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We discuss predictions for the asymmetry A« in the inclusive production at large pT of charged 'and

neutral pions by longitudinally polarized protons. We work in the framework of a hard-scattering model
based on perturbative quantum chromodynamics, . Various assumptions for the distribution of the proton's syin
among its constituents —quarks, ocean antiquarks, and gluons —and the effects of scaling vioIations on the
parton distributions are considered.

I. INTRODUCTION

The idea that the production of hadrons at large
transverse momentum can be understood by a
careful combination of the usual hard-scattering
model with quantum-chromodynamics (QCD) per-
turbation theory has been gaining important sup-
port. ' The first calculations of the fundamental

'. 2 - 2 processes involving quarks and gluons to lowest
order in perturbation theory ' have recently been
combined with a serious attempt to estimate the
contribution of higher-order corrections in the
form of nonscaling structure functions4 and smear-
ing in the quark-gluon transverse momenta. '

Since QCD is the only serious candidate currently
available for a theory of the strong interactions,
our capability of achieving quantitative fits to
large-p~ production data from it is encouraging.
However, it seems necessary to do experiments
at very high energies (v s ~ 200 GeV) to distinguish
the QCD-based approach from other ad hoc models
on the basis of single-particle inclusive measure-
ments alone. ' lt is iriteresting, therefore, to ex-
plore other types of measurements which can be
done with existing accelerators and which are sens-
itive to the fundamental hypothesis of Refs. 1-3—
that the hard scattering which is responsible for
large-pr production is determined by QCD perturb-
ation theory.

It is our contention that experiments using polar-
ized beams and targets can play an important role
in testing QCD. Quantum chromodynamics can be
defined as the theory of spin- & color-triplet quarks
and spin-1 color-octet vector gluons interacting in
a gauge-invariant manner. Spin plays an important
dynamical role. In a previous paper' we pointed
out the existence of distinctive spin-spin asymme-
tries (differences in the scattering cross section
which depend on whether the helicities of the initial
particles are aligned or not) in the fundamental
'2-2proces sofQCD: qq-qq, qq-qq, qq-qq,
qV-qV, qV-qV, qq-VV, VV-qq, and VV-VV.

Vfhen combined with the reasonable assumption
that quarks and gluons "remember" the spin of the
protons containing them, these fundamental asym-
metries give rise to an observable

[d(r(p(+)p(+) , -'+)p(-) - vX)]
[d(r( p(+)p (+)- AX) + d(."i, ,)(+)pj-) -vX)]

for inclusive production at large transverse mo-
mentum from a longitudinally polarized beam and

target.
In this paper we would like to demonstrate how,

in the context of the general hard-scattering mod-
el, a spin-spin asymmetry in the fundamental 2-2
scattering processes can be responsible for an in-
clusive production asymmetry. We will also dis-
cuss some simple models for spin-dependent
structure functions which we can use to make spec-
ific predictions for Eq. (1.1). Although at present
not much is known about these functions (which de-
termine how the spin of a proton is distributed
among the fundamental quark and gluon constitu-
ents), measurements of spin asymmetries in elec-
troproduction~ and in the production of massive
lepton pairs' can be used to determine the quark
and antiquark distributions. When this has been
done, the prediction of the QCD model for the
large-p~ production asymmetry can be used to in-
vestigate the gluon spin distributions. The QCD-
hard-scattering model can also be used to test the
form of the fundamental quark-quark and quark-
gluon interactions.

A measurement of the inclusive asymmetry A«
involves many tough experimental questions. There
currently exists the technical capability to build
polarized proton beams using the parity-violating
decay of A's produced at high-energy accelerators
such as Fermilab and the CERN SPS,' and it there-
fore seems feasible that the type of experiment we
discuss can be done within a few years.

It is important to note that the predictions for the
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observable A.~~ appear to be relatively insensitive
to questions concerning scaling violations and k~
smearing in the quark and gluon distributions since
both the cross sections involved in the ratio are af-
fected in approximately the same way. Controver-
sies regarding the proper way to implement these
effects in QCD therefore do not necessarily invali-
date our results.

The plan of the remainder of this paper is as fol-
lows: Section II presents a derivation of the ex-
pression for definite-helicity cross sections in the
hard-scattering model. Section III gives the eva1u-
ation to lowest order in QCD perturbation theory of
the fundamental spin- spin asymmetries. Section
IV discusses some simple models for the spin-
dependent distribution functions. In Sec. V we give
the specific model calculations for the inclusive
spin-spin observable for pp and for pp collisions.

In Sec. VI we draw some conclusions concerning
the interpretation of our results.

II. HARD-SCATTERING MODKI FOR

DEFINITE-HKLICITY CROSS SECTIONS

It is instructive to review the steps which enable
us to predict an inclusive asymmetry such as given
in Eq. (1.1). Our basic hypothesis is that we can
combine the usual hard-scattering model' with
perturbative QCD in the manner discussed in Refs.
1-3.

In the hard-scattering parton model, the interac-
tion of two protons, A. and J3, is assumed to pro-
ceed through the scattering of the constituents g
of proton A and 5 of proton 8, with invariant cross
section (do/dt)(ab-cd) I.f we consider the spin-
averaged, case for the moment, the invariant cross
section is given by

E —,—(pp- vX)= Q dx, dx, G, ~„(x,}G,g, (x,)D",(z,) — - (ab-cd),
cf p ab~& &g min &b min

'z 17
(2.1)

s=(p, +P,) =x,x,s+

t =(p. —P,)' = x.t!s.+ ~ ~

B=(P~—Pq} =xpa/zq+' ' '

(2.2)

where we are neglecting (we hope small) trans-
verse- momentum fluctuations of the constituents
and where the usual Mandelstam variables are
given by

where G, &„(x,) is the probability of finding a, parton
of type a in proton A with fraction z, of P's long-
itudinal momentum (G~&s is defined in a similar
manner) and D",(z,} is the probability that outgoing
parton c decays into a hadron h. with fraction z, of
the initial longitudinal momentum of the parton.
We are assuming that these distributions scale (are
functions of momentum fractions only), but the
form is unchanged if higher-order corrections can
be factorized and contributions absorbed into the
distribution and decay functions at the cost of mak-
ing these functions depend weakly on the momentum
transfer. This factorization has been shown to be
true to low orders in perturbation theory and is
speculated to be true in general. ~

The constituent scattering cross section d8/dt
is a function of the parton center-of-mass variables

z, is constrained, i.e.,

I; u

SXb SX~
(2.4)

The 1ower limits of the x, and gb integrations in

Eq. (2.1) are given by

x, =x cot(8/2)/I2 —x tan(g/2)],

x, . -=x, x, tan(e/2)/L2x. —x, cot(8/2)],
(2.5)

A (iA)
proton a(h ) / A( AA)

(xa)

a(h) &
0

~~c
do.—(ah cd)

b(hb)

h (+ +-)

c (ic) or jet

where 9 is the constituent c.m. scattering angle
and x~ =2@'tu /s =2pr/Ws is the momentum of the
detected hadron transverse to the direction of the
incident protons divided by its maximum value.

When we consider the scattering of polarized pro-
tons, the distributions G, &„(x,) and G,ts(x,} must
be generalized to allow for the transmission of
spin information from the proton to its constitu-
ents. So, for the process pp-(w or jet)+X, as il-

s = (P~+Ps}

t=(p„-p„)',
& = (Ps- &a)' ~

(2.3)
e(k~)
proton )/s(X ) b

If we take the effective masses of the constituents
to be zero, then s+t+u-=0. Hence, the value of

FIG. 1. Hard-scattering model for initially polarized
protons.
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lustrated in Fig. 1 we define distributions

G.(ha&/A(hA) (~.»
the probability of finding a parton of type a and

helicity h, in proton A, of helicity A.„, with frac-
tion g, of A. 's longitudinal momentum, and

Gb(hb)/ 8( XB)(») i

which is defined in a similar manner. To find an
expression for the invariant cross section,

analogous to Eq. (2.1) for the case of polarized
proton scattering, let us represent the spin-depen-
dent part of the integrand of Eda&, ~ /dbp by

dCA{ XA) B( X~)

and let (d&)/dtll&, &)&b denote the c.n&. cross section
for constituents a and f) having positive (f&, b=+}
or negative (I), b=-}helicity. Then we can write
schematically

do'++ do'+
&(+)~(+) ~(+ )/&(+) ~(+)/ ~(+) -" «+)/&(+) ~( -)/~(+)dt dt

do
~( -)/&(+) 8+)/8{+) —

dt
+ Ct ( -)/&(+) ~( -)/ ~(+) dt

dg do'+
de„(,)8( )=G,(+)/~(+)Gg(, )/g( ) d- +G,(+)/g(, )G~, -, ~' ' d't

do dQ
Ga( -)/A(+) ~(+)/+( ) dt +( )/&(+) &( )/8( )

(2.8)

(2 'f)

We are suppressing the integration and kinematic variables which are the same as in the spin-averaged
case. It is convenient to deal with the sums and differences of the distribution functions and constituent
cross sections. We define

ti'Ga/A (Ga&+&/A&+& Ga&-&/A&+&) i

Gb/8 (G +b)&/(+8) Gb(-)/8(+&) i

Ado do do,
dt dt dt

and also note that the distributions and constituent cross sections entering into Eq. (2.1) are given by

G«+)/&(+)+ ~( -)/&(+»

GQ/8 Gb(+)/ 8(+) Gb( -)/ B(+)

dg ~ do'++ d&+-

(2.8)

(2.9)

The parity invariance of the strong interaction implies that

G b(+)/ B( -) G b( -)/ B(+»

G~( )/8( )-Gq(+)/8(+) (2.10)
do'++ dQ do'+ d(J

dt dt ' df df

By using the definitions of Eq. (2.8) and the results of parity invariance given in Eq. (2.10), we can write

dQ++ do+
A(+) 8(+) doA(+) 8( ) d tt (Ga(+) A(+) G b(+)/ 8(+) Ga(+)/A&i ) Gb(-)/8(+)at

a&-&/A&+ & b&+&/8&+ &+ « -&/A&+ & b&
- &/8&+ &)

do'
(nG. /„)(t&.G b/, ) .dt

(2.11)

Hence, we find that the expression for the difference of invariant cross sections for the process pp-nX
can be written as

—= Q J d~. d» thG. / (~.)/&Gb/8()(b)D."(8 ) „~ ~

(2.12)
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where z, is given by Eq. (2.4). Now, in terms of
the invariant cross sections given in Eqs. (2.1) and

(2.12}, we can write the asymmetry A~~ defined
in Eq. (1.1) as

A. The process q~qp-+q qp

The diagrams for qq- qq are

EdO++

'p
LL 2

d p

&do, 'tf

dP i (2.13)

It should be noted that the fundamental assump-
tion of the hard-scattering model that justifies the
incoherent formula (2.1) implies that single-spin
asymmetries (or polarizations) should vanish.
This assumption can no longer be strictly correct
in the presence of scaling violations associated
with coherent processes. The experimental mea-
surement of inclusive one-spin asymmetries pro-
vides a possible test for the effect of coherent dy-
namics on the generalized hard-scattering model.
The existence of nontrivial A dependence in scat-
tering off nuclear targets is a clue that they are
present. ' Much more theoretical work is involved
in the prediction of polarization than in the spin-
spin asymmetries discussed here, but we cannot
ignore their interrelation. Measurement of a siz-
able (~3(P/z) single-spin asymmetry would call into
question the assumptions under which the predic-
tions of the two spin asymmetries are made. Be-
cause spin observables are interrelated, there
would be feedback from polarization on spin-spin
asym metrics.

In order to evaluate the expression for A«of
Eq. (2.13), we must determine the constituent
cross sections and the distributions of Eq. (2.8).
We now turn to the problem of obtaining them.

HI. EVALUATION OF QCD CROSS SECTIONS.

FOR DEFINITE-HELICITY QUARKS AND GLUONS

We would like to give here the expressions for
the differential cross sections for the scattering
of quarks and gluons from states of definite helic-
ity. The cross sections are calculated to lowest
order in the perturbation expansion for QCD We.
neglect terms involving the mass of the quarks.
The assumptions involved in using these cross
sections in the hard-scattering model are dis-
cussed in Refs. 1-3. We include some of the de-
tails involved in the calculation in order that the
reader may judge to what extent the spin degrees
of freedom for the quarks and gluons are playing a
fundamental role in the dynamics.

(t channel)

i,j, h, l= 1-3 (quark color),

a, h =1-8 (gluon color),

n, ra =u, d. . . (quark flavor),

(u channel)

s=(p +P )', f=(p -P.)', u=(p, —p, )'.
In the Feynman gauge the amplitudes can be

written in the form

2

art~ = (T',
GATI i) u (. p», h»}you'(pi, h, )

t

x u„'( P„h)y»" u8(P2, h2),
2

(1'g~ ag) 8 '(P» h»)y. 8(P2, h)

(3.1)

u(p, h)u(p, h) = —,
' (1+hy, )p,

v(P, h)F(p, h) =-,'(1- hy, )fr, (3.2)

Q u(p, h)u(p, h) = Q v( p, h)e(p, h) =p.
SPillS SP11)S

The color matrices are defined T', , = —,'A. ',.
&

where
the A.

' are the usual Gell-Mann matrices for SU(3).
The color traces are given in Ref. 2. Averaging
over initial colors and summing over final colors
and spins, we find

[»t/'„, @(=Il)Q Q l&,„~ +~.„„ f*

SPlN

(3.3)

t'u2 t2)

Parity invariance guarantees

fit f' = fart f'„, fart f', = fart/', .
For nonidentical quarks, the fact that (Itf',

(3.4)

&«u~(p„h, ) y'u. (P„h,) .

The 6 &
indicates that the u-channel term is pres-

ent only when the quarks are identical. We then
use the projection operators for definite helicity
appropriate for zero-mass quarks
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B. The process q q ~ q q

I~ 08
+
+
+'-' 06

I

+
0.4

+
+
ll

0.2

We can cross our diagrams for qq - qq to get
those for qq-qq except that we now have to be
more careful of the possibilities for different fla-
vor combinations. The diagrams are

0.2 0.4

(-u/s )

0.6 0.8 1.0
-P2, P -P3, y

(t channel) (s channel)
FIG. 2. Constituent asymmetry for unlike-Qavored

quarks as a function of (-I/s).

vanishes in the backward direction (u =0) can be
obtained by combining the helicity conservation of
the y„vertex with the constraint of angular mo-
mentum conservation. The asymmetry

i,j, k, l = 1-3 (quark color),

a, 5 = 1-8 (gluon color),

n, P, 5, y = u, d, . .. (quark flavor),

s=(p, +p, )', t=(p, -p, )', u=(p, —p, )'.
The g-channel and s-channel amplitudes are

& =(I3gl' —I& I',-)/(Ill'. ,+ I3R I',-) (3.5)
2

t (ty&g8 gbtgy}
= 5&558y Tll T

for unlike quarks (e.g. ud-ud) is plotted against
(-u/s) in Fig. 2. For identical flavors, the asym-
metry (3.5) is plotted in Fig. 3.

Using C invariance, the expressions (3.3) for
qq-qq can also be used for qq-qq.

x uB ( p4 y 84) 7 p urx (pl p kl )

~8(p. ~&2)r"vt ( ps

Nf, (O„Cg-AV&) = 5„s5&&Tt~T',yS

(3.6)

I

0.8
+
+

06
~ ~

I

0.4

&& u~~(p„h, }y„v~(p„h,}

&' ~t'(pn h»"u'(p. &x} ~

Using standard trace techniques we get

lani*,.=(~lg'(n. ,ng,

8 4 u (f +u )IXI', =(—')g 5„g58y +5 g5qy 8

Q—
3 &n~& S&~y st (3.7)

0.2

(-u/s }

0.6 0.8

FIG. 3. Constituent asymmetry for like-Qavored
quarks as a function of (-u/s).

t.o For unlike flavors (ud-ud) the asymmetry is the
same as for ud-ud in Fig. 2. For flavor annihila-
tion the asymmetry is -1 everywhere —a familiar
result which is identical to that for e'e - p, 'p .
For uu-uu the asymmetry (3.5) is shown in Fig. 4.
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C. The processqV~qV

The diagrams for qV- qV are

i,j, k, l= 1-3 (quark color),

a, 5, c= 1-8 (gluon color),

p, v, ~ = Lorentz indices,

s=(p, +q, )', t=(p, —p, )', u=(p, —q, )'.
Defining a Lorentz tensor which occurs in the
three-gluon vertex,

c" "(q„q„q ) -=[(q —q )'g"'+ (q —q )"g "

+ (q, —q, )'g"'], (3.8}

(t channel) (u channel}

P
g(' ll t2& 62

(s channel)

we suppress the flavor indices and write the invar-
iant amplitude from the three graphs shown above
in the form

%(q;V, - q&V») =-g'uz(p„h )
cab

kJ 1 ~2 Y ~kgll(ql q2 1 qlt q2) ~1(P1 4292
l

(3 9)

In addition to the projection operators for defin-
ite-helicity quarks given by Eq. (3.2) we also need
to use projection operators for definite-helicity
gluons. We choose to project out the helicity for
a gluon with momentum q,

p v+ v

e"(q, x)e*"(q, x) = —-g""+
2 P'q

(3.10)
sAE"' q P

P e

where p' =0. Averaging over initial colors and
summing over final spins and colors gives

The expressions for the cross sections for qV- qV are the same as those for qV- qV.

D. The process VV~qq

The diagrams for VV- qq are related to those
for qV-qV by crossing. The diagrams are

(3.11)

Again, angular momentum conservation and helic-
ity conservation for, the quark force f3Rf', to van-
ish in the backward direction. The asymmetry
given by Eq. (3.11) is plotted in Fig. 5.

2

(t channel) (u channel)

We can write the invariant amplitude

(s channel)

3R( V, (A.,)V»(A») - q, q&) =-g'u&(p2) T',» T»&gz( q», A»)
' '

g, (q», A,,)+ T',» T~»g, (q», A.,)
' '

g, (q„g )
(4-P',)», (4. -p, )

le

(3.12)

Using Eq. (3.10) to project our definite-helicity
gluons we get

E. The process qq~VV

f3R' f„=0,
1 u+g 3 u+g
3 ug 4 s

(3.13)
The diagrams for VV-qq are also appropriate

for qq- VV after changing the signs of the momen-
ta. Although we now sum over gluon spins and pro-
ject out specific quark spins, the answers
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I.O—
differ only by color-averaging factors from Eq.
(3.13).

+
+.+a~ a

~ ~ ~

I

I

a~ a
II

0.8—

0.6—

0.4

0.2

UU~ uu F. The process VV~ VV

The diagrams for gluon-gluon scattering are

q&,
E'

{tchannel) {8 channel)

0.2 0.4

(-u/s)

0.6 0.8 1.0

FIG. 4. Constituent asymmetry for quark-antiquark
scattering like-flavored quarks as a function of {-I/s).

(3|I'
f
„=0,

64
27 ut 3 s'

(3.14) (g channel) (four -point)

We can w'rite the invariant amplitude in the form

II =-)I'~g (n, &&)~.'(qm, W)~,"(q,)~4 (q4) f..gf.g.G'" (-q„q&- q4, q4)
"' G"""(q.—q, -q. , q. )

+faeofebdG""( ql, ql- q3-, qs)
" G""'(qm- q4, -q2, %4)

+faaef&ueG
"

( q& la&& q&+ q2) G' " (-q, —
q&&~ q3t q4)

+fauef&:&e(g R Z ~Z ) ~ (3.15)

Using K&I. (3.10) to project our initial spine, sum-
ming over initial colors and averaging over final
colors and spins gives

er-order corrections.
A summary of the cross sections evaluated in

this section is given in Table I.

(3.16)
IV. DISTRIBUTION FUNCTIONS FOR QUARKS AND

GLUONS IN A SPINNNING PROTON

A. General discussion

The asymmetry implied by these expressions is
shown in Fig. 6.

Insofar as the sign and shape of the constituent
asymmetries represent fundamental constraints
such as approximate helicity conservation for light
quarks and angular momentum conservation, they
are not likely to be substantially changed by high-

Our ability to calculate a spin-spin asymmetry
in large-p~ hadron production depends on the as-
sumption that the spins of the fundamental consti-
tuents involved in the hard scattering are influ-
enced by the spins of the external hadrons. In the
quark-parton model, this influence is parametrized
in terms of the distribution functions G,&,&~„&,&(x),

G,
& &~„&,&(x), and b,G, ~„(x) defined in Sec. II. It is



JOHN BABCOCK, EVKI YN MONSAY, AND DENNIS SIVKRS 19

1.0 l.0—
~ ~

I

+ 0.8
+
++

0.6
I 1

I
+.

0.4

+ 08—
+
+
+.

0.6
'I

I

+
I 04
+
+'

A
VV VV

0.2 0.2

0 0.2 04

(-u/s)

0.6 0. 8 I.O 0, 2 04
(- u/s)

0.6 0.8 ).0

FIG. 5. Constituent asymmetry for quark-gluon
scattering as a function of (-u/s).

FEG, 6. Constituent asymnmtry for gluon-gluon scat-
tering as a function of (-u/s).

now known that in QCD calculations we can repro-
duce the effect of certain higher-order perturbative
corrections by allowing the distribution functions
to have a mild dependence on the momentum trans-
fer.4 The form of this Q' dependence, or scaling
violation, is considered to be a test of the under-
lying theory. For simplicity of notation in what
follows we will usually omit displaying explicitly

the Q' dependence of the structure functions in
formulas. We will, as a first approximation, con-
sider the functions to be independent of Q . Later
we wili. return to the question of scaling violations
and will use the formalism of Altarelli and Parisi"
to examine corrections to this assumption.

In polarized eÃ or p, N scattering experiments we
can determine the structure functions'

TABLE I. Table of @CD cross sections for definite-helicity states. All cross sections con-
tain a common factor x, /s .

Process
gb cd do/dt(a(+)b(+) 'cd} dc/dt(u(+}b( )-cd)—

q~qa q&q

VV qq

qq VV

I' s2 2&s8
8

I

s [8
9 t' "

l, u' 3/tu

6~g68y

(2S 8 S

( t2 9 us

}/2s' 8 s'
~I, t2 9 us

9 2s2 su st )i
2 ut t2 u2]

9 t2 +8 u2

2

9 ~n~&8) t2

{t2+ u2)
+6~86g ~ s

u 2

t

2u 8u
t2 9 us j

('"--:—::)
{u2+.t2) 3 (t2 + u2)

$3 ut 4 s~

(
84 tt+ut 18 t2+u2

))

27 ut 8 s& )
9 2s2 su st 2ut
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f"( ) =P (e,)'[G,& (x)+G—,g~(x)] (4.1)

+ dxAVx
0

1
+ — dx[au(x)+ ad(x)+ as(x)]

2 0

+{L ), (4.4)

where {L,) is the expectation value of the z com-
ponent of orbital angular momentum summed over
all the constituents. Equation (4.4) involves the
gluon distribution ~V as well as those of the

g,"(x)=
2 g (e,)'[AG, y (x)+b,G,y„(x)—], (4.2)N

where x= Qs/2mv is the usual Bjorken scaling var-
iable and it is assumed we are in the deep-inelastic
regime. We are interested here in helicities, so a
third structure function, conventionally labeled
gs(x}, which involves spine in a transversity basis,
does not enter into our expressions. Note that good
data on polarized leptoproduction can be used to ob-
tain directly the distributions d, G, &~(x) and hG;~~(x)
for quarks and antiquarks but that the gluon asym-
metries cannot be measured in this way. At this
time, measurements of the polarized leptoproduc-
tion asymmetry have not been carried out at aH
values of x."' In order to display definite calcula-
tions we therefore resort to some simple theoreti-
cal models in order to obtain distributions.

For convenience we will define u(x), d(x), u(x),
etc. to be the distribution functions for up, down,
antiup, etc. quarks in the proton as given, for ex-
ample, by Feynman. " The differences G„&,&~~&, &(x)
—G„& &~&& &(x) will be denoted bu(x), 4d(x), etc. For
gluons we will use the notation V(x) and b, V(x). In
addition to data, we can use the Bjorken sum rule"
in the form

1

dx[b,u(x) —Ad(x)+Au(x) —bd(x)] =G„/G», (4.3)
0

where G„/G» is the ratio of the axial-vector to the
vector coupling in neutron P decay. This ratio has
the experimental value"

G„/G» =1.23+0.02.
It is apparent how Eq. (4.3) can be combined with

measurements of g,"(x) for some range of x to
extrapolate over g between 0 and 1. We have an-
other important constraint on the distribution func-
tions using the projection of the z component of
angular momentum. This gives

I
(Z, ) =-,' = —,

' dx{hu(x)+ hd(x)+ b,s(x}]
0

quarks. When dealing with lepton processes, vari-
ous authors' ~' have lumped the contribution of
gluons to Eq. (4.4) together with the {L,) term.
For our purposes, however, it is important to
make the distinction above since spinning gluons
are available for hard scattering. Estimates of
(L,) involve detailed models for the proton wave
function and for the effective spin-orbit potential.

We will now' consider three separate models for
the spinning quark and gluon distribution functions.
These will serve as illustrations, indicative of the
range of possibilities allowed by present experi-
mental measurements of the deep-inelastic lepton-
proton spin- spin asymmetry.

r
1

dx b,u(x) = as [SU(6) limit],
0

J
1

dxad(x) =-~s [SU(6) limit] .
0

(4 5)

We know that this cannot be exactly correct since
we could insert Eq. (4.5) into the Bjorken sum rule
Eq. (4.3} to obtain

G~/G» IsU&6&
= s ~

(4.6)

which disagrees with. the experimentally measured
value. It is an interesting exercise to think about
how the result Eq. (4.5) can be modified without

doing injustice to the spirit of a very successful
(and simple) picture.

One possibility is to take seriously the idea that
a proton has L, =0 since this fact is involved in the
proton's SU(6) spectroscopic classification. How-

ever, just as antiquarks and gluons are known to
carry some of the momentum of the proton, it may
also be necessary that they carry some of the spin.
We can implement this speculation in a way which
remains faithful to the SU(6) classification of a
proton to obtain what we refer to as the conserva-
tive SU(6) distribution functions. For simplicity
we will assume flavor-SU(3) invariance for the sea
and denote

u(x) =d(x) =s(x) =q(x) . (4.7)

We do not assume the sea antiquarks to be un-
polarized but instead take a simple ansatz based
on a study of perturbation-theory diagrams in QCD
and the generation of the sea'.

lim q (x) = c(1 —x)"[2 + (I —x) '],
(4.8)

lim q, (x) = c(l —x)"[l.+2(1 —x)'] .
x~1

Conservative SU(6) distributions

The starting point for most of our ideas on the
spin content of the proton is SU(6). In this picture
all the spin of the proton is carried by its valence
quarks and we have approximately
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To see how much spin can reasonably be expected
to reside in the sea (at values of Q' consistent with
current experiments) we match the normalization
of the antiquark distribution deduced from massive-
lepton-pair data at x=0.3 (Ref. 19),

I
(x&, = dxx V(x) =- -,',

0

(n+ 1)(n+ 3)
6(2n+4)

(4.13)

q(x) = '
(1 —x)" .

x (4.9)

and we can quickly estimate the contribution from
the gluons to the g component of angular momentum

We therefore postulate the simple parametrization

q. (x) = '
(1 —x)"[2+ (1 —x)'),

(s,&„=0.1V6(n = 6),
0 174.(n = 8) .

(4.15)

0~13q, (x) = —~ (1-x)"[1+2(1—x)'], (4.10)
In fact, on the basis of the ansatz of Eq. (4.12)

we can write

aq(x) = 0.13(1—x)"(2 —x) .
(s,&„=~(x&, I

1+ O— (4.16)

The amount of spin which can be associated with
the antiquarks and the "sea" component of quarks
in this simple model is therefore

2(s,).-=2x3 x-', fdxaiy(x)

=0.068 [using (4.10)] . (4.11)

(4.12)

The normalization of these distributions is now

fixed by the momentum sum rule

It is possible, therefore, that antiquarks can
contribute a small but non-negligible component to
the spin of the proton. The idea that the antiquarks
in the sea of a spinning proton might be polarized
can be tested experimentally through the produc-
tion of massive lepton pairs using polarized beam
.and target. ' However, the contribution to the
large-p~ production asymmetries we are discussing
here from processes involving antiquarks will not
be significant if q asymmetries are as small as
given in Eq. (4.10).

The picture discussed here for antiquarks neces-
sarily implies that the gluons in the proton are
polarized. This is because antiquarks arise from
the (virtual) pair creation from gluons and the
gluons must be polarized to transmit spin informa-
tion. Therefore, experiments which are sensitive
to the polarization of antiquarks will also be able
to indicate indirectly whether or not gluons carry
spin information. Using an ansatz for gluon distri-
buti:on functions based on ideas similar to that for
antiquarks we can parametrize

/

su +ad dx+0.068+0.176.
0

(4.1 I)

This can now be combined with the Bjorken sum
rule in

1
0.26 = —,

' [~u(x)+ ~d(x)] dx,
Mp

1

1.23 =— fa u(x) —ad(x)] dx.

The sea contribution to the Bjorken sum rule van-
ishes in our approximation due to isospin invari-
ance. A similar value for the amount of spin car-
ried by valence quarks was derived by Sehgal 0 by
combining the Bjorken sum rule with the analog
sum rule for the decay " - -Oe v, and using SU(3)
to obtain

(s,) „„,=0.30.
This is in reasonable agreement with

(s,& „~„,=0.26

from our simple model.
We now consider the spinning quark distributions.

For simplicity, we assume that

Su(x) (x:u""'" (x) =u(x) —u(x),

ad(x) ~ d""'""(x)= d(x) —d(x) .

where n is the effective power of (1 —x) appropriate
for the gluon distribution. We expect it to be inter-
mediate between the power of the valence-quark
distribution and that of the sea-antiquark distribu-
tion. In our calculations we will use Eqs. (4.12)
and (4.13) with n =6.

Using our models for antiquark and gluon distri-
butions we can now isolate the contribution of the
valence quarks to the spin of the proton. Because
we are assuming (I,,&

='0, we have from Eqs. (4.3),
(4.10), (4.11), (4.12), and (4.14)
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I

r (C)

d,u(x) = 0.6lu""(x),

ad(x) = ~(x) = Sq(x) =0,

d, V(x) =0.
(4.18)

~ 0.6

o.~

0.2

0.4 0.6 0.8 1.0

FIG. 7. Asymmetry ratio for polarized e-p scatter-
ing compared to predictions of various quark distribu-
tions: (a) conservative SU(6) model, (b) diquark model,
(c) Carlitz-Kaur model. Solid circles are data from
Bef. 14 and open circles are data from Bef. 13.

We refer to these as our diquark distxibutions. The
prediction for the ep spin-spin asymmetry in this
model is also sho~n in Fig. 7.

Carlitz-Knur distributions

The final set of distributions we mill consider
was developed by Carlitz an/ Kaur." In this mod-
el, valence quarks lose their "memory" of the par-
ent proton's spin orientation through interactions
with the ocean. In particular, at small g, the val-
ence quarks lose completely their memory of the
spin orientation of the proton.

Let sin29 represent the probability that a valence
quark's spin will change in interactions with the
ocean. Denote the density of the ocean relative to
the valence quarks by N(x) and let H(x) be the prob-
ability of a spin-flip interaction between valence
and ocean. Then

We can solve the constraints of Eq. (4.17) to obtain

~u(x) 0 44u valence(x)

ad(x) =—-0.36d" '" (x).
For our modelof the valence-quark distributions

we take the parametrization of Field and Feyn-
man." The prediction for the deep-inelastic lepto-
production asymmetry using the conservative SU(6)
distributions is displayed in Fig. 7. %'bile these
values are in rough agreement with experiment;
there is a possible tendency to underestimate the
data at large x. We will now turn to another ap-
proach to quark distributions.

Diquark distributions

Instead of relying on nonrelativistic SU(6) ideas,
we can take a different approach. One picture, ad-
vocated by Field and Feynman, ' assumes that, in
certain limits, the proton can be treated as a
quark-diquark system. This leads to the result
that, for a large momentum proton, the fastest
(or leading) quark has the same isospin and helicity
as the proton itself. This idea has already received
partial support from the experimental result"

vW,'"(x)"()z~g 2

but spin asymmetry measurements at large z have
not tested this hypothesis.

In order to implement the quark-diquark picture
and maintain consistency with the Bjorken and

(J,) sum rules, we have taken the distributions

sin'8 =- 'FI(x)N(x —)/[H(x)N(x) + 1] .
Carlitz and Kaur then assume that ocean quarks
and antiquarks are uripolarized and that gluons have
a (1 —x)' falloff [their result is not very sensitive
to the power of (1-x)] and arrive at the expression

e(x)IV(x) =H, (1 —x)'x '~ . (4.19)

where

cos[28(x)] = [I+If,x '~'(1- x}'] '

is the spin dilution factor. In Fig. V, we display
the prediction of the Carlitz-Kaur distributions
for the spin-spin asymmetry in ep scattering.

The value 0, =0.052 is set by the Bjorken sum
rule, Eq. (4.3).

Integration over the quark and antiquark contribu-
tions to (g, ) indicates that 11.@ of the proton's
helicity is due to gluons. We paeametrize the glu-
ons's spin as before [see Eqs. (4.12) and (4.13}],
but renormalize the integrated gluon spin to be
11.F/q of the total. Hence, the Carlitz and Kaur
(plus gluon} spin distributions are given by

zu(x) = cos[28(x)] [u "~(x)—lsd""(x)],

ad(x) =- ~~ cos[28(x)]d""(x),
(4.20)

as(x) = sq(x) =0,

ZE V(x) = 0.116
2 3

(2 —x)(1 —x)",(n+ 1)(n+ 2)
I+
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B. Scale violations in spin distributions

and fragmentation functions

0.35

0.30—

I I' I

xau"" ( x, s) vol
( )

(b)

Proper use of QCD ideas within the framework
of the hard-scattering model demands the use of
quark and gluon distribution functions and frag-
mentation functions which exhibit scaling viola-
tions. In order to test the sensitivity of our pre-
dictions of spin-spin asymmetries to these scaling
violations we must construct a set of distribution
functions and fragmentation functions for a spin-
ning proton consistent with the predictions of QCD.
In this section we describe briefly a method due to
Altarelli and Parisi. "

Altarelli and Parisi approach the problem of
finding the Q8 dependence of the distributions in
parton- model language. They define functions

P~»J3&s(x) which give the probability for finding a
parton of type B and helicity hB with fraction x of
the parent momentum "inside" a parton of type A
and helicity AA. These probabilities are calculable
in renormalization-group-improved QCD perturb-
ation theory. The sum s PA a =PA a +PA B++ -+
used to obtain the Q'-dependent fragmentation
functions, as well as nonspinning scale-violating
distributions. We can also define differences,
APA~ =PA 8 - PA ~ . Altarelli and Parisi show
that the integro-differential equations describing
the behavior of the spinning and nonspinning distri-
butions evolve separately but in similar fashions.
Let $ =in(Q'/Q0 ). Then for quark or antiquark

(q ) and gluon (V) nonspinning and spinning distri-
butions we have

0.25

0.20

O. I5

O. IO

s =0.0

0.05

O. I4

x b, v ( x, s )

I

(c)
IO x 5 0' ( x, s )

O.IO—

(
0.08 1-

0

o.o6

0.04

0.02

s = I.2
s=0.8

s =

0 I I I

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1.0
X X

FIG. 8. Scale-violating conservative SU(6) spin dis-
tributions as functions of x and s= I.n [In(Q /& )/In(Qp /
A2)]: (a) valence u quarks, (b) valence d quarks, (c)
gluons, (d) ocean antiquarks. Here AG@,s) =—G„(x,s)
—G, (x,s).

and

(x, () =
q J —[q'(y, Oa, ,(x)y)

+ v(y, g)z„(x/y)],
Iw

(x, t) =
2 J

— q'(y, $)&„(x/y)

+ v(y, g)s'„(x/y)

(4.21a)

d4q' o.'($) '
dy

(x, () =
2

—[~q'(y, ()~P„(x/y)

+ ~v(y, ])~z„(x/y) j,
dav o.'(g) ' dy(x, ])=

2
— ~q'(y, ()~P„,(x/y)

27K

+ ~V(y, t)P„(x/y),

(4.21b)

where

~(h) = ~(Q.') 1+ ~(Q.')5
33 —2

and f denotes the number of flavors. For the ap-
plication of these scaling violations to large-P~
production we choose

Q2 = (SfB)1 8

although other choices are possible. ' The numeri-
cal methods we use for solving these equations are
discussed in the Appendix. We have carried out the
integration of the integro-differential equations
(4.21) for the conservative SU(6) distributions with
a starting value for Q' of Q,'=2 GeV'. The results
are shown in Fig. 8 as a function of longitudinal-
momentum fraction x and

ln(Q'/A')
ln(Q '/A')

with A =0.5 GeV. The behavior of the spinning dis-
tributions is very similar to that of the nonspinning
distributions84 (see Fig. 9), i.e., as Q' increases,
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0.7

0.6—

0.5

~olXd" (X,S)

1
dA'„' = hP„(z)z" 'dz

0

etc., can be found in Ref. 11. For the sum rules
Eqs. (4.3) and (4.4), we shall use the exponents

03 33- 2f

0.1

We can now differentiate the Bjorken sum rule with
respect to $ to obtain

0 I

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 I.O
X X

3.5
1

(d)

3.0

2.5

2.0

I ~ 5

I,O

0
0 0.1 0.2 0.3 0.4 0 O. I 0.2 0.3 0.4 0.5

X X

FIG. 9. Scale-violating nonspinning distributions as
functions of x and s= in [in(Q /A)/1n(go /A)]: (a)
valence u quarks, (b) valence d quarks, (c) gluons, (1)
ocean antiquarks.

more of the spin information and momentum of the
valence quarks is fed into the low-x part of the
ocean and gluon distributions.

It is instructive at this time to consider the ef-
fects of scaling violations on the Bjorken sum rule,
Eq. (4.3), and on the J,= z sum rule, Eq. (4.4),
which we have used to guide our considerations of
spinning distributions. The simplest way to do this
is to use the differential equations for the moments

which vanishes since ~y 0 The fact that the
Bjorken sum rule is unaffected by scaling violations
has been pointed out by Ahmed and Boss." It is
important in that our insight concerning the amount
of spin carried by valence quarks obtained from
this relation is not affected by scaling violations.

We can write the J,=-,' sum rule in the form

-'=&s.(t')&, +&s,(()& +&L,($)&

where q includes a sum over quarks and anti-
quarks. With the approximations above, it is easy
to see

&s,(&)&, =0

since M =0 and M; =0. This is related to the
chiraI invariance of the theory in our approxima-
tion of neglecting the masses of the quarks and the

k~ dependence of the distribution functions. How-
ever, for gluons we have

If the quantity in brackets on the right-hand side
is positive the spin carried by gluons will increase
without bound. Of course, with these assumptions
we must have

which are

+ km„($)~„
where the logarithmic exponents

&L.($)& =-
d &s,($)&„.

With the assumptions we have discussed above
for the distribution functions, &s,($)&» will be posi-
tive and &L,(g )) negative at large enough t'. Our as-
sumption that I., vanished for the proton wave func-
tion cannot, therefore, be Qz independent

Owens" has shown t;hat a simple alteration in the
equations of Altarelli and Parisi suffices to allow'

for the calculation of scale-violating fragmentation
functions, D,"(z, Q'). One again employs the notion
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FIG. 10. Scale-violating fragmentation functions as
functions of s and s =In fthm(q /A )/I. n(qo /A )]: (a) u
quark decaying into 7t, (b) gluon decaying into 7t~.

of "partons inside partons" to obtain the equations

—D,".(z, &) =, —[D,".(y, &)I „(z/y)

+D,"(y, $)&„(z/y)],

—D,"(z, g) = — D,".(y, ()Z,„(z/y)2g g

+D,"(y, )t„P( /z)y.

0.04

0.02

0.40—
0.35—
0.30—
0.25—
0.20—
0,15—
0.10—
0.05—

0
0 0.2 0.4 0.6 0.8 1.0

(4.22)

Our results for D„" (z, Q') =D„' (z, Q') =D~ (z, Q )—

=d~ (z, Q ) and D„" (z, Q2) using the starting frag-
mentation functions of Field and Feynman" and

Eq. (2.34) of Ref. 2 are presented in Fig. 10 (see
also Ref. 27). In general, the trend in D," (z, Q')
is for more low-z n 's to be produced and less
high-z vo's as Q2 increases.

V. RESULTS OF OUR CALCULATION

OF SPiN-SPIN ASYM04ETRIES

In this section, we present some of the predic-
tions of the QCD hard-scattering model for the
spin asymmetry A«. When using scaling distri-
butions, we will express our results as a function
of x~=2pr/v s. We will be more explicit about how
the resuls might be expected to change as a func-
tion of pr and Ws separately when discussing our
calculations with scale-violating distribution func-
tions. Unless otherwise specified, the center-of-
mass scattering angle 9, is taken to be 90 . .

X~

FIG. 11. Asymmetry Al. l, for reactions pp (7t or
jet)+X as a function of x& =2p z/ s for (a) conservative
SU(6) distributions, (b) diquark distributions, and (c)
Carlitz- Kaur distributions.

Figure 11 presents the predictions for A« for
proton-proton scattering and m or jet production
using the conservative SU(6), diquark, and Ca.rlitz-
Kaur models for the constituent distribution func-
tions. For the conservative SU(6) and Carlitz-
Kaur models, the gluon distribution parameter ri

[see Eq. (4.12)] has been set equal to 6. The de-
pendence of A~~ on this parameter is such that
the asymmetry increases slightly (a few percent)
with decreasing n.

For both the m and jet production reactions, the
largest asymmetry is given by the Carlitz-Kaur
distributions, which predicts A~ of 1(P/0 at x~
=0.5 and &«approaching 45%%ug as x approaches
1.0. The diquark distributions yield values for A~~
of about half or less than the Carlitz-Kaur model
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and the conservative SU(6) distributions predict
the smallest asymmetry, with a maximum of only
about 9% at x, -1.0. In spite of a factor of 10'dif-
ference between the spin-averaged total cross sec-
tions for pp - n X and pp -jet+X, the predictions
for A« for mo and jet production are very similar
in magnitude- and shape for each model of the con-
stituent distributions considered.

It is interesting to see how the total asymmetry
is divided up among constituent reactions qq-q,
qq- V, qV-q, qV- V, VV-q, and VV-V, where

q stands for either a quark or an antiquark and the
constituent given on the right of the reaction is
that which either decays into a pion or becomes
a jet of hadrons. Of course, in the diquark model,
only those reactions involving the leading quark
alone contribute to the total asymmetry. The con-
stituent reactions contribute .to A« in a similar
manner for both the conservative SU(6) and Car-
litz-Kaur distributions. In both of these models,
the major contributor to A" for large x' (x,
& O. V) is the qq-q reaction. However, at small
and moderate values of x ', the qV- q reaction is
important and, also at small x~, the qV-V and

V V —V reactions become important. For jet pro-
duction, we again find that the qq - q reaction is
dominant at large x,. At small x„however, more
reactions make sizable contributions to AL, L, than
in the case of m production. In particular, those
reactions involving the production of a gluon jet,
i e., qV»V, VV-V, and qq-V, are much larger
contributors to the jet production reaction than in
the pp-m X case. This is due to the assumption
we make that very little of the gluon momentum is
given to any one particle in its decay.

In Fig. 12, we compare the predictions for A«
vs x, as a function of e., for pp-no~. As indi-
cated in the figure, A» can vary by as much as a
factor of 2, as it does for x, =0.4 if we compare
the predictions for 6), =30' and 90'. However, at

x~= 0.4, we also see that for 0, =60' as com-
pared to 90', A«decreases by only about 2%%uo.

The QCD hard-scattering model predictions for
A~ for proton-antiproton scattering for the con-
servative SU(6), diquark, and Cariitz-Kaur models
of the constituent distributions are presented in

Fig. 13. For the reaction pp - m X, the curves of
AI.J. vs x, for all three models of the constituent
distributions give results similar to their predic-
tions for the pp-voX case, although the predicted
values of A~ for large x~ are much larger in the

pp case. This is due to the different natures of the
valence compositions of the proton and antiproton.
As for the pp reactions, quark-quark scattering
dominates the large-x, region, but for pp scatter-
ing, qq- qq scattering is dominant, whereas in pp
scattering, it is the qq- qq reaction which is of
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FIG. 12. Asymmetry AI,L, for reaction pp —m X as a
function of x1 = 2p I/Ws and e,~ .

FIG. 13. Asymmetry A. L,z for reactions pP (7t or jet)
+X as a function of x~=2p z /v s for (a) conservative
SU(6) distributions, (b) diquark distributions, and (c}
Car].itz-Kaur distributions.
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FIG. 14. Partial asymmetries for reaction pp —jet
+X as functions of xj = 2p z,fv s: (a) quark-quark,
quark-antiquark, and antiquark-antiquark sc attering,
{b) quark-gluon and antiquark-gluon scattering, (c)
gluon-gluon scattering.

FIG. 15. Partial asymmetries for reaction pP-m OX

as functions of x, =2P &f&8: (a) quark-quark,
quark-antiquark, and antiquark-antiquark scattering,

: (b) quark-gluon and antiquark-gluon scattering, (c)
gluon-gluon scattering.

importance.
The most striking aspect of the graphs of Fig. 13

is that, unlike the rather similar appearance of the
m' and jet production graphs for proton-proton
scattering, for the case of pp scattering, the m and

jet production curves for A.«differ dramatically
for all of the models of the constituent distributions
we considered. In each case, the difference be-
tween go and jet production for pp scattering is due
to the increased importance in the jet cross sec-
tions of the qq V subprocess which competes now
with the qq- q processes. The gluon fragmentation
function D'„[see Eq. (2.2)] serves to suppress this
large, negative contribution to A~ in the m -pro-
duction case. (This effect can easily be seen in
Figs. 14 and 15 in which the relative contributions
of the constituent subprocesses for pp scattering

are shown. )
A very sensitive test for the manner in which the

proton's helicity is carried by its various constitu-
ents is given by a comparison of A.« for m' vs m

production in pP scattering, as can be seen in Fig.
16. Both the sign and magnitude (relative to v'
production) of A« for v production are very de-
pendent on the relationship between quark flavor
and t:he ability to carry spin information in the pro-
ton. As we can see in Fig. 16, in the diquark mod-
el, for which all of the spin orientation information
is carried by the leading u quark, ad(x) =0 and so
for v production A» =0. (A~~ is not exactly equal
to zero but is, in fact, small and positive due to a
contribution from the uu -uu subprocess. This is,
however, suppressed by the smallness of D„" .)
The sign of A.~~ for p production is negative in
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FIG. 16. Asymmetry Aiz, for the reactions pp- r~X as a function of x, =2p r/Rs for (a) conservative SU(6) distribu-
tions, (b) diquark distributions, and {c)Carlitz-Kaur distributions.

both the conservative SU(6) and Carlitz-Kaur cases
due to the negativity of dd(x) for these models.
The relative magnitude of A~~ for m production
to that for 7t' production reflects the degree to
which spin information is carried by the d quark
relative to the u quark in the spinning proton. For
the conservative SU(6) model, A~+/A~~ s0.4
whereas for the Carlitz-Kaur model, A~ JA~~
~ 0.1, indicating that much less spin-remembering
ability is attributed to the d quark in the Carlitz-
Kaur model than in our SU(6)-like model.

The scale-violating spinning and nonspinning dis-
tributions displayed in Figs. 8 and 9 and the scale-
violating fragmentation functions of Fig. 10 were
also incorporated into our calculation of pp-710X.
We found that A» still essentially scaled with x~,
retaining the same shape and increasing in magni-
tude by only about 5% at most for Ms=80 GeV as
compared to v s= 20 GeV. This is due to the sim-
ilarity of the coupled integrodifferential equations
that describe the behavior of both the G,&»g„&z,
and the aG,&»~„&~ &

with x and Q'; the effect just
cancels out between numerator and denominator of
A~~. The fragmentation functions D," (s, Q2) are,
of course, the same for both numerator and de-
nominator of A~~ and also tend to cancel. We ex-
pect that the k~ dependence of the spin and nonspin
reactions should also cancel, again leaving A~~
essentially unchanged from our predictions.

At this point we would like to mention that calcu-
lations of spin-spin asymmetries have also been
carried out recently by Cheng and Fishbach' both
within the framework of perturbative QCD and in
an "effective gluon" model. Since they use differ-
ent parametrizations for the distribution functions,
their QCD calculations do not agree in detail with
ours but the overall pattern is similar.

VI. CONCLUSIONS

We have calculated the asymmetry A» for the
inclusive production of pions and jets from proton-
proton collisions or from proton-antiproton col-
lisions. We have seen that this observable should
provide a good test of the dynamical assumptions
involved in the use of @CD perturbation theory in
the hard-scattering model. The values of the
asymmetries we find are sensitive to our assump-
tions for the spin-weighted quark and gluon dis-
tribution functions, but this ambiguity should di-
minish as better data on deep-inelastic electron-
proton asymmetries become available.

We can make the following observations at this
time. Comparison of asymmetries involving m" s
and jets should be a good test for the presence of
large constituent-interchange model (CIM) contri-
butions in pp-m X.' Because of trigger bias ef-
fects, CIM terms are much more important in pp-mX than in pp -jet+ X. Since the fundamental
asymmetry for the CIM subprocess nq- nq must be
zero, this could change our result that the
Ar~(pp-noX) =A«(p'p-. jet+X). We also observe
that the relationship between A«(pp-v'X) and

A~~(pp -v X) can provide interesting information
concerning the correlations between spin and flavor
in the proton wave function.

It would seem to be desirable that a program of
large-p~ production experiments using polarized
beam and target be carried out in the near future.
An interesting set of measurements might be the
following:

(1) A measurement of single-spin asymmetries
which are assumed to vanish in the hard-scattering
model.

(2) A study of the A dependence of large-pr pro-
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duction using polarized beams on nuclear targets.
(3) A measurement of spin-spin asymmetries

such as the observable A~~ discussed here.
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APPENDIX: NUMERICAL TREATMENT

OF INTEGRODIFFERENTIAL EQUATIONS

FOR SCALING VIOLATIONS

We would like now to turn our attention to the nu-
merical treatment of Eqs. (4.21) and (4.22). We
change variables from $ to

~(Q') '

We also assume a flavor-symmetric ocean and
neglect charm,

u~g= d —dye =u=d=s=s='8
~

Qu —Q u„~ = Qd- Dd„,l =4u =Ad= As =2 s =66 .
We feel that this is justified because spin-spin
asymmetries of the type that we are calculating are
not very sensitive to the presence of the ocean.

The functions P„(x), P,~(x), Pz, (x), P«(x) and
their spin-dependent counterparts have been evalu-
ated by Altarelli and Parisi. " Using their expres-
sions and defining

z~[f(x)] =-ln(1 —x)f(x)

+ 2 dy
' x xf(y)-yf(x)

x y „y
we find for Eqs. (4.21a)

1

[xxi (x s)] =
~~ Im[xxi (x s)] +

&
' () (

[Sxi (S s)]i(Ss x [ xxi (x, s)]I

d 6, 4 I'x x
ds ' 27 ' ' ' ' 3 , y' y

(x8(x, s)] = 2[x8(x, s)] + —', z [x8(x, s)]+ —
y —,1-—[y8(y, s)]dy

1 ' x I' 2x x+—,1- —1-— [yV(y, s)]dy
x

=[xV(x, s)] = [xV(x, s)]+6z,fxV(x, s)]+6,(1 ——
/

—+ —[yV(y, »]dy
6 33-2f ' x & x &x y

ds ' 27 6 ' ' ' „y' E y (y

(A1)

+ — —) + () ——
)

[yx"' (S, s)sxd (S, s)+&fyO(S, s)]dyI,
4 ' 1

"
r' xl'~ [ — val

y)
where the equation for xq,""(xs) represents iwo equations: one for xu""(x, s) and one for xd (x, s).

The set of equations (4.21b) becomes

[xitx,"' (x, s)] =
&7

2[x&x,"."(x, s)]+ —,
' ss[xsx,"' (x, s)]+

S
—,() ——[Sisxi"" (S, s)ity]I

[identical to the equation for xq',."(x, s)),
d 4 ' x x

ds ' 27
= [xa8 (x, s)] = —2[xa8(x, s)] + —'z [xa8(x, s)] + — —1 ——[ya8(y, s) ]dy3

I

I

+ — —, 2 ——1 yAVy s dy

d I'6 I'(4 ' x I' x
ds ' [27 [(3 „y ( y
=[xxs(x, s)] =

(

—
( t

— —,(2 ——[ssx""ts, s) ssss"'ts, s) +2isxstty, s)]I

(A2)

+ (xhV(x, s)+12, '1 ——i[yAV(y, s)]dy 6 [+xbzV( s)]xi . ,
33 —2f)( .

' x x)
yi
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The overall scheme that was adopted for the nu-
merical solution of these equations is as follows:

(1) Evaluate the structure functions at a set of
"support points" (x }which lie in the range (0, 1).

(2) From the values of the structure functions at
the "support points" form an interpolating function
which will give ah analytic approximation to the
function at all x in (0, 1). It is necessary to do this
because the distribution functions will only be
known at the "support points" which are the lower
limits in the y integrals in Eqs. (Al) and (A2) after
the first step in s, and the points selected for nu-
merical integration will not, usually, coincide with
the support points.

(2) Calculate the integrals and add them in a man-
ner that is dictated by the s-stepping algorithm (to
be described later) at the support points. We are
now back at the beginning and the whole procedure
can be repeated.

It is necessary to realize, however, that the in-
tegro-differeh'tial equhtions will generate nonana-.

lytic behavior at &=0 and x= 1 in the form of
(Inx)'g(x) terms and [In(1 —x)]'h(x) terms, respec-
tively. To get around this problem we divided the
range (0, 1) into four patches —A: (0.01,0.1), B:
(0.1,0.5), C: (0.5, 0.9), and D: (0.9, 0.99). In
patches A and B we changed variables to z = lnx.
That is, the interpolations and integrations were
done in the variable z in patches A and B. In the
patches A and B a function such as (lnx) g(x) be-
comes z~g(e') which is perfectly analytic except at
rz~-~. This implies that the interpolation and in-
tegration schemes that we use will not be destroyed
by the presence of nearby singularities. In patches
C and D we interpolated and integrated in the vari-
able w =ln(1 —x). We see again that the nonanalytic
behavior at x= 1.is banished to zv --~.

We now describe the selection of support points
and the interpolation procedure, which are closely
related. Consider an arbitrary patch with range
[a, b] in the variable h (either g or w). We choose
the support points according to the following form-
ula

a i~ (2u —1)7r
kg, = —

i 1 —cos

The interpolating function E(h) can be written as an
expansion in Chebyshev polynomials:

r(I ) = C,T,"I(a),
0

where

Tf' "(a)=T'
I

" ').;
F2h- b —a

~E S-a

Tz is the usual Chebyshev polynomials defined on
(-1,1) and

Cz= — f(h~)cos —(2k —1) (for j&0),=2 jm

=1

This procedure is motivated by looking for a
"mini- max" interpolating polynomial. ' We chose
n=10 (a total of 40 points with 4 patches). We fac-
tored out the dominant (1 —x)" behavior before in-
terpolating in patches C and D. The power n was
always chosen to be that of the valence distribu-
tions. The answers were insensitive to a change
in yg of about 3 or 4. We found this interpolation
procedure to have a fractional error of about 10 4

on (0.01,0.99).
We used Gaussian quadrature to evaluate the in-

tegrals (recall that the integrands are highly ana-
lytic in x and ~), with a support point in D getting
N-point quadrature, and one in C getting 2Ã-point
quadrature. (V was usually chosen to be 12, al-
though the answers were not terribly sensitive to
variations in N.

The algorithm for stepping the distributions in s
was taken from Bulirsch and Stoer." This algo-
rithm uses a "modified midpoint rule" (a Runge-
Kutta scheme whose error is given by a power
series in the step size with only even powers) aug-
mented by the use of Pade approximants of type IP'
to guess the continuous l.imit.

*Present address: Carnegie-Mellon University, Phy-
sics Department, Schenley Park, Pittsburgh, Pennsy-
lvania 15213.

'B. D. Field, Phys. Bev. Lett. 40, 997 (1978);R. P.
Feynman, R. D. Field, and G. C. Fox, Phys. Rev.
D 18, 3320 (1978);J. F. Owens, E. Reya, and M. 610ck,
ibid. 18, 1503 (1978); A. P. Contogouris, R. Gaskell,

and A. Nicolaidis, ibid. 17, 839 (1978); Prog. Theor.
Phys. 58, 1238 (1977).

2R. Cutler and D. Sivers, Phys. Rev. D 17, 196 (1978).
38. L. Combridge, J. Kripfganz, and J.Ranft, Phys.

Lett. 708, 234 (1977).
4In order to justify the use of Q2-dependent distributions

it is necessary to show that the infrared singularities



1502 JOHN BABCOCK, EVELYN MONSAY, AND DENNIS SIVERS

of @CD factorize in the manner suggested by the hard-
scattering model. Significant progress on this topic
has been made. See, for example, C. Sachrajda, Phys.
Lett. 73B, 185 (1978) and ibid. 76B, 100 (1978);R. K.
Ellis, H. Georgi, M. Machacek, H, D. Politzer, and G. C.
Ross, Phys. Lett. 78B, 281 (1978);Y. L.Dokshitser, D. I.
D'Yakonov, and S. I. Troyau, Proceedings. of the XIII
Winter School, Leningrad, 1978 (unpublished); S. Lib-
by and G. Sterman, Phys. Lett. 78B, 618 (1978);
Phys. Rev. D 18, 3252 (1978).
J. Babcock„E. Monsay, and D. Sivers, Phys. Rev.
Lett. 40, 1161 (1978).

D. Sivers, S. J. Brodsky, and R. Blankenbecler, Phys.
Rep. 23C, 1 (1g76).
For a simple discussion concerning the connection be-
bveen ep asymmetry measurements and large-p z in-
clusive asymmetries, see R. D. Field, in Proceed-
ings of the Symposium on Experiments using Enriched
Antiproton, Polarized-Proton, and Polarized-Anti-
proton Beams at Fermilab Energies, 1977, edited by
A. Yokosawa (ANL, Argonne, Illinois, 1977).

F. Close and D. Sivers, Phys. Rev. Lett. 39, 1116
(1977).

SI. P. Auer et al. , Fermilab Proposal No. 582 (unpub-
lished).

~0L. Kluberg et al. , Phys. Rev. Lett. 38, 670 (1977);
U. Becker et al. , ibid. 37, 1731 (1976); R. McCarthy
et al. , ibid. 40, 213 (1978).
G. Altarelli and G. Parisi, . Nucl. Phys. B126, 2g8
(1977).
R. P. Feynman, Photon-Hadron Interactions (Banja-
min, Reading, Mass. , 1972).

~3M. J. Algard et al. , Phys. Rev. Lett. 37, 1258 (1976);

37, 1261 (1976),
~M. J.Algard et al. , Phys. Rev. Lett. 41, 70 (1976).
J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
Particle Data Group, Rev. Mod. Phys. 48, Sl (1976).

~VF. E, Close, Nucl. Phys. B80, 269 (1974) and refer-
ences therein.

~ G. W. Look and E. Fischbach, Phys. Rev. D 16, 211
(1977).

~GD. M. Kaplan et al. , Phys. Rev. Lett. 40, 435 (1978).
L. M. Sehga]. , Phys. Rev. D 10, 1663 (1974).

2~R. D. Field and R. P. Feynman, Phys. Rev. D 15, 2590
(1977).
H. L. Anderson et al. , Phys. Rev. Lett. 37, 4 (1976).
R. Carlitz and J. Kaur, Phys. Rev. Lett. 38, 473
(1977); 38, 1102 (E) (1977);J. Kaur, Nucl. Phys.
B128, 219 (1977).
J. Kogut and J. Shigemitsu, Nucl. Phys. B129, 46$
(1977); G. C. Fox, ibid. B131, 107 (1977).
M. A. Ahmed and G. G. Boss, Phys. Lett. 568, 385
(1975); Nucl. Phys. Bill, 441 (1976).
J. F. Owens, Phys. Lett. 76B, 85 (1978).

. 2~6. C. Fox, invited talk presented at Orbis Scientiae,
1978, Coral Gables (unpublished).
H.-Y. Cheng and E. Fischbach, Purdue University
report, . 1978 (unpublished).

9Z. Kopal, Numerical Analysis, 2nd edition (Wiley,
N. Y., 1961).
F, S. Acton, Numerical Methods that 8'ork (Harper
and Row, New York, 1970).

3~R. Bulirsch and J. Stoer, Numerische Mathematik 8,
1 (1966),
George Baker, Jr., Essentials of Pade Approximants
(Academic, N.Y., 1975).


