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Improved unitarity bound on the slope parameter
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-Given the total cross section, total elastic cross section, and forward slope parameter, an upper bound is
derived on the nonforward slope parameter b(s, t) = 2d lnA(s, t)/dt, where A(s, t) is the absorptive part
of the elastic scattering amplitude. The bound significantly improves an earlier bound on b(s, t) and
comparison with data leads to some interesting conclusions.

I. INTRODUCTION

The small- It
~

data on the PP elastic differential
cross sectionrr(s, t) at various values in a wide range
of energy (from Ms=6 GeVtothepresent CERNISR
energies} has shown'2' that d inc(s, t)/dt, which
appears to change little for 0.1 ~ t & 0.3 (GeV/c)2,
takes up a higher, more or less constant value for
~t

~

~ 0.1 (GeV/c)2. In contrast to these trends,
Ankenbrandt et al.4 reported some time back that
their pP scattering preliminary data at 200 GeV/c
gives a decreasing slope parameter for ~t & 0.09
(GeV/c)2. So far, no satisfactory theory exists for
these phemomena. Since information on d In(r(s, t}/
dt for small t needs very accurate (and difficult}
measurements of rr(s, t) it is good to check the con-
sistency of any set of data on d Inrr(s, t}/dt with un-
itarity. With these motivations, both upper and
lower unitarity bounds were obtained' on b(s, t)
-=2d lnA. (s, t)/dt in the diffraction peak region
[A(s, t) is the absorptive part of the elastic scat-
tering amplitude] and compared with data at dif-
ferent energies. In particular, the upper bounds
on b(s, t) at 200 GeV/c were very close to the data
on Ref. 4 and merited an effort to improve the
bounds.

This short paper reports the improved upper
bounds on b(s, t) with o„«, as input in addition to
that used in Ref. 5, namely, o.I,«„A'(s, 0)
[=dA(s, 0)/dt], and unitarity (excepting its bound-
edness aspect, which is no. longer enforced ex-
plicitly}. Comparison with the data of Ref. 4 shows
a significant improvement over the previous bound. '

H. THE BOUNDS

We first, as in Ref. 5, obtain an upper bound on
A'(s, t), then suitably integrate this over t to get
a lower bound on A(s, t) and combine these to get
an upper bound on b(s, t). Given A(s, 0), A' {s,0),
o', » and ar «O» where

A(s, t) =(Ws/k} (2l + I)ar P, (z), z =cose, (2. 1)
-0

we can show that

rr(si t}=
3 g nt Pr(z),

provided P & 0. Here P', (z}=dP, (z}/dz, I ~ p jf

8rr Prlr ~~s, ~s
k (21+1} ' 2k~ ' -2kt P

(2. 2)

(2. 3)

and the multipliers p, , X, P are to be obtained from

A'(s, 0)=, Q r7rPr'(I),
reU

A(s, 0) =—grlr~
S

and

(2. 4)

(2. 5)

b(s t) ~ bU(s t) =2AU(s, t)
A (s, t)

(2. 7)

Let us evaluate these bounds in the diffraction-
peak domain. Here we use Pr'(z) —vt'r(r)/(-t/k'),
where 7'2 = (-t/k )l2, and replace the summations
over l by integrations over w. If a large number
of l's contribute to the sums, the error commit-
ted in this approximation is negligible for k large
and

~

t
~

small. Condition (2.3} now reads

g(v)= rJ, (v)- p, —X-.r'~ 0. (2. 8)

Let vr, denote the mth zero of Jr(x) and pr, „the

o„=-r Q rlr'/(21+1). (2. 6)
leU

Remarks: (1}Equation (2. 2) is easily proved by
direct subtraction. Proof is omitted here. (2)
We do not expect (2. 2) to go into the corresponding
bound of Ref. 5 in the limit o,r/err 1, because
rrr ~ 1 is not imposed in getting (2. 2). In the prac-
tical case to be discussed later, however, it turns
out that the boundedness is automatically satisfied.

As in Ref. 5, integration of (2. 2) over t immed-
iately gives a lower bound on A(s, t). Call this
Ar, (s, t). One then has, if Az, & 0, the following.

Upper bound on b(s, t).
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value of x at the mth maximum of J,(x). Now if Az, (s, t) =A(s, 0}—
0

dtA's(s, t) (2. 20)

(i) 12 & P(

(ii) u/~i ~
2+~ i. 2 J-i(pi. 2) (2 9)

(as in Ref. 5). If the bou~d (2. 20) is positive, then
the upper bound on b(s, t) is

i =1, 2 if p, & 0 (i =- 2 if p & 0).
(2. 10}

It is of course assumed that X & 0—this is true at
least for small t. (A, =-,'-6As(s, t)/5A'(s, 0) —3 ast- 0). The conditions (2. 9) essentially restrict
the value of I; over which this evaluation holds.
We define

then (2. 8) will be satisfied only for 0 ~ r ~ 7'2 when
p. &0 and only for 0&7'& ~T-~~2 when p, &0, and
v&, 2&v p, /X where the unknowns p, , X, p, 7'2 (and
v', ) are to be obtained from the constraints A'(s, 0),
A(s, 0), o'„, and

RA'
b(s t}- bv(s, t) = (2. 21)

The bounds now are functions of R, r, and y2.

For comparison with our earlier results, 5 we re-
introduce n =32irA'(s, 0)/A(s, 0)e, and x =-to,/Bv.
Since R =9nr/8 and y =nx, the bounds become
functions of n, r, and x . Numerically, the in-
tegrated lower bound A&(s, t} coincides with the

one directly obtained by Auberson and Roy.
Lowered bound on b(s, 0). As in Ref. 5, we ean

obtain a lower bound on b(s, 0) in terms of data at
anonforward value of t. LetA~(s, t~)=f(xq, &, —r),

x,
'= t, o/ -Bv, andA(s, t, )=A(s, t,)/A(s, 0}, where

t, is any value of t where A(s, t) and b(s, t) are
known. One can show that

gm — QT7' g 0 ) sz=l)2q3 ~

I3= dry g 7' (2. 12)

0f(xi, Q, r)IX)

16mb(s, t,}A,(s, t,}
' (2. 22}

d7 v' J(~)g(~), (2. 13)

This gives an implicit lower bound on n [=no(tf)]
and hence on b(s, 0). These can be easily com-
puted.

~he~~ 1.=[0,~,) if I & 0 and I = [~„~,) if q & 0.
Introducing dimensionless parameters 8, r and

a variable y2,

o A'o„A s, Q (2. 14)

O'e&

0'].
(2. 15)

4A'(s, 0)
( t)

A(s, 0)

%e rewrite the constraints as foUows:

(2. 16)

(2. 17)

g
2 A (2. 18)

A~(s, t) 2f
v( s ) At( 0)

—
A

(2. .19)

and the subsequent lower bound on A(s, t) given by

[and r =(1/P)B/A„P=16vP(-t}/(Hs }]. Equations
(2. 17) and (2. 18}can be solved together with Eq.
(2.10) to get values of p, , X, r2 (and r,). We use
them to calculate the bound given by

HI. COMPARISON VGTH DATA

We now compare our bounds with the data of Ref.
It should be mentioned that these data are pre-

liminary and we use them only to illustrate the
power of the method.

As usual we assume (1) spin independence and

(2) negligible real parts. This leads to A(s, t}
=[16~@(s,t)]'~2/c, and b(s, t) —dlno(s, t)/dt. Now a
quadratic fit to the data of Ref. 4 gives b(s, 0)
=10.1 (GeV/c) 2. With o, =38.9 mb this gives
a =5.08. Taking' o„/o, =0.183, we evaluate the

upper bound on b(s, t), Eq. (2.21). This is shown

in Fig. 1 where the results of Ref. 5 are repro-
duced for comparison. ~ The improvement incurred
by inclusion of o„as input is very cl.ear. More-
over, it can be seen that, the bound with 0, =5.08 is
not satisfied by the smaD-t data points, thus rul-
ing out b(s, 0) =10.1 (GeV/c) 2. In fact if the data
can be fitted with b(s, 0) =10.73 (GeV/c) 2 (n =5.4)
which is the value quoted by Akerlof et al. , ' the
data on b(s, t) reduce by a factor of 0.94 and the
second data point (at center) just lies on the bound

with n =5.4.
Consider now Eq. (2.22). Taking t, =- 0.032

(GeV/c)2 and b(s, tq) (central point) and A(s, t,)
from Ref. 4, we evaluate (2.22) to find b(s, 0)
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FIG. 1. Upper bounds ofRef.
5 (broken curves) on b (s, t)/
b (s,0) at 200 GeV/c for n = 5.08
[g(0) =10.1] and 0. =5.4 [5(0)
= 10.7]. The solid lines show
the improved bounds with o„/
o&= 0.183 for the same values
of&,
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~ 10.54 (GeV/c) 2. [Note that the McDowell-Martin
bound gives b(s, 0) ~ 9.66 (GeV/c) 2.] The bound of
Ref. 5 had given b(s, 0) ~ 10.4 (GeV/c)

The present paper has thus shown that unitarity
restrictions can give very useful guidelines on pos-
sible extrapolations to t=0 of the small-t data.
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