is then

N~=2, q &1.85,

N~ = 3, 1.85&q'&13.6,

N, =4, 13.6&q'&100,

N, = 5, 100&q'&735,

%~=6, 735&q .
With the condition a(2 GeV}/2v =0.085 and con-
tinuity of 5 and 5' at the boundaries, we obtain
the following formulas:

V(r) =0.1768r

1.197 1
In[(1.226/sr) e '"~'"+3.059] r '

The graphs of a.(q'} and V(r) in this case are shown
in Figs. 1 and 2, respectively. Note that, with
C =0, the interpolated for'm of d(qe) may be ap-
proximated by

TABLE I. Parameters for cases 1, 2 in GeV units. The under1ined quantities are input.

Nf bg b2

16

n(2 Gev)
27r

0.085
0.075
0.0865

0.0295
0.0562
0.1032

0.65
0.466
0.376

1.068
0.7636
0.8027

1.923
2.495
3.059

0.1120
0.5799
0.5546

0.6962
1.216
1.226
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01 a
0.2731 0 1951

1,.85&q2&13.6, q2 = ' ei @" 1+
Of e j

0 3452 0 4087 -1
13.6&~2&100, q'= ' e'-5~/" &+

Q Qf

8.250 -1.6576
100& 2& 735 2 e1 6391/& 1 + ~0 3834 81 6391/R +0.6578

@2+735 q2 ~0 1359e1e7952/0', 0+5306

The function 5(q') obtained in case 3 is very simi-
lar to that in case 1a. Deviation of a few percent
from case 1a occurs only at small q2 as can be
seen in Fig. 1. The parameters k and p, in (3.1)
are fixed by the same method used in cases 1a
and 11. The resulting potential is

V(r) =0.1768r

1.197 1
(3.6)ln[(1.028/r) e '~79"+2.272] r .

Case 3, as reflected in (3.6), corresponds to mass-
less up and down quarks because we assume
N&(q'=0) =2. The assumption that N&(q' =0) =0,
corresponding to nonzero up and down quark mass,
alters the function a(q') in the region 0&q'&0.25.
'the change in the potential is not large and the re-
sult is

V(r) = O. 1768r

119V 1
( )ln[(1.182/r)e ' ' "+2.245] r '

~e use Etl. (3.V) for our analysis instead of (3.6).
Because the dependence of the potential on a. in
this region (0&qs&0.25) is small, we determine
the parameter 9 by extrapolation from previous
cases.

IV. COMPARISON PATH EXPERIMENTAI. DATA

Vfith each of the potentials we calculate energy
spectrum, leptonic decay width, and 1P —2$, 1S
E1 transition rates. For the leptonic decay width
we use the Van Royen-%eisskopf1~ formula

16@'e 2z
r(v-IT) =, iq, (0) i',M, ' (4.1)

where M~ =triplet S-state resonance mass. The
E1 transition rate is calculated using

r( nss, - nz, +y)

= ~o.t0'e, ' —
) R R„.,r'dr

I (4.2), , (2m+1) ( "

-5
0

FIG.
= 0.085
= 0.075
=. 0.085
= 0.085

I I

2 3 4
RAplUs (ssv ')

I

5

3. Potentials. Case la: N~=3 and n(2Gev)/3S
fEq. (3.2)]; case 1b: N&=3 and 0.'(2 GeV)/Rent

[Eq. (3.3)];case 2: N&=6 and &(2 GeV)/2'
[Eq. (3.4)] case 3: N&= 0-6 and 0.(2 GeV)/27t.
[Eq. (3.7)].

r(n"I, -n'S, + y)
oo )2

= s o.aPe,' R„OR„,r'dr
i
. (4.3)

0

lt is assumed that e, =-—', for T and 3 for g. In Eq.
(4.2) the experimental values of &o are used, al-
though a complete theory would include I.-S cou-
pling to derive the P-state energy splitting. The
results of these calculations are given in Tables
II-V for the potentials discussed in Sec. III. In
Table VI we have the experimental data1' for Y
and (.

An examination of the calculations and experi-
mental data reveals the following:

(1) All potentials examined have essentially the
same results. Variation of a(2 GeV)/2s' within ex-
perimental error has little effect on predictions of
g and T data. Also, varying the number of flavor
has little effect on either potential form or g, T
data prediction.
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TABLE II. Results of calculations for case 1a, with quark reduced mass (QRM) = 2.0 GeV
(Y) and QRM= 1.0 GeV (P). The underlined quantities are input.

E„, (Gev) E„(GeV) E„~ (GeV)

E2s

E4s

9.46

10.17

3.10

3.81

10.58 - 4.27

10.91 4.65

E

E3p

11.08 4.85

10.01 3.63

10.46 4.12

10.80 4.51

10.33 3.97

10.69 4.37

10.98 4.72

11.24 5.03

Leptonic decay width (keV)

1S 1.67 18.92

E1 transition rate (keV)

2S -1'Po 6.55 47.57

0.384 3.28

0.691 6.85

0.478 4.36

2S -13Pg

2S-1 P
13Pp-18

1'P,-1S

13P2-1S

5.09

3.91

37.0

28.45

122.1 1049

40.48 347

92.84 795

(2) We have obtained satisfactory results for the
T spectrum and leptonic decay rate. For example,
in case 1b we calculate a 1S-2S energy split of
).62 GeV and a leptonic decay width of 1.81 keV
~s compared with experimental values of 0.6 GeV
.nd 1.3 +0.4 keV, respectively. Notice that the
models essentially contain no free parameters,
lthough the Y quark mass was assumed to be
ither 2.0 or 2.5 GeV depending on the results. A
lear test of the models will be possible when there

are more experimental data on Y. This is forth-
coming in the PETRA and PEP experiments.

(3) The results of the g spectrum and ratios of
the leptonic decay widths of triplet 8 excited states
are in fair agreement with experiment. However,
the absolute values of the leptonic decay widths
and the E1 transition rates to 1'P'~ states are 2-3
times larger than experimental results. This
problem has been encountered with other poten-
tials ' 6

TABLE ID. Results of calculations for case 1b, with QRM= 2.5 GeV~ (Y) and QBM=1.0
GeV (g). The underlined quantitites are input.

&~s (Gev)

Ess

E2s

E4s

9.46 3.10

10.08 3.75

10.45 4.19

10.75 4.55

En p (GeV)

9.94 3.57

10.35 4.04

10.6 7 4.42

10.93 4.75

(GeV)

E

10.23 3.88

10.56 4.28

10.83 4.61

11.07 4.92

Leptonic decay width (keV)

1S

2S

3S

1.81 14.41

0.815 4.98

0.576 3.61

0.469 2.85

E 1 transition width (keV)

2S -13pp

2S -13Pg

2S-1 P2

13Pp-1S

13Pg-1S

13P2-1S

5.75

4.48

3.44

49.33

38.39

29.50

86.20

113~ 7

908.2

37.61 395.6
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TABLE IV. Results of calculations for case 2, with QRM= 2.0 GeV (g) and QRM= 1.0 aeV
(g). The underlined quantities are input.

E„, {aev)

9.46 3.10

10.16 3.80

10.57 4.25

10.88 4.6 5

@„~ (aev)

10.01 3.62

10.45 4.10

10.78 4.48

11.05 4.81

E„~ (aev)

10.33 3.94

10.67 4.34

10.96 4.68

: 11.22 5.00

Leptonic decay width (keV).

1$

4$

1.72 19.01

0.708. 8.85

0.487 4.46

0.394 3.31

E 1 transition rate (keV)

2S-1 Pp

2$-1 Pg

2S -13P2

13Pp-1$

13P(-1$
1'P,-1S

6.79

5.28

4.07

49.34

38.38

29.52

39.32 347.03

90.14 795.38

118.91 1049

(4) The 1S-2Senergysplit, given in Fig. 3, is
slowly varying with quark mass in the range 1.0
(QRM(6. 0 Gev (QRM =quark reduced mass). This

behavior resembles that of the logarithmic poten-
tial' in this range (for the logarithmic potential
the excitation energy is independent of quark mass).
The increase of energy difference for large mass
is characteristic of asymptotically free potentials.
In the large mass region we would expect ~ cc m o.
~ m/(lnm)'.

(5) Our analytic form for the potential is consis-
tent with Celmaster and Henyey's calculation, '
which was obtained numerically from Eq. (2.5).
We are also in agreement with the mass depen-
dence of the excitation energy drawn in Fig. 3.
(Note, however, that Celmaster and Henyey used
A =0.5, whereas our value is 0.466 for the cal-
culations in Fig. 3.) This indicates that the poten-
tial (3.1), which exhibits the correct behavior at
r 0 and r ~, is a good approximation to the QCD

TABLE V. Results of calculations for case 3, with QRM =2.0 GeV (Y) and QRM=1.0 GeV
(g). The underlined quantities are input.

~„s (Gev E„p (GeV) E„~ {GeV)

9.46 3.10

10.17 3.82

10.58 4.28

10.91 4.65

10.01 3.63

10.45 4.12

10.79 4.52

11.08 4.85

10.34 3.97

10.7 4.38

10.99 4.73

11.26 5.04

Leptonic decay width (keV)

2$

1.76

0.723

19.01

7.01

0.@00 3.37

0.499 4.50

E 1 transition rate (keV)

2S-13P
p

2$-1 Pg

2$-13P2
13Pp-1S

1'J,-1$
13P2-1S

6.63

5.16

3.96

47.57

37.00

28.43

38.67 346.9

88.63 795.3

116.9 1048
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TABLE VI. Experimental data.

(GeV) Leptonic decay width (keV)

9.46+ 0.01 3.097+ 0.002

10,01+ 0.01 3.686 + 0.003

4.414+0.00 7

4S

5S

1.3 +0.4 4.7 + 0.7

0.43 + 0.13

0.32 +0.10 2.1 + 0.2

0.5 +0.2

@1 transition rate (GeV)

2 Si-13Pp

28$13P

16+ 9

16+9

16+9

L-& splitting 1P& states (QeV)

1 PR

1 Pi
1 Pp

3.55

3.51

3.41

potential. (The QCD potential is defined as the
potential resulting only from considerations of
Sec. II.)

(5) The results of (2) and (3) may be understood
with the expectation that Y is a nonrelativistic sys-
tem whereas the relativistic correction for g may
be significant. A proper treatment of relativistic
effects in these systems is needed to resolve the
discrepancies. The effect of opening decay chan-
nels, as analyzed in Ref. 1, may also account for
part of the discrepancies.

V. THE SPIN-SPIN INTERACTION

Recent experiments" have established a state
for g at 2.85 GeV which is likely to be a singlet
So state. This indicates a spin-spin splitting of

250 MeV. It has been pointed out" that the spin-
spin interaction due to relativistic effects is not
sufficient to account for this splitting. Recently,
it has been suggested' that instantons could be a
source of a large spin-spin interaction.

In order to see how this interaction could modify

9-

the leptonic decay rate, consider V=(V«n
+Vs~ s,). For simplicity, assume a square-
well-type potential V, = V,8(b —r), where V, &0
for the correct spin-spin splitting. Define the S
state ]I] =1/v4m u(r)/r, then

[o'(0)]'=0m(0„

=2m o —2m(s, s, V, 5(b —r)) .d Voco
d&

(5.1)

Assuming a short range (b«1) for the instanton
interaction we have

[o'(0)]*=0m( 0
—

0
)r, I*[o'(0)]', for '0,

(5.2)

[u'(0)]' =2m o +
2 Vo 'b[u'( )]0', for 'S, .d 1/"ocD 3m

Also,

2m "' =- u'„, O
'dv cD

implies

7

4J

[M'(0)]'=- ' «"' ', for 'S,
(1+mVob'/2) '

(5.2)

I I I I I I I I I I I I I I I I I I

[~ocn(0)] '
(1 —SmV0b'/2) ' for So.

0 2 4 6 8 10 12 14 16 18 20
QRM (GeV)

FIG. 3. 28-1S energy difference as a function of quark
reduced mass (QHM).

This indicates that the leptonic width of the triplet
S state is decreased and that of the singlet S state
is increased. Notice also that the ratio of the lep-
tonic decay widths between various triplet S states
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in the total solution is the same as those of the
QCD calculations. This may not be true for the
correct instanton potential, however, qualitative
features will probably be retained.

A serious problem with the spin-spin interaction
due to relativistic effects appears in calculating the
wave function at the origin. In the case of posi-
tronium calculations, such interactions contained a
5 function which can be successfully applied to
energy shift calculations. The perturbational cor-
rection to the wave function due to a potential 5'(r)
has a singular term at the origin and therefore
has no meaning. The trouble may be traced to the
neglect of other relativistic correction terms,
such as p4; In order to resolve this problem, a
more complete understanding of the relativistic
correction is needed.

We will report in more detail an effect of spin-
spin interaction in the future.

Notes added. (1) In order to obtain the confine-
ment part of the potential we probably have to con-
sider the effect of multiple-gluon exchange. This
necessitates a modification of the underlying as-
sumptions of our approach. However, we show be-
low that the potential form (3.1) remains intact.

We define nr(q')/q' as the Fourier transform of
the potential and write o.r(q') = n(q')+ a, (q') where
n(q') is the running coupling constant and ct,(q')
represents multigluon exchange contribution.

Asymptotic freedom would imply o.r(q') n(q')
2r/b~lnq' (2.19) as q' ~. The confinement as-

sumption would imply nr(q') A/qm as q' 0. An
argument similar to that in Sec. II can be applied
to c.r(q') instead of a(q') and leads to an analytic
form for o.z(q'). By the argument in the Appendix
our analytic form for the potential is dependent
only on the branch cuts of n~ in the complex q
plane. Thus we obtain Eq. (3.1), but lose predic-
tive power of parameters p. , 0, and d. An analysis
of the two-gluon exchange contribution to nr(q~)
may lead to a prediction of parameter d. From
this point of view, we feel that more extensive use
of experimental data is necessary with potential
(3.1). The authors are indebted to B. Sakita for
criticism and discussion on this point.

(2) After submitting this paper, we came across
articles which suggest that the Van Royen-W'eis-
skopf formula should be modified by radiative cor-
rection. This would be another mechanism which
suppresses the value of the leptonic decay rate
at least for the low-lying vector particle such as
g/J.

ported in part by the U. S. Department of Energy.

APPENDIX: ASYMPTOTIC FORM OF THE FOURIER
INTEGRAL (2.6)

Define the integral

j= 1 1 t e'~
ln(a+ bq2} lna j q

2 di

then

I(r) =[-.' ImZ+(v/2) 1/lnaj .

(A2)

(AS}

In order to evaluate t; we use contour C shown
in Fig. 4 (with r&0) and define

g20'P

ln(a+ bq') q
(A4)

With the branch cuts of the logarithm shown in the
figure, we must evaluate the discontinuity of E
across the cut. Then

1 sinqr
ln(a + bq2) q

1 1 & sinqr m

ln(a+ bq') lna j q 2 lna

(Al)

Consider,
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-2we"""
)q=rx+6 ( 4=Ac El x([ln(bx2, )]2+~2)

(Ae)

and integrating around the contour yields

J= -2mi~

~

e "" dx
(Ae)x( [ln(bx' —a)]'+w')

Let x =la/b+f, then

J=-2mie" " '"

e '"dt
(t+ ga/b )(flnb [f'+ 2(ga/b )t]]'+~')

(A7)

We are interested in the asymptotic behavior of the
integral (for large x). Z= 2g-ie-' ' '"k(r), then

.3me'~u

e '"df

~&yb f(lnt)'+ ~2]

1 e '"(1+t)df
q&/b [(inf)'+~'] '

This integral was found in standard tables"

(Ae)

FIG. 5. Contour of integration (A14), [cd= (a/b) /' ].

dt e '"(1+I) 1

gg/b [(int)'+ m'] gg/b

w 1 2lnadbyae ~'")lr- — 1—
2 Ina ~(lnr)' (A13)

where

~'d t
1(1+f) '

(Ae)

We want to estimate [v'(v) —v "(r)] for large x.
We have

et In' t[v'(~) —v "(r)]=— (A9')

and integration by parts twice leads to (in limit
co)

[v'(r) —v "(~)]=, y(t+1)

(lnr)', I~ I'(k+1) P

(A10)

where g(t) =I"(t)/I'(f). Taking the first term and
using g(t)/I'(f) +1 for t -1 and g(t)/I'(f) -2
for t -2, we have

iver

J'=
1n(a+ bq4) lna q

4 (A14)

is ca1culated using contour C shown in Fig. 5. Let-
ting &o =(a/b) ~, we find, after tedious computation
of the discontinuity across the branch and a limit-
ing procedure similar to the one above, an asymp-
totic form

-4m e "'~2 cso(vr/v 2 + w/4)
r(lnr)' (Ale)

In this expression the argument of the exponential
is determined by the distance from the x axis to
the branch point; a property which is very. genera1.
Another example,

Equation (A13) leads to the asymptotic form (2.18).
It is important to note that the behavior for large

r is general in that it can be derived from differ-
ent forms of n(q ). This is due to the prominent
part of the exponential in the solution which depends
only on the branch points of the logarithm. For ex-
ample,

I 1
v (x) v (Y)

( )2
+ 0

( )s ) (A11) implies

yy,. ln(a, +b,-q')

Therefore

2mie ' '"-Vb/a
1

r(lnr)' (A12)

ke ""
y g -mao

r(lnr)'

where p=min, .[(a, /b, )+'] and 0 is a constant.

(Ale)
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