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Implications of dynamical symmetry breaking: An addendum
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It is shown that the dynamical symmetry breakdown of a gauge symmetry can in some cases lead to simple
relations among the masses of intermediate vector bosons.

This note is an addendum to a general survey'
of the physical implications of dynamical symmetry
breaking. ' By a "dynamical" symmetry breaking
is meant any spontaneous breakdown of a global
or gauge symmetry for which the associated Gold-
stone bosons are composite rather than elemen-
tary particles. Formation of such states requires
strong forces among the constituent particles, and
it is not so easy to deduce all its physical conse-
quences. In particular, the possible relations
among vector-boson masses generated by the
"Higgs mechanism" in a dynamical symmetry
breakdown were not considered in Ref. 1.

In this note I wish to analyze the conditions under
which a dynamical breakdown of a gauge sym-
metry can lead to simple relations among vector-
boson masses. It is found that a dynamical break-
down of SU(2) x U(1) in the gauge theory' of weak
and electromagnetic interactions can lead to the
same successful relation M~/M~ = sec8 that is
obtained when the symmetry breakdown is due
to vacuum expectation values of scalar-field
doublets. For a dynamical symmetry breakdown
this is not as automatic as for symmetry breaking
by scalar-doublet vacuum expectation values, but
depends on the assumption of a specific pattern
of spontaneous symmetry breaking. The source
of this relation can be traced, both for symmetry
breaking by scalar doublets and in the dynamical
case to be considered here, to the same simple
property of the Goldstone bosons which mix with
the SU(2) x U(1) gauge fields. However, there
remain severe difficulties in developing reaj. istic
detailed models of elementary particles in which
the spontaneous symmetry breaking is purely
dynamical.

First, let us consider a gauge model that is
illustrative, though its quark content is quite
unrealistic. The gauge group of the weak, electro-
magnetic, and strong interactions is as usual
taken as SU(2) x U(1) x G~, but Gz is arbitrary.
The coupling constants g, g', and g, associated
with the subgroups SU(2), U(1), and G~ are as-
sumed to have the orders of magnitude g=:g'= e
and g, = 1. tStrictly speaking, g, becomes of or-
der unity at a renormalization scale A, which,

Here x, are the generators of all spontaneously
broken global symmetries, in a suitably ox.thonor-
malized basis'; I'", are the couplings of the cor-
responding Goldstone bosons to the associated
currents; and t are the generators of the weak
and electromagnetic gauge groups, including all
coupling-constant factor s. In the present case,
we have

x, =y,~„a=1,2, 3

t; = —,
' g(1+ y,)T;, i = 1, 2, 3

t.=-a'[-'(I -y,)~,+.],
(2)

with 7, the Pauli isospin matrices. The residual
global SU(2) symmetry prevents the appearance
of any positive-parity Goldstone bosons, and also
imposes a relation among the I"„

(3)

as we shall see in this example, would have to be
of the order of 200 GeV. Hence, G~ could not
consist solely of the usual color group SU(3).]
The model contains just two G~ multiplets of
quarks, U and D, which form. a left-handed SU(2)
x U(1) doublet (1+yg(U, D) and right-handed sing-
lets (1 —y,) U and (1 —y,)D, but no scalar fields.
(The "color" indices associated with G~ are
dropped everywhere )In .the limit e-O, the
strong interactions will automatically be invariant
not only under the gauge group G~, but also under
an "accidental" global SU(2) x SU(2) symmetry, '
consisting of independent unitary unimodular trans-
formations on the doublets (1+y,)(U, D) and
(1 —y,)(U, D). We assume that the strong forces
associated with G~ produce a dynamical break-
down of SU(2) x SU(2), which for e = 0 leaves the
global "isospin" subgroup SU(2) unbroken. [At
the same time, Gz itself may also break down to
some gauge subgroup, perhaps SU(3).] It is the
residual global invariance of the strong inter-
actions for e=0 that leads in this model to a sim-
ple relation between M~ and M~.

To see this, we use the general lowest-order
formula' for the intermediate-vector-boson matrix

p'„, = —,', g J",'Tr(t x,) Tr(tsx, ).
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This is the same relation as is satisfied by
the E's in the nondynamical case, where the
symmetry breakdown is due to vacuum expectation
values of scalar doublets, and it leads to the same
relation among intermediate-vector-boson masses.
From Eq. (1), we then find the nonvanishing ele-
ments of the intermediate-vector-boson mass ma-
trix,

~2 ~2 ~2 J E2g2

~2 . ~2 ~E2ggl

~2 ~E2g l2
00 16

(All Goldstone bosons are eliminated by the Higgs
mechanism here. ) It is easy to see that the non-
vanishing mass eigenvalues are

2 ~F2g2. M 2 ~F2@2+gl2)

With g'/g—= tan8, these have the usual ratio Ma/
M~= sec8.

'The U and D of this model cannot, of course, be
identified with any known particles. Their mass
must be of order E, because for e= 0 there are no
free parameters in the theory except for the G ~
renormalization scale A, so that M~, M» and E
must all be of order A. But if we identify v2g'/
8M~2 with the usual Fermi coupling constant G~,
then E takes the value 2~ 'G~ ' ', or 175 GeV.
Also, U and D are nearly degenerate, since their
masses are split by the weak and electromagnetic
interactions only in order n.

In order to construct a slightly more realistic
model, we consider the same gauge group SU(2)
x U(1) x G~, but now we suppose that there are
four quark flavors U„D„V„D„which form two
left-handed SU(2) x U(1) doublets (1+y, )(U„D,)
and (1+y,)(U„D,), plus four right-handed singlets.
In this model, the strong interactions for e-0
will automatically have an accidental global SU(4)
x SU(4) symmetry. ' We assume that this symmetry
suffers a spontaneous dynamical breakdown in such
a way that two quarks, U and D, receive equal
masses, while the other two, u and d, remain
massless. The subgroup of SU(4) x SU(4) which
remains unbroken is assumed to be the largest
subgroup consistent with such masses, with the
generators (in a U, D,u, d basis) given by

(7' 0) (0 0& 0 0) (1
Eo Oj 10 rj 0 rj (0 -1j

(Also, parity is assumed to be not spontaneously
broken. ) The orthonormalized generators of the
broken part of SU(4) x SU(4) can then be taken as

(r 0 y, (1 0

(0 0 (0 -1

1
Xo= ~

1
X@

!

( 0 -aiI
&P o

(o -~
Ev oj
(0 1)
E1 0)
(o -tq
Ii oj

~Ixc-$5xc ~

I
XD =Jsxg) ~

+E ~5 E ~

X+ P5Xg o

Using the unbroken part of SU(4) x SU(4), we
easily see that there are only three independent
E, parameters; they are E~~ ——E~,E~ and Egg EQf
=FD; =FD, =F~ =F.~=F~=F~=Fo. (H—ere i = 1,2, 3.)
The quark fields U, D, u, d of definite mass are not
necessarily the same as those in the original weak
doublets (1+y, )(U„D,) and (1+y, )(U„D,). How-
ever, we can always put the weak doublet into the
form

t, = —,'g(1+ y, )

t, = —,'g(1+ y, )

~

~0 i7'1)

ir, 0j-
(r, Oi
I «s j

t, = -g' —,(1 -y, )
!
+,0)

0

From Eq. (1), we find that the nonvanishing ele-

(1.y )
(dcosQ+Dsinp j

(8)

( . .)!
(-dsi QnD+cospj

The angle P must be determined by minimizing
a "potential" V(Q), given to lowest order in e
by the sum of graphs in which 8' or Z is emitted
and absorbed by a strong-interaction vacuum
fluctuation. ' By using the unbroken SU(2) x SU(2)
x SU(2) x U(1) subgroup of SU(4) x SU(4), we easily
see that the Z contribution is Q independent, while
the lV contribution is a sum of terms proportional
to cos'Q or sin'Q. The whole potential therefore
has the Q dependence V(Q)=A B+cos'@. Thus,
depending on the sign of 8, the angle Q at which
V(P) is a, minimum must take the values Q =v/2
or Q = 0. Let us consider these two cases in
turn:

(a) P=m/2: The gauge generators (in a U, D, u, d,
basis) here take the form

0 i~,~-
t, = —,'g(1+ y, )

i72 0
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ments of the intermediate-vector-boson mass ma-
trix are

~2 ~2 &~ 2g2

~2 ~~ 2g2

~2 ~g 2g t2

The nonvanishing intermediate -vector -boson
masses are then

2g2 M 2 w+ 2(g2+gl2)

Hence no simple mass relation arises in this
case.

(b) /=0: The gauge generators (in a U, D, u, d
basis) here take the form

(12)

From Eq. (1), we find the nonvanishing elements
of the intermediate-vector-boson mass matrix
are

@2 ~2 ~2 ~~ 2g2

so the masses are

M 2 QP 2g2 M 2 +g 2@2+ l2)

and have the same ratio Me/M„= sec 8 as in the
simpler two-flavor model. 'The reason for this is
just that the only Goldstone bosons which mix with W
and Z are those associated with x„, and the un-
broken subgroup of SU(4) x SU(4) requires these
to have equal E, values.

This model is still far from realistic, whether
Q = w/2 or Q = 0. In both cases, the u and d quarks
remain massless to all orders in e. In addition
for Q = m/2, the two light quarks u, d are in SU(2)
x U(1) doublets with D and U, not with each other.
Furthermore, in both cases the model contains
17 physical Goldstone bosons, some of them
"true" Goldstone bosons of zero mass. It is not
clear how the light quarks could get reasonable
masses or how the "true" Goldstone bosons could
be eliminated with a dynamical symmetry break-
ing.

Note added in Proof. After this paper was sub-
mitted for publication, I received a report by L.

Susskind, which deals with similar questions.
[The motivation in his paper for dynamical sym-
metry breaking, in terms of grand unified gauge
theories, is the same as that described by H.
Georgi, H. Quinn, and S. Weinberg, Phys. Rev.
Lett. 33, 451 (1974).] The undiscovered new
strong interaction of Busskind is a special case
of what was called an "extra strong" interaction
in Ref. 1, and a "superstrong" interaction by S.
Weinberg, Phys. Today 30 (No. 4), 42 (1977).
Susskind independently observes that the relation
Me/M~ = sec 8 follows if dynamical symmetry
breaking leaves an "isospin" subgroup unbroken.
In addition, he points out that the origin for this
relation is essentially the same as that for sym-
metry breaking by vacuum expectation values of
scalar doublets. In the latter case, the part of the
Lagrangian which is relevant to the calculation of
gauge boson masses is the "kinematic" Lagrangian
g ~

= ——,'P„(D $„)t(D„P„), the sum running over N
scalar doublets (Q'„, Q-„). By setting Q"„=P„,+ iP„„
Q„-=Q„,+i/~, one finds that in the limit e=0,
Z~ has an O(4)"= [SU(2) x SU(2)] symmetry, with
an O(3) = SU(2) subgroup which is automatically
left unbroken by the vacuum expectation values
of the Q„, fields, and which transforms the weak
SU(2) generators as a three-vector. As shown
both here and in Susskind's paper, this is the
same feature that allows one to derive the Z-W
mass ratio in the case of dynamical symmetry
breaking.

I also wish to comment here on the problems
of developing a grand unified theory of strong as
well as weak and electromagnetic interactions in
which the spontaneous symmetry breaking at all
levels is due to vacuum expectation values of
elementary scalar fields. As is well known, such
theories require constraints on the parameters
in the Lagrangian. However, it is not true that
these constraints necessarily incorporate ex-
tremely small parameters, such as 10-", or that
they need to involve quadratic divergences at
all. It is only necessary to suppose that at a
stationary point of the potential where the SU(3)
x SU(2) xU(1) subgroup is unbroken, some of the
non-Goldstone eigenvalues of the scalar mass ma-
trix vanish. Nonperturbative effects will then
produce a minimum of the potential very near this
stationary point, at which SU(2) x U(1) is spontan-
eously broken, with W and Z masses which are
automatically less than the superheavy gauge
boson masses by a, factor exp(-C/e'), where C is
a numerical constant of order unity. (Also, any
quadratic divergences are always an artifact of
the cutoff procedure; they do not appear if we use
dimensional regularization. ) These matters are
discussed by E. Gildener and S. Weinberg, Phys.
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Rev. D 13, 3333 (1976), Sec. yy, ~g ~~ g pB&&&

now in preparation.
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It is of course understood that the whole theory is also
invariant under the global U(1) symmetry associated
with fermion number conservation. However, the full
global symmetry group for N quark flavors is SU(N)
x SU(iV) x U(l), and not U(N) x U(N) (as supposed in
Ref. 1), because invariance under the chiral U(1)
symmetry is broken by triangle anomalies in the
presence of instantons; see G. 't Hooft, Phys. Rev.
Lett. 37, 8 (1976), and references cited therein.

See Ref. 1, Eq. (7.11). The factor
&4

appears here
because all-traces include sums over Dirac indices.

6See Ref. 1, Sec. IV.
See Ref. 1, Sec. VI.


