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Convergent polynomial expansion and scaling in diffraction scattering I. pp scattering
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Using Mandelstam analyticity of the s and cos8 planes and conformal mapping, a variable y is constructed
which has the potentialities of reproducing Regge behavior and/or some known scaling variables. The role of
the physical region in the mapped plane for the optimized polynomial expansion (OPE) is emphasized.
Ambiguities in using the OPE in terms of Laguerre polynomials at finite energies are pointed out. However,
at finite energies there exists a convergent polynomial expansion (CPE) for which the nature of polynomials
and the rate of convergence vary with energy. The first term in the expansion gives a good fit to the world
data on forward slopes for pp scattering for all energies with effective shapes of spectral function, but yields
a good fit to t:he high-energy data for s & 35 GeV' with the theoretical boundaries. The possible existence of
a scaling function at asymptotic energies as a series in Laguerre polynomials in the new variable g is pointed
out. Available high-energy data on the pp cross-section ratio for p„b & 50 GeV/c and all angles exhibit
scaling in this variabie. It is found that at high energies scaling occurs even for larger-~r~ data lying well

outside the diffraction peak. The implication of this type of scaling in the data analysis at high energies using
OPE is pointed out. The energy dependence of dip position at htgh energies is predicted to be
~ts(s)) = 4m ' {sinh((4.35 +0.05)/ 4m 'b(s)]'"j', which is in very good agreement with the existing data.

I. INTRODUCTION

Almost six years ago Auberson, Kinoshita, and
Martin' proved, using results of axiomatic field
theory, that for spinless-particle scattering am-
plitudes which qualitatively saturate the Froissart-
Martin bound, the amplitude ratio T(s, t)/T(s, 0)
must approach an entire function of variable t(lns)s
for s-~ and ~t~ &4m, s. As early as 1970, Singh
and Roy eastablished tha. t an upper bound for the.
amplitude ratio of the absorptive part scales in the
variable trr„, /rJ„ for small ~t ~. Thus, scaling of
the diffraction peak is obtained if the unitarity
bound is saturated. Evidence for this type of scal-
ing has been investigated by Divakaran and Qan-
gal, 3 who have noted that the approach to scaling in
the experimental data slows down with increasing
value of the variable. Recently, scaling in a simi-
lar variable has been hypothesized from geometri-
cal considerations at high energy and using the
group-contraction method. 4 Cornille and Martin'
have examined the rigorous foundations of scaling
properties of the cross-section ratio

f(s, f) =d—(s, f)
d
—(s, 0)

in the context of diffraction scattering. They have
proved scaling in the variable to„, /o„ for the case
when o„,/(lns) 0 in the asymptotic region. It
has been remarkeds that the models which saturate
the Froissart-Martin bound automatically possess
these properties if they satisfy s-channel unitarity
and have a good analyticity in t. Cornilles has ex-
amined different conditions of scaling and shown

that one of the scaling variables at asymptotic
energies can be tb(s), b(s) being the slope para-
meter .in the forward direction. He has defined
a class of sealing functions in which are included
sums of powers, exponentials, and classi;cal or-
thogonal polynomials with positive coeffici.ents.
Auberson and Roy7 have shown that under certairi
conditions the scaling variable at asymptotic en-
ergies can be tb(s). Experimental data on tr P,
E'P, and P'P elastic scattering appear to support
the geometrical-scaling hypothesis. ' Iri par-
ticular, pp scattering data from laboratory mo-
mentum 501 to 1500 GeV/c exhibit geometrical
scaling" in the variable tot, t. Recent CERN-
ISR data appear to spoil'0 the simple scaling pic-
ture in the Krisch variable. ' Krisch has modi-
fied the variable" in which, although scaling is
exhibited by data near forward angles, '3 the energy
dependence is not removed for larger values of
~t ~. One main criticism against the Krisch-type
representation for the amplitude is that it violates
the Cerrulus-Martip lover bound. ' All the re-
sults on scaling derived so far can be broadly clas-
sified into two classes: exact results based upon
properties of the S matrix derived from axiomatic
field theory (Refs. 1-3 and 5-7), and model-de-
pendent results based on geometrical considerations
(Refs. 4, 10, and 11-13).

The optimized polynomial expansion (OPE) for
scattering ampMudes' '6 and form factors has
found its successful application'7 in many areas of
particle physics. Convergent expansions have
been developed' for the virtual Compton scatter-
ing amplitude and to exhibit Bjorken scaling be-
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havior, including scaling violations'9 as observed
in the case of deep-inelastic electron-nucleon
scattering. It is tempting to investigate whether
scaling in diffraction scattering can be exhibited
by means of OPE. Differential-scattering-cross-
section data have been parametrized by this meth-
od for phase-shift analysis. The polynomial ex-
pansion generally involves unknown parameters
which va,ry with energy. Thus the differential
cross section at each energy is fitted with a new
set of parameters. But if it can be shown that the
data exhibit scaling when plotted against a suitably
chosen conformally mapped variable, the para-
meters, and hence the scaling function in terms of
corresponding orthogonal polynomials, are know''n

once a set of parameters are determined by fitting
the data at any single energy in the scaling region.
Thus, demonstration of scaling of the data in terms
of a suitable conformally mapped variable has im-
portance from considerations of the economic use
of computer time. In the present work we show
that if analyticity of the s plane is exploited along
with that of the cos8 plane by conformal mapping
and OPE in a specific manner, it is possible for
pp scattering to construct a variable y(s, f) which
'has the potentialities of reproducing Regge beha-
vior and/or known scaling variables in the appro-
priate kinematical region. The first term in OPE
in terms of this variable gives a. good fit to the
data on forward slopes even at ISR energies. The
unknown parameters in the variable are thus de-
termined by fitting the slope-parameter data. At
high energies and all angles the variable is b(s)z,
where b(s) is the slope parameter and z is the
parabolic variable proposed earlier. For

~

f
I
« ts,

where I& is the boundary of spectral function p„
(p,„), the variable becomes tb(s). The role of the
physical region along with that of the figure of con-
vergence in OPE has been emphasized. It is point-
ed out that Laguerre-polynomial expansion for
OPE can be used only at asymptotic energies. At
finite energies one can use a sequence of polyno-
mials for which the convergence of the series is
not maximum and the nature of such polynomials
varies with energy. It is argued that a Laguerre-
polynomial expansion in terms of X may lead to a
scaling function only at high energies if the co-
efficients in the expansion do not depend upon en-
ergy. Experimental data. on f(s, t) for pp scatter-
ing support this view. When data on f(s, f) are
plotted against X for different energies and angles,
they come closer and closer to lying on a univer-
sal curve at higher energies, showing that X is a
good scaling variable. In particular, we find that
all the small-angle data with ~t] & 1.2 GeV and
P,~ ~ 19.2 GeV/c lie on the same scaling curve.
Available data at all angles and for P„b ~ 50 GeV/c
fall ori the 'same scaling curve. To examine wheth-

er scaling. is exhibited by this variable for larger
angles well outside. the diffraction peak region, we
have used recerit experimental data at Py b =200
GeV/c and P„b=1500 GeV/c for our analysis.
Surprisingly, we find that all the available data,
including those near the regions of the prominent
dip and secondary maximum, and for larger val-
ues of [f (

with (t( & 10 GeV, lie on the same scal-
ing curve. Having thus explicitly demonstrated
scaling in OPE, the energy dependence of the dip
position at high energies is predicted to be

~t~(s)
~
=4m, 2(sinh[xo/4m, 2b(s)]'~2), (2)

with

Xp
——4. 35 +0,05,

where
~
f„(s)

~
is the dip position in the do/dt vs

~t
~

plot. Such a prediction is found to be in good
agreement with the avai. lable experimental data.
At various stages of development of this work we
point out several limitations of the present ap-
proach. Scaling in the geometrical models of
Krisch"' and Hansen and Krisch' has been hy-
pothesized and geometrical scaling for collisio~ of
extended hadrons has been assumed by Dias de
Deus. 9 Scaling variables in other cases ' '5 have
been proved to exist from more rigorous founda-
tions. In the present work, scaling in the variable
X is hypothesized a Priori from the uniqueness of
OPE at-asymptotic energies and the. experimental
da.ta support such a hypothesis.

In Sec. II we emphasize the correct physical re-
gion along with the correct figure of convergence
in OPE. The need for using s-plane analyticity .,

has been pointed out and a new variable has been
constructed. In Sec. III we parametrize the data
on forward slopes and plot the data on the cross-
section ratio against the new scaling variable. The
agreement of predictions of the energy dependence
of dip positions with experimental data are also
studied in this section. In Sec. IV we discuss the
results and limitations of this approach.

II. CONFORMAL MAPPING KITH s- AND cos 0-PLANE
ANALYTICITY

In this section we emphasize the correct physi-.
cal region in the mapped plane for OPE. We point
out the need for using s-plane analyticity and de-
velop a new variable to describe diffraction scat-
tering. In devel@ping representations for differ-
ential cross sections in this section We assume
that scattering near forward angles is due to its
absorptive part alone. With this assumption, the
contribution due to pion poles has been neglected.
There is a host of papers ' '5 7' ~ which contain
such an assumption. It has been shown that the
unitarity upper bound for the absorptive part of
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the scattering amplitude derived by Singh and Roy2
saturates the high-eriergy data near forward an-
gles for mN and pp scattering. Experimental
measurements at high energies show that the real
part of the amplitude is small near forward angles
for NN and mN scattering. Theoretically, although
pion pole-contribution is zero in the forward direc-
tion, it is not absent away from the forward direc-
tion and the interference between the pole and the
cut contributions may significantly affect- the slope
parameter. Although the data analysis in the pre-
vious ~'24 and present papers has been carried out
by neglecting the pion-pole contribution, it is iia-
portant to investigate how it modifies the fits to
the slope-parameter data. However, we note that
the simple picture of scaling presented subse-
quently in this paper will be perhaps difficult to
realize if the pion-pole contribution is explicitly
retained. From the point of neglecting the pole
contribution, our' representations do not possess
the correct analyticity properties.

Using Mandelstam analyticity in the x =cos8
plane and the techniques of OPE, a model of high-
energy scattering of hadrons -was proposed which
reproduced mell-known phenomenological fits with-
in appropriate limits. The formula propos. ed for
the scattering amplitude in terms of a conformal-
mapping variable z possesses the necessary t —u
symmetry but does- not violate the Cerrulus-Mar-
tin' lower bound. At high energies and near the
forward directions, scattering is almost pure im-
aginary. Therefore, the experimental data at for-
ward angles can serve as a good guide in obtainirig
information about the imaginary part at nearby un-
physical regions. With this idea, conformal map-
ping was-developed 4 for the asymmetric cut plane
of analyticity and a formula for slope parameters
was developed which could successfully correlate
experimental data on slopes of forward peaks with
equations to boundaries of spectral functions. It
was found that the formula could account for the
shrinkage of forward peaks for several processes
yielding constant values of slope at ISR energies.
From fits to the data on slopes for various pro-
cesses, effective shapes of spectral functions were
computed. Experimental measurements 5 on slope
parameters for high-energy PP scattering show a- lns type of'increase consistent with the exchange
of a Pomeron of slope n'(0) =0, 28 GeV 2 in the f
channel. This feature is absent in the model pro-
posed earlier. 3'24 In this section we show by us-
ing the analyticity property in the s plane, along
with that of the cos8 plane by means of OPE, that
it is possible to construct a variable in a simple
way w'hich has the potentialities of saturating Rggge
behavior and z'eproducing some known scaling vari-
ables in the appropriate kinematical region.

Before proceeding further, we discuss certain

aspects of earlier works 3' which are relevant-
in the present context. In Refs. 21 and 22, con-
formal. mappings of the cut x=cos8 plane onto the
z plane were used such that the cuts were mapped
onto the branches of a parabola wi. th the focus at
the origin and the scattering amplitude (equival-
ently the differential cross section) was expanded
as a series in Laguerre polynomials 'with an ex-
ponential weight factor, the correct expression for
which is

do'
=exp(-nz) Q a„(s)I„(2ns).

The presence of the number e, which-determines
the size of the parabola in ther plane, was omitted
from the above expansion in earlier works. We
will s6e subsequently that the energy dependence of
n'is very crucial for the scaling of f(s, f). In Ref.
24 the variable a has been constructed through a
series of successive transformations of the asym-
metric cut x plane

=2x+x —x»,

ym~„= 2 +x —x»,

yq„——. x +x, ,

. 2 2
ym jg

2 2
y gn

—ymax

and

where -x (x,) is the start of the left- (right-) hand
cut in the x plane. For the symmetric cut plane of
analyticity, as io the case for pP- scattering, the
variable (4) reduces to the one proposed in Ref.
23 with

1 —x
»

It is well known that the correct physical re-
gion for Laguerre-polynomi31 expansion is the en-
tire right half of the real axis in the z plane. In-

the conformal transformations discussed above,
the image of the physical-region in the z plane at
any finite energy is only a par. t of the right half
of the real axis, the other part being the image of
the imaginary axis of the x plane. The image of
the physical region spreads the entire right half
of the real axis like - (lns)2 as s —~. Thus the
physical region appropriate for Laguerre-poly-
nomial expansion is achieved only at asymptotic
enei gies, although the:. parabolic figure of converg-
ence is achieved for all energies, The length of
the physical region and the weight. function decide
the nature of the polynomial. -26 Since the length
of the image of the physical region in the ~ plane
change's with energy, the orthogonal polynomials
as decided by the length of the image of the physi-
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cal region in the mapped plane are.not necessarily
the. .Laguerrq polynomials at finite energies. Now
we ask the, question as to what happens if we write
the series (3) for all energies with Laguerre poly-
nomials as has been done earlier. '2 In that case,
a„'s. are decided. only if f(s, f) is known on the en-
tire right, half of the real axis, a part of which is
the image of the imaginary axis of the y plane on
which f(s, t) is not known. Thus, for finite ener-
gies the expansion (3) in terms of Laguerre poly-.
nomials is ambigous for lack of the correct physi-
cal region.

For any given finite energy one can define2' a
sequence of orthogonal polynomials {P„(z)}with
the knowledge of the length of the physical region
in the z plane and;the same exponential weight
function exp(-cz). Since the length of the physical
region varies with energy, the naturp of the poly-
nomials, , by definition, is not the same for all fin-
ite energies, although the weight function has been
chosen27 to be the same. It is to be noted that the .

exponential weight function occurs naturally from
the theory of orthogonal polynomials 6 for the OPE
in terms of Laguerre polynomials with a, semi-in-
finite physical region, but the construction ~ of
orthogonal polynomials {p„(z)}for finite energies
with the same weight function is a choice. As we
will presently see, such a choice gives rise to an
exponential fit to the diffraction peak near forward
angles. For finite energies one can write, instead
of (3),

= exp(—o.z) Q c„(s}p„(2o.z), (7)
d'0'

dt

where {p„(z)}is a sequence of orthogonal polyno-
mials whose nature depends upon energy. Since
the nature of the polynomials {P„(z)]changes, the
corresponding figure. of convergence also changes
with energy, the figures of convergence for finite
energies, may not necessarily coincide with the
parabola, and the interior of.the figurq of converg-
ence at finite energies may not contain the'whole
image of the cut plane. Thus the series (7) may
not be maximally convergent for all energies, but
only at asymptotic energie~ when the correct phy-
sical region is achieved {P„(z}]: {L„(z)},and the
series. (3) is maximally convergent. Since we are
considering the convergence of (7) in the mapped
plahe, - the area enclosed by a figure of converg-
ence at any finite energy is likely to be the image
of a larger portion-of the x plane than the smaller
area enclosed by the Lehmann ellipse in it. There-
fore we suppose that for any finite energy the con-
vergence of series (7) is faster than the converg-
ence of the partial wave expansion in Legendre
polynomials in x. .For this reason. we call (7) a
convergent polynomial expansion (CPE). To sum-
mari'ze the statements made above, expansion in

terms of Laguerre polynomials in z is an asymp-
totic expansion and there is ambiguity in using an
asymptotic expansion for finite energies. The
discrepancy from. the correct physical region at
finite energies leads to CPE (7) where the rate of
convergence of the series varies with energy. The
sequence of polynomials {P„(z)}is neither unique
nor maximally convergent.

Besides achieving accelerated convergence by
roappirig the eut plage into the interior of the fig-
ure of convergerlce, the convergence of polynomial
expansions (3) and (7) is further accelerated near
forward angles because for ~f

~
«ts and energies

such that (4P 2+ tt, —4/s)»
~
(t~ f) ~, —z =—f/ts. In

this kinematical region, only the first term in the
convergent expansion is important and (3}or (7)
yields an exponential fit to the diffraction scatter-
ing of the form

d0 bt—=Ae

Thus the exponential fit observed even at relative-
ly lower energies in diffraction scattering is ac-
counted for by (7). In earlier works, 2'22 converg-
ent expansion (3) has been used22 to account for the
shrinkage of the diffraction peak for Pp, PP, and
K'p scattering for all energy ranges yielding a
constant slope for s —.. It can be argued that the
conformal transt'ormation of the type (4), when
applied to the unsymmetrical cut plane of analyti-
eity, introduces spurious cuts in the mapped plane
by folding a part of the physical region on top of
the other part. For example, the double sheet
structure in they plane (or, equivalently, in the
x plane) is folded together in going from the y to
the ze plane through the transformation defined by
Eqs. (4) and (5). Such a transformation introduces
three spurious branch points in the z plane at z,
={InI(4P'+ t~ —a/s)/ts]}'/4, z, = ~+ i~, and z,=- i ~, one of which lies on the physical region
and two others 1}.e at the ends of .the branches of
the parabola. But for the symmetrical cut x plane
this transformation, which is the same as (6) does
not introduce any spruious branch point. Consid-
ered as a function of x, the representations (3) or
(7) do not posse::s any other branch points except
at x=x, and x=—x for the unsymmetrical eut
plane. Thus ' the canformal transformation does
not introduce ex';ra branch points to affect analyti-
city property, but the presence of these three
spruious branch paints affects the convergence of
the polynomial expansion in the z plane. At pres-
ent we are interested in Pp scattering, in which
case the cut x plane is symmetric, thus the ques-
tion of the spurious singularities does not arise.
Taking only the first term in, the expansion from
(3) or (7), the expression for the forward slope is
obtained as
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dz n ( t~b(s) =- o. —= —
~ 1—

dt t i& 4p'.+ t

where

(8}

4x4
tg ——4m, '+ --4- g (8)

is the effective shape of the spectral function boun-
dary p„(p,„). For X=m„Eq. (9) describes the
theoretical boundary.

So far the cut structure of the x plane only has
been exploited and the formula (7) yields a con-
stant value of the slope parameter at ISR energies.
The scattering amplitude is a function of two inde-
pendent variables, which we choose as s and cose.
Experimentally, the slope parameter is measured
by fitting the fixed-energy and small-but-nonzero-
angle data on the differential cross section and ex-
trapolating the fit to the forward direction. The
slope of the forward peak is thus given at various
energies from the analysis of data at different
fixed energies. The scattering of hadrons is due
to the nature of hitherto unknown forces, which
are represented by cuts in the planes of both the
variables. Since the forward slope is determined
from fits to the differential-cross-section data at
various angles, it has been reasonable to exploit
x-plane analyticity. But since the slope para-
meter is also a function of s, the singularities of
the absorptive part of the amplitude in the s plane
might be playing a dominant role in accounting for

'a part of the energy dependence. We suppose that
the failure of formula (8) to account for the ISR
energy data may be due to the lack of inclusion of
s-plane analyticity. The most general way to use
analyticity properties in two independent variables
is vie, the double-variable dispersion relation, as
suggested by the Mandelstam representation. But
one of the mell-known problems in this case is that
the discontinuities across the cuts are not known a
priori. In the OPE one need not know the discon-
tinuity across the cuts. ' It has been pointed out
earlier~3'~~ that in expansion (3}not only a„(s}but

also o. are energy-dependent parameters. The
parameters a„'s do not enter into the expression
for the forward slope, but b(s) ~ o. . Thus the en-

ergy dependence of n may affect the slope para-
meter significantly. The most general way of ex-
ploi.ting s-plane. , analyticity by OPE is to expand the
function depending upon s in polynomials of a suit-
ably chosen variable. Cutkosky 8 has suggested the
use of separate conformal mappings and polyno-
mial expansions for the individual factors in a
function each of which is a function of the indepen-
dent variable. Since formula (8) has accounted
for the.major part of the available data on slope
parameters, we suppose that only a few terms in
the expansion for o. will be needed to account for
the complete energy dependence of b(s). Thus,

for the sake of simplicity, we will develop con-
vergent expansion for n(s). As a result we will
see that almost all the energy dependence from
the cross-section-ratio data at high energies is
removed, so much so that one may not worry about
the energy dependence of the other parameters.

In the s plane the physical region extends from
s =4m2 to ~ along the positive real axis. There
is a left- hand cut from s = 4m' —2m, ' to -~ for the
absorptive part of the amplitude, where m is the
nucleon mass. The conformal transformation

's-4m' '"
q(s) =sinh '

I

2m. ' (10a)

maps the cut onto the boundary of a strip of width
m in the g plane, the whole plane of analyticity
being squeezed into the interior of the strip. Sim-
ilarly, the transformation

s 4m~ 1/2 2

g(s) = q~= sinh '
2m.

(10b)

X(s, f) = o.(s)z (13)

for fixed but physical values of s, is a parabola
whose size depends upon s. The apex of the para-
bola is on the negative real axis at ReX =——,'v~n(s},
and the latus rectum of the parabola is also pro-
portional to n(s}. As s —~, the physical region

maps the cuts onto the branches of a parabola with
the focus at the origin, the entire plane of analyti-
city being mapped onto its interior. However, in
both cases the physical region in the s plane is
mapped onto the right half of the real axis. As
discussed earlier, the correct physical region has
been achieved for Laguerre-polynomial expansion
in terms of f(s) But t.he correct physical region
for expansion in terms of Hermite polynomials,
which converge inside a strip, is from —~ to + ,
and this has not been achieved by the transforma-
tion q(s). Nevertheless, one can use the converg-
ent expansion for n(s) in a Taylor series in terms
of g or f. The unitarity restrictions on the slope
parameter allow us to keep only a few terms in the
Taylor series. We see that for

s»4m +t,
q(s) - lns and f(s) - (lns)', and from relation (8) we
see that b(s)- n(s) when condition (11) is satisfied.
It has ' ' been shown that the maximum growth
rate of the slope parameter is (lns)~. Thus the
convergent expansion can be written as

CO+ C)g, (12a)
n(s}=

do +d('g + d2'g (12b)

With the energy dependence of n(s} specified by
(12), we see that the image of the cuts in the y(s, t)
plane, with
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spreads the entire right half of the real axis like
-(lns)4 and the images of the singularities which
lie on the boundary are pushed away to infinity
like - (lns}2. One of the main reasons2~ for devel-
oping parabolic transformation was to enlarge the
domain of convergence at high energies as com-
pared to the small Lehmann ellipse. In the pres-
ent case we see that for fixed but large energies
the size of the parabola is enormously increased
and at infinite energies the domain of convergence
is the entire X plane minus the points at infinity.
We can rewrite the expansion (3) for f(s, f) as

f(s, f) =e " e„L„(2X), (14)
n=

where the-. coefficients e„'s are related to the a„'s
of (3) by the relation

Qn

„Da„L„(0)

and a similar relation can be written in terms of
c„and p„(0) for finite energies. 27 The coefficients
e„'s are, . in general, energy-dependent unknown
parameters. To take into account the energy de-
pendence of the partial-wave amplitudes a„(s) of
Eq. (3) or c„(s)of Eq. (7), the analyticity of the
s plane of partial-wave amplitudes may be exploi-
ted by conformal mapping and CPE. Although in
the present paper we confine our analysis to PP
scattering, partial-wave amplitudes do not pos-
sess the same analytic structure as the total am-
plitude for unequal-mass scattering. Further
complication may arise because of the introduc-
tion of a set of free parameters, because of the
convergent series expansion, for each amplitude.
Instead of using the expansions (3) or (7), if one
uses the expansion (14), we show in the present
work that one need not worry about the energy de-
pendence of e„'s. %e will show in the next section
that the energy dependence of ix is sufficient to
account for the energy dependence of the high-en-
ergy PP cross-section ratio at all available angles
and thus e„'s will turn out to be energy indepen-
dent. With the expansion (14}, the expression for
the slope parameter, which is defined as

Thus

X(s, f) = 4m, 'b(s)z (16)

for large energies and all angles.
(ii) For large energies but small angles, such

that

X(s, t) —tb(s), (17)

X(s, f) —t(lns )2

for large energies and small angles, which is the
scaling variable of Auberson, Kinoshita, and Mar-
tin.

(iv) If we use expression (12b) and retain only up
to the second term

I

(19)X(s, t) —f lns

for large energies and small angles. In this ease
(14) saturates the Itegge behavior whether the e„'s
are energy dependent or not, and d& is related to
the Pomeron slope,

In view of the properties discussed above, it is
worth examining sc'aling properties of PP data in
the variable X. From the point of view of the
length of the physical region as discussed earlier,
the polynomials in (14} are uniquely the I aguerre
polynomials and the series expansion coverages at
the fastest rate at asymptotic energies. .But at
finite energies the nature of the polynomials, .and
hence the function (14), changes with energy, .
Thus, if (14) defines a unique scaling function at
all, it must be at large energies. and with e„'s in-
dependent of s. In the next section. we will show
that the experimental data on the pP-scattering
cross-sanction ratio support this view and X is a
good scaling variable. In the next section we
first determine the unknown parameters in (12)
and hence determine X by fitting the forward
slopes.

which is the scaling variable proposed by others. ' '
(iii} If we retain the second (third) term, in (12a)

[(12b)j,

b(s) =—lnf(s, f)
dx(s, t)

~=0 g
(15) III. SLOPE PARAMETERS, SCALING, AND ENERGY

DEPENDENCE OF DIP POSITIONS

is valid if we retain only the first term in the con-
vergent expansion (14) as a good approximation to
the data near forward angles. Expression (15)
yields the same formula as (8), with n(s) given by
(12). We list below some properties of the vari-
ables X(s, t) and the series expansion (14}:

(i) It is clear from (6} that for large energies,
when inequality (11}is satisfied,

a(s) }((s,f)b(s) =—m =
4m 4m zg

In this section we first examine how the inclu-
sion of the s-plane analyticity, as discusSed in the
previous section, improves the fit to the slope-
parameter data. %'hen this is done, the unknown
parameters in X(s, t) are determined and a plot of
the data on f(s, t) against X(s, f) shows that there is

- scaling. From this graph and our definition of 'the
variables as defined in the previous section we
predict the energy dependence of the position of
dips which is in excellent agreement with the data.
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b(s) =[do+ d, q(s) + d,q'(s)]

4(s)
t (s) 4~'+t (s} i

(20)

to fit the data. "'2' We have used expression (12b)
because this choice has the capability of saturat-
ing the maximum growth rate of the slope para-
meter, including Regge behavior, depending upon
whether both d& and d2 or any of them is nonzero.
The choice d, =0 is equivalent to chosing expres-
sion (12a) for f(s). It has been already pointed out
that the expression (20) can be derived from the
series (7) which has different types of polynomi-
als fP„(z) at different energies. At asymptotic
energies the series (7) converges at the fastest
rate and the polynomials are uniquely the Laguerre
polynomials, but at finite energies the rate of con-
vergence of the series (7) changes with energy.
Thus, at the risk of having used a nonunique set of
polynomials and a nonunique rate of convergence
with respect to finite energies, we use formula
(20} to fit the slope-parameter data for all avail-
able energies. By now there are available
extensive data on b(s) for different s and small-

~

t
~

values. To avoid complication in choosing
and fitting the data Hansen and Krish'3 have com-
puted average equivalent data from all the avail-
able data points .for small-

~

t
~

values. We thus
use 16 data points of Hansen and Krisch which
represent all the available forward-slope data for
small ~t

~

and fit them with formula (20) by taking
at first d2=0. Thus, a three-parameter fit to the
data with

d()
—0.65S

d, =0.050

0. 424 GeV

(21)

is obtained30 with y /NDF =1, 59. This fit has been
shown as the solid curve in Fig. 1. The dotted
curve in Fig. 1 is the best fit curve of Ref. 24.
To see how much nearer are the. average data of
Hansen and Krisch'~ and our fit to the actual data,
we have also plotted the actual data in Fig. 1. We
find that the present fit is significantly improved
over the previous fit24 especially at ISR energies.
From the value of d, we calculate the coefficient
of the t lns term in the exponent to be 0. 32, which
yields the slope of the Pomeron trajectory as
n'(0) =0. 16 GeV . We next included d2 as a free
parameter. Its value was found to be consistent

A. Energy dependence of forward siopes

To examine whether conformal mapping of the s
plane improves fit to the world da.ta on PP forward
slopes, we use formulas (8}-(10a), and (12b) and
rewrite the slope parameter as

with zero without any improvement on the fit. We
then tried formula: (20) with d&

—0 and d2 as a, free
parameter, which is equivalent to using formula
(12a) for o:. With this choice the total X was near-
ly the same 'as the fit (21). Thus according to
present analysis, the data on b(s} are consistent
with - lns or - (lns)2 type of asymptotic behavior.
Comparing the value of X with the previous result,
we find that the present analysis yields a domain
of analyticity smaller than the previous analysis,
but larger than the theoretical result, for the ab-
sorptive part. of the amplitude.

Two limitations of the present representation
have been pointed out in Sec. II. First, the rep-
resentation does not conform to the correct analyt-
ic properties in so far as the pion poles have been
neglected. Second, at finite energies the sequence
of polynomials (P„(z)j is neither unique, nor the
convergence of polynomial expansion maximum.
Before proceeding further it is necessary at this
stage to point out yet another limitation which is
apparent from the value of X obtained by using
formula (20) to analyze the slope-parameter data
for all energies. We see that although asymptotes
to the effective shape of the spectral function are
the same as the theoretical ones, X =3m„which
implies that the two-pion cut is weak at lower en-
ergies. Such an implication of a high value of X

was pointed out in Ref. 24. But according to the
general notions of S-matrix theory, the nearest
singularity has the maximum influence and per-
haps there is no reason to believe that the contri-
tpution from the nearby region of the spectral func-
tion is small. Therefore the effective shape of the
spectral functioo deduced in this case from the ex-
perimental data may not be correct. But such an

effective shape of the spectral-function boundary
is not needed if we confine our attention to the
high-energy data for s & 35 GeV . To see that in
fact, one can fit the high-energy data with the theo-
retical elastic boundary (X=m, ). We have shown
such a fit with the values of do and d& given by
(21). This fit has been shown in Fig. 1 and extra-
polated to lower energies by the dot-dashed curve,
which coincides with the solid curve for s & 35
GeV . At high energies the two fits are the same
because in this region the distinction between the
elastic and effective boundary does not exist. As
we will see in this section, scaling of the cross-
section-ratio data in the variable X will be exhib-

I

ited for small-angle data, with P„b ~ 19.2 GeV/c
and for larger-angle data with P„b ~ 50 GeV/c.
Therefore, fitting the slope-parameter data with
the elastic boundary alone does not affect our re-
sults on scaling in any mariner.

In the literature, besides the present one, the
only fit in which }{2/NDF has been reported in all
the available energy ranges is due to Hansen and
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FIG. 1. Slope parameter of pp scattering as a function of g. The solid curve is the fit by the present formula with the
effective boundary of spectral functions, and the dot-dashed' line is the fit with the theoretical boundary. The dotted line
denotes the fit of Ref. 24. The open circles are the average data points of Hansen and Krisch (Ref. 13). The closed
circles 'are the actual data points taken from Ref. 25.

Krisch. '3 Their model gives a much better value
of X2/NDF than the present one. The main objec-
tion against their model is the violation of the Cer-
rulus-Martin lower bound'4 of the scattering am-
plitude. The present model, with several limita-
tions already pointed out, illustrates the success
of the theory of analytic approximation by confor-
mal mapping and convergent polynomial expansion
in continuation of earlier works. 24 More important
is the result that the fit has determined unknown

parameters in X(s, f), which will be shown to be a
good scaling variable.

8. Scaling of cross-section-ratio data

The unknown parameters in X have been deter-
mined in the first part of this section from the fit
to the slope-parameter data. Thus, knowing the
variable y(s, f) as a function of s and t, we can
now plot the data 9 on f(s, f) against y. In plotting
the data we have separated the smaller- and larg-
er (t~ regions. P-lot (a) of Fig. 2 shows small-
~t

~

data for different values of laboratory momen-

ta starting from P „b = 3 to 1500 GeV/c. It is clear
that the data come closer and closer to lying on a
scaling curve as energy increases. In particular,
all the small-

~
t

~
data for P „b ~ 19.2 GeV/c lie on

the same scaling curve. Plot (b) of Fig. 2 shows
the same data points for higher values of energy
lying in the range 50 & J'„b & 1500 GeV/c. It is
very clear that all the small- ~t

~
data in this plot

lie on the same scaling curve. %e then examined
the efficiency of X as a scaling variable for large-
angle data. Plot (a) in Fig. 3 shows larger- ~t

~

data, including those in the dip region for differ-
ent values of energies. Plot (b) of Fig. 3 shows
the same data points for 50 & P „b ~ 1500 GeV/c.
It is clear that even the data for larger values of
~f

~

in this range of energies lie on a single curve.
From Fig. 3(b) this conclusion is seen to be sur-
prisingly true where the 200 GeV/c data of Aker-
lof et al. 29 and Hartmann et al,. 3' and the 1500
GeV/c data of De Kerret et al. 29 are shown to lie
on the same scaling curve.

The geometrical-scaling variable to„, has
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FIG. 3. (a) Scaling and approach to scaling in larger-
angle pp-scattering data starting from P&~——19.2 GeV/c.
(b) Scaling and approach to scaling in larger-angle pp-
scattering data at high energies starting from P&~
=100 GeV/c. The solid circles denote riage-~t~ data for
Pl=200 GeV/c from Ref. 31.

been tested to be a bad scaling variable by Hansen
and Krisch' even near forward angles. These
authors" propose the scaling variable P2P, 2ot, J'
38. 3 using the Lorentz-contracted geometrical
model of Krisch, '2 which proves to be very good
near forward angles. It has been shown by Giaco-
melli and pointed out by a Hansen and Krisch '
that the energy dependence is not removed for
larger-angle data. But in our variable, scaling
of the data for P„b ~ 50 GeV/c bas been demon-
strated even for much larger value of ~t

~

than in
Ref. 13. Besides these variables, ~'3 the only
work in which the scaling of the data has been test-
ed for both smaller and larger angles is due to
Divakaran and Gangal, ' who have observed that the
scaling for the larger-angle data becomes worse
for larger values of the variable ~t ~o„, /o„. The
scaling of the data in our variable is much better
than the scaling in the variables to„, and to„,t/
o„. Particularly, Fig. 3(b) demonstrates the
spectacular success of X for high-energy and large-
angle data as compared to other variables. Theo-
retical justification of the assumption on scaling
in the geometrical models has been made from

general physical grounds, but scaling in the mod-
el of Krisch"" and Hansen and Krisch" has been
hypothesized. The scaling of the upper bound of
the amplitude ratio in the variable to„, /o„has
been proved2 at asymptotic energies based on rig-
orous constraints of axiomatic analyticity and un-
itarity. In the present approach, scaling is not
proved a priori from rigorous theoretical basis,
but the possibility of scaling in X is hypothesized
from the uniqueness of QPE at asymptotic ener-
gies. Experimental data on the cross-section
ratio support such a hypothesis.

For th'e sake of completeness we restate our
arguments here in favor of scaling. It has been
already remarked that in tbe expansion (14) the
polynomials are uniquely the Laguerre polynomi-
als only at asymptotic energies. Whereas the do-
main of convergence of polynomials decided by the
length of the image of the physical region at finite
energies may not be the whole interior of the para-
bola, the figure of convergence at asymptotic en-
ergies coincides with the parabola. Thus, from
the point of view of the correct physical region,
series (14) converges at tbe fastest rate at asymp-
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totic energies. Then it may be just possible that,
if e„'s are independent of energy, the same num-
ber of terms in (14) with the same coefficients
describe f(s, f) at all energies. Now the fact that
the data exhibit scaling in X verifies such an as-
sertion and the fact that e„'s are independent of s
for large s. .In the present case th'e scaling func-
tion in (14) can be known, once e„'s are determined
by fitting the data at any single high. energy, but
we have not attempted to find such a function by
data fitting at present. Although several scaling
variables have been suggested, no unique scaling
function has been proposed yet ig the literature.
Recently Cornille has defined a class of scaling
functions in which are included sums of powers,
exponentials, and classical orthogonal polynomials
with positive coefficients. Our representation sug-
gests the scaling function to be a series in I a-
guerre polynomials with exponential weight func-
tion.

Let us examine the angular range of validity of
the present representations. In our conformal
mapping variable z, only the structure of the near-
est branch points in the x plane has been included.
By the conformal mapping, the images of the start
of the left- and the right-hand cuts are brought
closest to the image of the forward direction in the
mapped plane. By a suitable normalization, the
variable z has been so constructed that the repre-
sentations yield forward peak structure. Further,
only the analyticity property of the absorptive part
of the amplitude has been expolited and the absorp-
tive part is known to be having dominant contribu-
tion only near forward angles. For scattering at
larger angles, short-range forces represented by
more distant branch points and the real part of the
amplitude may be important and these have not
been directly included3' in the formula. Therefore
it can be argued that the present model is develop-
ed for the near forward direction and need not worh
for larger- angle regions in the representation of
the data. But we havte already seen that the vari-
able X serves as a good scaling variable for high-
energy lapger- ~t

~
data well outside the forward

diffraction peak region. At present there is no
convincing explanation of the scaling of the data
outside the diffraction peak as observed in the
present case and also in the variable of Singh and

Roy. 2'3 Here we put forward'some plausible heur-
istic reasons in favor of the scaling of the data for
larger value's of ~t ~. In the present work only the
domain of analyticity of the absorptive part of the
amplitude, which is dominant near the forward di-
rection, has been taken for conformal mapping and
representation in terms of CPE. At larger angles
the real part contributes significantly and the real
part can be represented by CPE in terms of a
similar parabolic variable as defined by (6), . where

X()
—4.35 +0.05 . (22)

Now, using the definition of X(s, f) for high ener-
gies, we obtain the energy dependence of the dip
position to be

(s)1=4~.'(»nhtX/4~. 'b(s)1"0, (23)

where ~f„(s}
~

is the. magnitude of the dip position
in the do/df vs ~t~ plot. The dip positions have
been measured'0 at high energies up to 1500 GeV/
c. In Fig. 4 we show the agreement of our pre-
diction (23}with experimental data. ~o For compu-
tation we have used our fit (21) for the slope para-
meter. The fit (23) involves only one paranieter
Xo which has been determined from the scaling
graph. It yields a }f2/NDF =0.46 for six data
points' ' ' showing very good agreement. The
curve has been extrapolated to higher energies.

the start of the cut x„(-x ) is decided by the domain
of analyticity of the real part. This type of rep-
resentation fox the real and imaginary parts has
been used by Chao, 20 using conformal mapping on
different ellipses. If we ignore the presence of
the poles, the domains of analyticity for the real
and the imaginary parts are the same for high en-
ergies and hence the parabolic variable becomes
the same for the real part also. Thus, at high
energies a part of the representation (14) may be
due to the absorptive part and the other part may
be due to the real part. Another possible reason-
ing may be that the real part is much less as com-
pared to the absorptive part even for larger ~t ~.
Concerning the short-range forces which might be
influencing scattering, at larger angles, it may be
argued that their effects have been indirectly taken
into account by conformal mapping, -although explic-
it structure of the distant branch points32 is absent
in the representation (14). By means of conform-
al mapping, the start of more distant cuts is
brought closer to the physical region in the mapped
plane than in the x plane. It is to be emphasized
that these arguments in favor of scaling observed
at high energies and larger angles are only plausi-
bility arguments, without having rigorous basis.
From our point of view, violations of scaling at
larger angles would mean the explicit presence of
more distant branch-point struetures3' in the anal-
ytic representation.

C. Energy dependence of dip positions

If X(s, f) is a good scaling variable, the dip po-
sitions should fall at the same point in the f(s, t)
vs X plot. This should be the case for scaling in
other variables also. The dip position for pp scat-
tering at 200 GeV/c has been measured very ac-
curately by Akerlof et al. 29 In Fig. 3 this dip po-
sition corresponds to
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FIG. 4. Prediction of dip position as described in the text for high energies. The data points have been taken from
Ref. 10 and Akerlof et al. (Ref. 29).

Future experiments at such energies will test our
predictions which mill also verify the possibility
of X being a good scaling variable for larger-angle
data.

IV. RESULTS AND DISCUSSION

Using the Mandelstam analyticity of the cose
plane by conformal mapping and OPE, the data on
the slope parameter at ISR energies could not be
adequately described. That the slope-parameter
data are available for different s values makes
necessary the use of s-plane analyticity also. The
only other parameter of the theory whose. s depen-
dence may affect slope parameter significantly is
a. A conformal mapping is developed for mapping
the left-hand cut of the absorptive part of the am-
plitude in the s plane onto the boundary of a strip
(parabola). The unitarity restriction allows only
the first fem terms in the expansion in the Taylor
series in the mapped variable for o.(s). A good
account of the forward-slope data at all available
energy ranges is obtained by retaining only the
first term in the expansion in the variable X with
an effective shape of spectral function, but a good
description of the slope-parameter data for s & 35
GeV2 is possible with the- theoretical elastic bound-
ary.

The variable X has the potentialities of saturat-
ing Regge behavior and reproducing. known scaling
variables'5 for small If

~

and large s. For high
energies and all angles, X-b(s)z, which becomes
—tb(s), the well-known scaling variable, ~ ' for
small ~t ~. In view of this attractive feature of the
variable and other'~ '8 successes of OPE in des-
cribing strong and electromagnetic interactions,

we thought it worth investigating whether the data
on the cross-section ratio exhibit scaling in this
variable. It is argued, in view of the requirement
of the correct physical region for expansion in the
mapped plane, that the polynomials in the expan-" sion are Laguerre polynomials only at asymptotic
energies. The figure of convergence of polyno-
mials as determined by the physical region may'
not coincide with the parabola at finite energies;
thus, the convergence of the polynomial expansion
may not be maximum. The polynomial expansion,
however, converges at the fastest rate at asymp-
totic energies. Thus, if possible, the expansion

, may define a unique scaling function only at asymp-
totic energies if the coefficients of Laguerre-poly-
nomial expansion are independent of s. When the
world data on the'PP cross-section ratio are plot-
ted against X, all the high-energy data come clos-
er and closer to lying on a single curve as the en-
ergy is increased. In particular, the data at all
angles from 50 to 1500 GeV/c exhibit scaling in
the variable X. Thus we have demonstrated scal-
ing in diffraction scattering by means of OPE.
From the scaling graphs we find that the scaling
in the variable X is better than many others, in
the sense that it removes energy dependence even
from large-, angle data at high energies. In par-
ticular, it is found from Fig. 3 that even all the
larger- ~f

~

data for I'„b =200 GeV/c and 1500
GeV/c lie on the same scaling curve.

Auberson, Kinoshita, and Martin' proved their
scaling function to be an entire function in the scal-
ing variable 7 =t (lns) plane. Cornille6 has shown
that one of the scaling variables may be tb(s) and
that the scaling function is a series in orthogonal
polynomials, including Laguerre but excluding
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Hermite polynomials. In the present case the
scaling function is a series in Laguerre polyno-
mials in X. For s ~, the physical region spreads
the entire right half of the real axis like —b(s}
(lns), and the images of cuts of the x plane which
form the boundary of th'e parabola a,re pushed to in-
finity like - b(s). As has been pointed out in Sec.
II, the present representations do not posses the
correct analytic structure for. nonforward angles
in the sense that the contribution due to the poles
has not beeri included. By conformal mapping,
the images of the poles fall on the negative real
axis of the z plane inside the-parabolic figure of
convergence. But at asymptotic energies in the X
plane, these images are also pushed away to infin-
ity like -b(s) as s ~. Thus, for any physical
value of energy in the asymptotic energy region,
the domain of analyticity for the scaling function
is the entire X plane minus the 'points at infinity.

From the position of the accurately measured.
dip28 position at 200 GeV/c, we predict the energy
dependence of dips for high-energy pP scattering.
Our predictions are found to be in excellent agree-
ment with the measured dip positions at other en-
ergies. Future high-energy measurement will
test our predictions for higher energies and thus
the efficiency of X as a scaling variable.

The demonstration of scaling of the high-energy
data in the variable X is further important in the
context of OPE for scattering amplitudes. OPE
has been successfully empolyed to fit differential-
cross-section data at various energies for phase-
shift arialysis and for- obtaining information on
coupling constants. 2 In such cases, differential-
cross-section data at every energy are fitted, in-
volving a lot of computation. As the scattering at
high energy involves a large number of parame-
ters, the repetition of such a procedure to fit the
high-energy data would be tedious. On the other
hand, the optimized expansion (14}, which exhibits
scaling in the variable X, will make matters simp-
ler at high energies, saving a lot of computation.
Thus, once the parameters e„'s in the expansion
(14) are determined by fitting the data on f(s, f) at
various angles for any single high energy, the
scaling function, and hence the fits for other en-
ergies, are known in the scaling region. Deter-
mination of the parameters e„'s and the scaling
function by fitting high-energy PP data is deferred
to a future work.

As has been pointed out in Secs. I arid III, scal-
ing in geometrical models has been either hypo-
thesized" "or assumed. s But scaling variables
based upon th0 results of axiomatic field theory
are supported by more physical and mathemati-
cal reasonings. ' ' In the present work, also,
scaling in the variable X is not proved a Priori
theoretically, but hypothesized from the unique-

ness of OPE at asymptotic energies. Experimen-
tal data verify such a hypothesis.

Here it is necessary to summarize limitations of
the present approach to diffraction scattering which
have been pointed out at various stages of this pa,-
per. First, in the spirit of earlier works, ' on-
ly the. cut contributions of the absorptive part have
been used to parametrize the forward-, slope data
and demonstrate the scaling of the cross-section-
ratio data. It has been demonstrated by model-
independent results ' '2 that the upper bound on
the absorptive part saturates the experimental
data on the differential cross-section ratio for dif-
fraction scattering near the forward angles. But
the pion-pole contribution may be significant away
from the forward direction, which may substan-
tially affect the slope parameter. Moreover, in a
typical strong .absorption model, the interference
between the Pomeron (cut) and the pion is essen-
tial. Although in many works ' '5 '2 only the ab-
sorptive part has been taken to be responsible for
scattering in the diffraction peak region, it will be
interesting to investigate how pole contributions
affect the fit to the slope-parameter data. But it
is apparent that the simple picture of scaling as it
has been discussed here will be perhaps impossi-
ble to realize if pole contributions are included ex-
plicitly. Second, although it has been pointed out '
that expansion in orthogonal polynomials in the
mapped variable a is possible for all energies with
a common exponential weight function, the poly-
nomials and hence their domains of convergence in
the mapped plane ar'e not the same for different
energies. In particular, there exists the ambig-
uity and danger in using the OPE in terms of La-
guerre pplynomials at finite energies in the sense
that the coefficients in the expansion cannot be de-
termined for lack of the correct physical region in
the mapped plane. However, because of the pres-
ence of the common weight function ip the polyno-
mial expansions for all energies, the same expres-
sion for the forward-slope parameter is possible
for different energies. Third, the formula devel-.

oped for the slope par'ameter requires an effective
shape of the spectral function p„(p )'to fit the
data at all energies. The effective boundary re-
treats too far-- from the theoretical elastic bound-

ary for lower energies, which is not correct. But
the difference between elastic and effective bound-
ary disappears and the same fit is obtained for
higher energies with s& 35 GeV2, even'with the
elastic boundary. Since the scaling in X is ob-
served only for large energies, our conclusions
on the scaling of the data are true whether one uses
the elastic or effective boundary. Fourth,

' it can
be argued that the present model has been devel-
oped for scattering near forward angles and the
representation need not work for large-angle data.
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There is no convincing reason yet as to why seal-
ing is observed well outside the diffraction peak
region at high energies, but some plausibility ar-
guments can be put forward in favor of scaling in

'

this region. Although use has been made of the
analyticity properties of the absorptive part of the
amplitude, which is dominant near forward angles,
one can use a separate CPE in terms of the para-
bolic variable exploiting analyticity properties of
the real part as has been done by Chao, using
elliptic conformaal mapping. But at high energies
the analyticity domains for both the real and the
absorptive parts tend to be the same if one ignores
the presence of poles. Thus the two parabolic
variables used for the real and. the absorptive parts
will be the same for high energies. Near forward
angles the real part is known to be small, but for
larger- ~f

~

values it may have significant contribu-
tion. At high energies the real part can be des-
cribed by the same parabolic variables as the im-
aginary part. Hence it may be possible that only
at high energies the data at larger- ~t

~

values may
scale in X. The alternative possibi. lity may be that
the real part is small even for larger ~t ~. The
other plausible argument is that, by conformal
mapping, the start of distant cuts in the x plane
that represent short-range forces, which possibly
influence large-angle scattering, has been brought
closer to the physical region in the mapped plane
than in the x plane. Although, explicitly, branch-
point structures of distant cuts have not been in-
cluded in the mapped variable, ' their influence has
been taken into account indirectly in this way in a
crude manner. It is to.be remembered th'at these
are only plausibility arguments put forward heur-
istically which may or may not hold.

The fifth limitation of a more serious nature
causes a problem only when the transformations
(4) and (5) are used to develop CPE by the confor-
mal mapping of the asymmetric cut x plane. Look-
ed at as a function of x, the conformal transforma-
tion z, and hence the polynomial expansion for the
amplitude, do not possess any other singularities
except the dynamical branch points allowed by an-
alyticity. But as has been discussed in Sec. II,
the square transformation involved- in going from
the y to the w plane defined by (4) develops spur-
ious branch points by folding a part of the physical
region in they plane on top of the other part. The
images of these singularities appear as three spur-
ious branch points at

z, =(in[(4P2 + f —6/s)/f „])2/4,
g2 —00+ioo

=~ —2 0
3

in the z plane, out of which z, lies on the image of
the physical region but z2 and z3 lie at the two ex-
tremities of the branches of the parabola. These
branch points give rise to two spurious cuts lying
in the interior of the parabola and thus affect the
convergence of the series in Laguerre polynom-
ials, although the representation is analytic. Re-
cently 3 a convergent polynomial expansion has
been developed by conformal mapping that achieves
the correct physical region for Laguerre-polynom-
ial expansion for all energies, but the boundary
pf the figure of convergence in such a case changes
its shape with changing energy, approaching the
limiting parabola as s . In the simplest case
of mappings proposed in Ref. 33, two spurious
branch points at z =0 and z = appear, giving rise
to a spurious cut overlapping the image of the phy-
sical region completely in the mapped plane. Ci-
ulli'6 has discussed the convergence of polynomial
expansion in terms of a mapped variable which in-
troduces an "artificial" cut explicitly along the
physical region. In his cwork, '6 results on the con-
vergence of polynomial expansion have been taken
to hold in the presence of an artifical spurious cut
along the physical region, although in the final rep-
resentation the spurious cut disappears. Thus we
suppose that the spurious cut causes no problem
for convergence as long as it lies on the physical
region about which the polynomial expansion is
done. The convergence of the polynomial expan-
sion for the physical values of the mapped variable
lying above or below the spurious cut may perhaps
be taken to hold with Rm +i& prescription. Since
CPE of Ref. 33 converges for all energies, it is
reasonable to suppose that scaling may be achieved
earlier in the energy scale if the present approach
is adopted with the variable of Ref. 33. In a sub-
sequent work such a conjecture has been shown
to be true for PP, PP, K'p, and m P scattering.
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