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The mass divergences of wide-angle scattering amplitudes are examined in a class of field theories including
those with elementary vector fields. Power-counting arguments are used to show that, apart from renormalization
effects, the wide-angle gauge-singlet scattering amplitude has a well-defined zero-mass limit and hence satisfies
the renormalization-group equations. The same techniques also reproduce the earlier results for Yukawa and
Q4 theories.

I. INTRODUCTION

In recent years there have been several at-
tempts' to apply renormalization-group tech-
niques to study wide-angle elastic scattering
where all the external particles are on their
mass shell. In this approach, the high-energy
limit of the scattering amplitude is governed
by the zero-mass singularities of the theory.
This is explicitly seen in the work of Ref. 4.
These authors show, using the improved renor-
malization-group equations, that asymptotically
the on-shell T-matrix elements in the fixed-angle
limit can be written as the product of (i) a function
which has a well-defined zero-mass limit and
(ii) the finite wave-function renormalization as-
sociated with the external on-shell particles to
which the zero-mass singularities are confined.
The relevance of this result to soft symmetry
breaking in the fixed-angle limit is pointed out
in Ref. 4. In Ref. 3, renormalization-group tech-
niques are used to investigate whether the "quark
counting" rules of Brodsky and Farrar' and Matve-
ev et al. ,

' can be extracted from field theory. All
these applications are in the context of field theo-
ries without fundamental vector fields and rely on
the existence of a smooth zero-mass limit of the
underlying field theory. It is therefore relevant
to ask whether the limit m —0 exists in perturba-
tion theory calculations, for scattering amplitudes
in field theories involving elementary vector fields.

The purpose of this paper is to study mass di-
vergences of the four-point scattering amplitude
in the fixed-angle regime by directly examining
the momentum-space behavior of Feynman inte-
grals. It is found that, apart from renormaliza-
tion effects, the scattering amplitude to all
orders in perturbation theory has a well-
defined zero-mass limit and hence satisfies the

renormalization-group equations. This result is
obtained for the case that the external particles
can be described by canonical fields. It is valid
for a large class of field theories including gauge
theories if the external particles are of "neutral"
charge. In obtaining this result, the behavior of
mass divergences in totally massless field theo-
ries is estimated by using the power-. counting
procedure recently developed by Sterman. ' The
extension of this procedure to scattering process-
es has been recently studied by Libby and Ster-
man. ' Previously, the zero-mass limit of wide-
angle scattering amplitudes in y4 and in Yukawa
theories has been studied by a number of auth-
ors. " High-energy cplpr-singlet-cplpr-sing-
let has been considered in ref. (11). It is shown
by an explicit calculation up to sixth order in the
quark-gluon coupling constant that th'e amplitude
is infrared finite to this order.

In Sec. II, Sterman's power-counting procedure
is reviewed and applied to the four-particle scat-
tering amplitude. The result for scalar and Yuka-
wa theories follows immediately from these power-
counting arguments. For gauge theories, however,
naive power counting suggests that the logarith-
mically divergent momentum configurations involve
an arbitrary number of soft vector lines that at-
tach to the external "self-energies" at three-point
vertices in all possible ways. In Sec. III we con-
sider the case of gauge theories in greater detail.
Ke use arguments similar to Ref. 12 to show that
if we consider gauge-singlet scattering, there is
a suppression with respect to the naive power-
counting estimates of Sec. II whenever there are
soft vector particles associated with the. ampli-
tude. In Ref. 12 these arguments were used to-
show the finiteness of gauge-singlet production
amplitudes in quantum chromodynamics (QCD).
Using similar arguments we show that the "photon-
photon" scattering amplitudes in massless @ED
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and QCD also satisfy the renormalization-group
equations.

II. POKER COUNTING FOR FOUR-PARTICLE
SCATTERING AMPLITUDES

Consider a one-particle-irreducible (1PI) dia. -
gram which is given as an integral over internal
loop momenta of products of Feynman propaga-
tors and vertex functions. We assume henceforth
that the theory has beers' rendered ultraviolet fin-
ite by a convenient off-shell i enormalization pro-
cedure. This integral therefore diverges only at
those points where the Feynman denominators van-
ish. Such points are called singular points. Of
these singular points only those where the unde-
formed contours are pinched (called pinch singu-
lar points) can give rise to mass singularities. '
For each 1PI diagram, at the pinch singular point,
a reduced diagram can be constructed by con-
tracting all off-shell lines to a point. The internal
lines of such a reduced diagram can be divided
into sets of zero-momentum lines (k,j and finite-
momentum lines (q;I. Singularities from the
Feynman denominators of zero-momentum lines
always trap the contour at k; =O. For finite-mo-
mentum lines, the contour is trapped whenever
the Landau equations are satisfied for some choice
of Feynman parameters n&, i.e.,

2= 2
gf viz' p ggg Oo

The sum is over all independent loops of finite-
energy lines. Coleman and Norton'"' have given
a physical interpretation to reduced diagrams at
pinch singular points. According to them, all
such reduced diagrams described physically real-
izable scattering processes in which particles pro-
pagate freely between vertices and energy always
flows forward in time. Each vertex is associated
with a space-time point, and the separation be-
tween two vertices is proportional to a,q;. The
vertices of a reduced diagram are now divided
into two classes: . soft vertices and hard vertices.
A vertex is soft only if.all the lines it connects are
at threshold i.n incoming and outgoing channels and
is otherwise hard. A soft vertex preserves the
direction of momentum flow whereas a hard ver-
tex does not. At a soft vertex, the number of
constituents of a "jet" of parallel-moving lines
may change. The energy and rnomenta of each
such jet, however, is the same before as after
the action of' the soft: vertex, where the number
of jets is also individually conserved. At a hard
vertex, the jets may change directions as well
as their number.

The power-counting procedure' is based on
identifying a minimal set of variables necessary
to put all lines on shell at a pinch singular point.

These variables, called normal variables, are
defined below. Consider a Feynman integral
and make a change of variables. The new variables
are divided into two categories: intrinsic vari-
ables and normal variables. The normal variables
are such that they vanish at the pinch singular
point and the Feynman denominators can be ex-
pressed as a homogeneous function of these vari-
ables by suppressing all terms quadratic in them
relative to the linear terms. Thus, for power
counting only the normal variables are relevant.
For zero-momentum lines, the normal variables
are the four components of the internal loop mo-
menta. At the pinch singular point, all the lines
of a jet are on-shell @ed parallel to each other.
Using this, together with the fact that there is an
overall freedom of direction, gives the number
of normal variables associated with jet momenta
as 2x (number of independent finite momenta) -1.
This includes the contribution from the indepen-
dent loop momenta for the internal jet loops and
the independent normal variables assoCiated with
the external momenta of each jet. It is important
to observe that when we consider a, general scat-
tering process all the normal variables associ-
ated with external jet momenta are not necessar-
ily independent. This question will be discussed
in detail later.

Consider a reduced diagram of a 1PI diagram
at the pinch singular point. Suppose now that the
normal variables have been identified and the ho-
mogeneous integral constructed. For power-
counting purposes the relevant differentials are
those corresponding to the normal variables as
opposed to those corresponding to the intrinsic
variables. Let I' denote the difference in the
scaling behavior of all the relevant momentum
factors in the numerator and in the denominator.
Mass diver gences can exist if P & 0. Let J= numb-
er of finite energy lines in the reduced diagram,
S =number of zero-momentum lines, L', L~ =numb-
er of soft loops and internal jet loops, respec-
tively, and N= contribution from momentum fac-
tors in the numerator from propagators and ver-
tices. As mentioned earlier, not all the normal
variables associated with the external jet momen-
ta are independent, whereas only an independent
set is relevant for power counting. For this pur-
pose, a quantity D is defined thus: A, is defined
to be the volume in loop-momentum space where
the absolute value of each normal variable for the
external jet lines is of the order of a small param-
eter A.. When a change of variables from loop
momenta to normal variables is made, A. , in the
space of normal variables, defines the scaling
behavior of the volume element multiplied by
the Jacobian of the transformation. Then we can
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write

p =4L'+2L) +D —(2S +J) +N

We next separate the effects of zero-momentum
and finite-energy lines. For the zero-momentum
lines we use dimensional. arguments and for fin-
ite-energy lines we separate out the contributions
from each jet to write

K
p= 2l~- j,.+n~» +D+b+2

where K is the number of jets in the reduced dia-
gram. 'The notation is obvious for the jets, and b

and f a,re the number of soft boson and fermion
lines, respectively. Now,

),;—-', P nX, ,+ Q 31y+ y,)
—'3„

%~3 B~~2

y. = X» + Y», + W, +K,. —&»,
B~~2

(4)

where &»= 1 if the ith jet contains an external line
of the reduced diagram and is zero otherwise.

y»=total number of finite energy external lines
of the ith jet.

W»=the number of times that only one finite-
energy external line of the ith jet is attached to
a given hard vertex.

V(=number of vertices of the ith jet (including
the hard vertices to which jet lines may attach).

K,.=the number of times that more than one fin-
ite-energy external line of the ith jet line is at-
tached to a single hard vertex.
Note that y(~ W„K(o 0. Further, y, o (W,.+K,.),
and y, = W,. only when K,, =0.

X, = total number of soft vertices in the ith jet
with a jet lines attached.

Y»B
= number of soft vertices in the ith jet with

P jet lines and one or more soft lines attached.
Equation (5) is the Euler identity.

~»=1 if the jet is completely connected, if not,
~» = number of disconnected pieces of the ith jet.

Equation (2) can now be written as

p=-,' g (n —4)X,. + g (P —4)&„
0t %~3 B+2

+ 4a,.—3y,.+ 4 (y,.—W; —34;)+ 3 II ';)

+(8+4)+b+ ',f. — (6)

For ())' theory, n~ 4, p&2, and n~, =0 automa. tical-
ly and hence

+ (D+ 4)+ b+ ,'f. —

For Yukawa theory it was shown in Ref. 6 that
there exists a lower bound on n'„ i.e.,

n', —,X„+—,Z(»',(0) (6)

where Z'»' is the number of soft scalars emitted
at three-point vertices. For gauge theories also,
it was shown that the above equation is valid for
each graph individually, provided one does the
power counting in a noncovariant gauge in which
the gauge-fixing term is

(e "8 A —8'X)'
0 0

and 0& 6&-2'n'. With this choice of gauge, as will
be seen below, each reduced diagram is at worst
logarithmically divergent on a graph by graph
basis even in gauge theories. Notice that in gauge
theories there is no suppression associated with
the vertex in which a soft vector is emitted from
a finite-energy line.

Using these and the inequalities

(10)

where Z'»'' are the number of soft vectors emitted
in ith jet at three-point vertices, we obtain

p'- Q (n —4)X + Q (p-4)j',
» B-4

+ 4 E,.—3y q+ 4(y (
—W

q
—IC )))

1

K
+( +4)+ )—)P(b' +3" ' —2""')+'f—

» 2

where b, ' and b',.', respectively, denote the total
number of soft scalars and vectors attached to
jet lines of the ith jet. From (ll) we see that the
most singular case would correspond to the situa-
tion when 4» = 1, y, = W„and K» = 0, i.e. , there
are no disconnected jets, and all the lines that
meet at a given hard vertex belong to different
jets. For this case, which is the most singular
configuration, e.g. (11)becomes

P~ —,
' P (n —4)X,.

g ~&4

+ Q (3 —4)yb —3W,.+4)
p= —,

' (n —4)X, + Q (p —4)r,,
~.-4 B+~3

+ 4 E,.—3y,.y 4 (y,.—W,.—34,:))

+(D+4)+ 3 (b(0)+b(l) Z(l))+ lf

and for y4 field theory we have

(12a)



19 MASS D'IVERGENCES OF SIDE-ANGLE SCATTERING. . . 1253

K

p ~ —,
'

(c» —4)X„
+ Q (p —4)Y,~ —3W, +4)

g &~4

+ (D+4)+-,' b',"+f. (12b)
t=

We now come to the most significant part of this
paper. We show with reference to Eqs. (12) that,
at a pinch singular point, for all reduced diagrams
except those where scattering takes place at one
hard vertex.

D& f
—(W,.—2)+1] —4, (13)

and that the logarithmically divergent configura-
tions are only those where scattering takes place
at a single hard vertex. We will ignore soft lines
for purposes of this a.rgument. This is justified
for the following reason: It is clear from equa-
tions (11) and (12) that the soft lines are "decoupl-
ed" from the jet lines for purposes of power count-
ing. It will be seen later [see Eq. (15)] that the
condition for logarithmic divergence is that there
are only soft vector lines which attach to jet
lines at three-point vertices. If we ignore soft
lines (and the three-point soft vertices where they
attach to jet lines) then the momenta flowing
through the jet lines are unchanged even though
the number of internal jet lines will be reduced.
Thus, if we are interested in finding the minimum
number of independent normal variables associated
with external jet momenta we are not overcounting
if we exclude soft lines from the argument.

Consider the set of ordered reduced diagrams,
R~, of a four-particle scattering process. An
ordered diagram is defined to be one in which en-
ergy always flows forward in time and (equivalent-
ly) there are no subdiagrams in which energy flows
around in a loop. By the Coleman-Norton theorem,
a reduced diagram of a scattering process at the
pinch singular point is an ordered diagram. Hence
these are included in R .

We now proceed to show the validity of inequal-
ity (13). The first step is the construction of a
"jet reduced" diagram. The usefulness of such a
construction will be apparent later.

An ordered "jet reduced" diagram R can be
constructed by contracting all the jet lines in R~
to a point except Q, , (W» —1) external jet lines
chosen arbitrarily. This is always possible when

R~ is ordered. (For a detailed proof see Ref. 7.)
R now has only hard vertices, which are of order
four or more. In R one of the external jet mo-
menta of each jet is chosen as the "reference"
momentum which specifies the jet direction, and

one normal variable is associated with each. The
(W,.—2) other external jet momenta of, say, the
ith jet are treated on the same footing as the in-
ternal jet loop momenta gad two normal variables
are associated with each of them. These normal
variables are (K')' and

l(g») 2

where K,' denotes the reference momentum of the
ith jet and 8' is the angle between this reference
momentum and a momentum K' (c»& 1) in the ith
jet. In order to establish the validity of (13) we
first need an estimate of the volume in loop-mo-
mentum space where the following conditions are
satisfied:

)
e» (2(~.

(14a)

(14b)

since they are obviously independent. There is a
(-4) in the exponent because if the jet contains
an external line of the diagram, its momentum is
fixed on shell. 1he angular normal variables,
however, may not all be independent and a lower
bound on the volume associated with them is ob-
tained using the jet reduced diagram R . For this
purpose, the I» lines (I» ~ 2) connecting the first
two (hard) vertices of 8 are put on shell and we
are reduced to the problem of finding the volume
in phase space where (14b) is satisfied. Once
this is done, the l» lines of R are contracted and
the lines l,', connecting the first two vertices of
the resulting diagram are treated in a similar
manner. The process is repeated till the dia-

A
gram R i.s reduced to a single vertex. Proceed-
ing in this manner, the bound on the phase-space
volume obtained in Ref. 7 is &" where A & —,'(W, —2).
Combining this with the volume where (14a) is sat-
isfied, it is seen that the volume in loop-momen-
tum space where equations (14) are satisfied is
bounded by X~, where

D~ (W» —1)+ ~ (W»- 2)- 4
=1

= P[-,'(W»-2}+1]-4.
f=l

The equality holds when all the internal lines of
are nonreference (hence there are only four

jets) and there are only two lines connecting any

The rules for obtg, ining this estimate are discussed
in Ref. 7. The volume a.ssociated with the variables
(K')' is

yE
&

~0v&-z&-4K
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FIG. 1. Typical ordered jet reduced diagram for
which D=D~&„. Here and in the following, the arrow
points in the direction of energy flow.

two (hard) vertices.
We next invesitgate whether those diagrams for

which

D =D;„= [~(W, —2)+1]—4

(b)
FIG. 3. Jet reduced diagrams of Fig. 2{a) and 2{b) in

which the lines are distributed among the four jets label-
ed l, 2, 3, 4. These are drawn such that at each ver-
tex there are two incoming and two outgoing. lines.

gives rise to mass divergences. Two essential
features of those R (henceforth called R') for
which D =D;„are

(i) R' is an ordered diagram and
(ii) there are only four-point vertices in R'.

(ii) follows from the fact that there are two in-
coming and two outgoing lines, and any two hard
vertices are connected by just two lines.

Putting these together we see that with each
hard vertex of A~, a four-particle scattering
process can be associated in which there are
two incoming and two outgoing particles. This
places severe restrictions on the possible types
of the diagram R'. Since there are only four-point
hard vertices in A' and at each vertex there are
two incoming and two outgoing lines, then for the
diagram to be connected, the only possible con-
struction is one in which the outgoing lines of a
preceding hard vertex must be the incoming lines
of the succeeding hard vertex. This reduces us
to the "chain diagrams" shown in Fig. 1. All
other diagrams contain at least one situation
where energy flows around in a loop and hence
cannot be ordered. For example, consider the
diagrams shown in Figs. 2(a) and 2(b). Since,
as mentioned earlier, we want to have only four
jets in order to get the minimum value of D, and

since we want a four-particle scattering process
at each vertex, one possible way for this to hap-

pen is shown in Figs. 3(a) and 3(b), with the cor-
responding jet assignments. In each case, the
diagram is not ordered.

Thus, the only possible types of ordered jet
reduced diagrams for which D =D;„are those

shown in Fig. 1 in which the internal lines are
all nonreference. It is easily seen that such dia-
grams are suppressed with respect to power count-
ing. However, we will now show that none of these
jet reduced diagrams correspond to a reduced dia-
gram at a pinch singular point and hence are auto-
matically excluded from considerations of mass
singularities.

We would like to emphasize that a jet reduced
diagram is not the same as a reduced diagram at
a pinch singular point and no physical interpreta-
tion (in the sense of the Coleman-Norton theorem)
can be directly applied to it. However, the numb-

er of hard vertices in the jet reduced diagram is
the same as in the corresponding reduced diagram.

We will use this to show that the jet reduced

diagrams of Fig. 1 in which all the lines are dis-
tributed among four jets, cannot be obtained from
a reduced diagram at a pinch singular point.

Consider first a jet reduced chain diagram with

only one loop (i.e. , with two hard vertices labeled

&, and 8,). This is shown in Fig. 4. The corre-
sponding reduced diagram, R~, also has only two

hard vertices. Both the diagrams are ordered
and hence in the reduced diagram also, II, must

be the last hard vertex. The preceding hard ver-
tex of R~ is 8, and there may be an arbitrary
number of,soft vertices in between. The jet direc-
tions can change only at hard vertices, thus since
the internal lines of Fig. 5 belong only to jets 1

and 2, there roust be one situation in R' where,
at H„ incoming lines from jets 1 and 2 change

direction and become outgoing lines belonging to

jets 3 and 4. A possible form of this vertex is
shown in Fig. 5 where 1' and 2' belong to jets
1 and 2, respectively. Since there are no more

{aj {b)
FIG. 2. Examples of jet reduced diagrams not in-

cluded in Fig. l.

FIG. 4. Same as Fig. l with only two hard vertices
H& and H2 and one possible jet assignment for the differ-
ent lines of the diagram.
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FIG. 5. Possible form of the vertex H2 in the reduced
diagram corresponding to Fig. 4.

hard vertices between H, and H„ then in R~ also
there must be lines belonging to jets 1 and 2 that
emerge from the preceding hard vertex H, . Now,
the line belonging to jet 1, for example, that
emerges from H, must be connected to the line 1'
via other lines of jet 1 that are attached to these
at soft vertices. The same is true for the lines
in jet 2. Thus we are led to the conclusion that
in the reduced diagram B~ there must exist at
least one subdiagram of the type shown in Fig.
6. The Coleman-Norton theorem, however, for-
bids the appearance of such a loop in a reduced
diagram at a pinch singular point. This is for the
following reason: By the Coleman-Norton theorem,
particles between the vertices of a reduced dia-
gram at a pinch singular point propagate freely.
If this is so then a loop l.ike the one si&own in Fig.
6 cannot occur because the particles in jets 1 and
2 would be propagating freely and since they be-
long to different jets, they cannot meet together
at H, . (lt is easily seen that the spatial component
of the Landau equation Qn~qj =0 can never be sat-
isfied for such a loop. ) This same conclusion holds
if the lines of Fig. 4 are distributed among the
four jets in any other way.

Consider next the jet reduced chain diagrams
with more than one loop. In the corresponding
reduced diagram, again, there will be at least
one situation where a loop like the one shown in

Fig. 6 occurs. This will happen whenever there
are two hard vertices like H, and H, . From H,
only lines from, say, jets 1 and 2 emerge and at
the succeeding hard vertex H, lines from jets 1
and 2 change direction and come out as lines in,
say, jets 3 and 4. Thus we see that even though

the jet reduced diagrams shown in Fig. 1 are
ordered and all lines are on shell, they do not
correspond to a reduced diagram at a pinch sing-
ular point. (This is possible if all lines are on

shell but only the time component of the Landau.

FIG. 7. Beduced diagram at the divergence point for
gauge theories according to Eq. (15). Wavy lines denote
soft vector lines. All on-shel. 1 lines in S are soft.

1',„=X, = 0 (c.& 4),
f(o) f 0

b(') =Z(')
i

(15a)

(15b)

(15c)

which are the conditions for- logarithmic mass di-

equations can be satisfied and not the spatial com-
ponents. )

In summary, we have shown that for those dia-
grams R which contain more than one loop be-
tween two hard vertices, inequality (13) is valid.
Then equation (12) tells us that there are no mass
divergences. For those A~ shown in Fig. 1 and in

which all the lines are distributed among only

four jets there is a possibility for D to equal

~~

[-,'(W, —2)+1]-4,
g=1

however, these do not correspond to reduceddia-
grams at a pinch singular point and hence do not

contribute to mass divergences. The only re-
duced diagrams that give rise to mass divergence
are therefore those in which the scattering takes

place at a single hard vertex. The conditions

for this are easily read off from Eqs. (12). They

are

FIG. 6. A possible subdiagram in the reduced diagram
corresponding to Fig. 4. Here the crosses denote soft
vertices.

FIG. 8. Beduced diagram at the divergence point in
theories without fundamental vector fi;elds.
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vergence. For gauge theories, these correspond
to the reduced diagram shown in Fig. 7 and for
scalar y4 and Yukawa theories to the reduced dia-
gram in Fig. 8. In Fig. 8 the shaded blobs are
the self-energies associated with the external
lines and in Fig. 7 all on-shell lines included in
the shaded blobs are jet lines to which soft vec-
tors attach to three-point vertices. - In the ab-
sence of the vectors the shaded blobs in Fig. 7
would also represent self-energies. Note that
since we are considering only wide-angle scatter-
ing there are no finite-energy lines connecting the
external lines of the diagram since they belong to
four different jets. For gauge theories, however,
they can be connected by zero-momentum vector
lines. For scalar y4 and Yukawa theories we di-
rectly obtain the result given in the Introduction.
For gauge theories, we show in the next section
that if the incoming and outgoing particles are
gauge singlets then there is a further suppression
in the power-counting arguments and the reduced
diagram at the divergence point again assumes
the form shown in Fig. 8.

III. ELIMINATION OF SOFT LINES IN GAUGE THEORIES

FOR GAUGE-SINGLET SCATTERING

Consider the reduced diagram of .the four-part-
icle "photon-photon" scattering amplitude. In

Ref. 12 it was shown that whenever there are
zero-momentum vector lines associated with an

amplitude involving a gauge-si, nglet particle, Ward

identities could be used to show a suppression of

the integrand with respect to naive power-counting

estimates. We use similar arguments to show the

suppression first, for the case of photon-photon

scattering in QED. Next, we briefly outline the

arguments which can be used to show the suppres-
sion for the case of color-singlet scattering in

QCD. For this purpose, the axial-gauge Ward

identities" in QCD are used.
The power counting in the preceding section was

done in a noncovari. ant gauge and it was found that 8
e

&
Sz '(P) =er, (P,p, o).

Pp,
(16)

r, (p, p, 0) is the proper vertex for the emission of
one zero-energy photon and to lowest order in just
y . This is the Ward identity for QED and will be
used below.

Consider the amplitude for the emission of two

mass divergences were at worst logarithmic
whether the external lines of the diagram are gauge
singlets or not. What happens to these arguments
if any other gauge is used? For individual graphs.
the divergence may be worse than logarithmic,
however, as argued in Ref. 12, if one considers
a gauge-invariant surh of graphs then the diver-
gence is logarithmic and in particular, in the ax-
ial gauge, contributions from gauge denominators
do not effect power counting.

Let us first look at the "photon-photon" scatter-
ing amplitude more closely. The only reduced
diagrams that have a logarithmic mass diver-
gence are shown in Fig. 9. It is worthwhile to
emphasize here, that, at the divergence point, by
Eq. (15b), only soft vector lines and no soft scalars
or fermions attach to the "self-energies" associ-
ated with the hard "photon" line. The soft vector
lines are explicitly shown. J and S may contain
vector lines and closed loops of fermions and
scalars. J contains only jet lines and S only
soft lines. From the above each jet separately
is of the form shown in Fig. 10. The general
philosophy behind the method used to eliminate
the soft vector lines completely from the reduced
diagram is the following: Referring to Fig. 10 we
show a suppression with respect to our earlier
power-counting estimates for the amplitude for
the emissjon of n soft vectors as their momenta
are scaled together to zero. Thus when we inte-
grate over the momenta of the soft vector part-
icles to get the contribution to the scattering
amplitude we get a finite answer since the over-
all amplitude is naively only logarithmically di-
vergent. We consider, first, the case of photon-
photon scattering in QED with massless electrons.

In QED, the differentiation of the propagator of
an electron having charge e and momentum k is
equivalent to the insertion of a zero-energy pho-
ton according to the equation"

FIG. 9. Reduced diagram at the divergence point
according to Eq. (15) for gauge-singlet scattering. Here,
wavy lines collectively denote all soft vector lines and
broken lines denote gauge singleta only.

FIG. 10. Typical form of each jet in the reduced dia-
gram of Fig. 9. Broken line denotes a hard gauge sing-
let and wavy linea denote soft vectors.
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soft photons from a hard photon line via virtual
interactions. This is shown in Fig. 3.1. The am-
plitude is not amputated in the (hard) photon line
carrying momentum P'. The important feature
here is that the electron lines in K always occur
only in closed loops. From the Ward identity, the
amplitude

G»»»j, (4iP, k» k, —0)

can be obtained from Gj, j 3) 3(3;p, k, ). If we repre-
sent G ),33) 3(3;p, k, ) by

Gj')jd3jj3(3 jP j k))

] d +jj)jj3jj3 (P j '{1h k) ) j (17)
j ) )T

where l,. denote (say) N independent loop momenta
of the charged fermion lines. [It is to be noted
that G»»~, (3;p, k, ) = 0 identically by Furry's theo-
rem when a gauge-invariant sum of all such graphs
is considered. ] Then,

G j') jj3)d3)'d(4 jp j k) j k3

-Q( d'j'''dj d'j '''dl
1 «-1 «+ j. N

«

x d'l««E~j»~3 Ppl„. . . , « l
P4

where the sum is over all independent loop mo-
menta of the charged fermion lines. In an obvious
notation we write the above as

P P
K

I

Fp Py

FIG. 11. Momentum configuration for the amplitude

G~(„2„3~4 (4;p, k&, k2) in QED. The blob denotes the
sum of all gauge-invariant graphs. A broken line de-
notes a photon.

ticular component p,4 =n. Let d3l «denote collec-
tively the differentials corresponding to the other
three components. Suppose that in the l' integra-
tion, the contour is trapped at l' =(l„')' as k, -O.
In the neighborhood of this pinch singular point,
me can write for the corresponding term on the
»ght-hand side of Eq. (1,8)

d'l~ d'l,
s« = &s «&0-z

xE„)„3),3(fl) l) k))

—=G'. . .„,(4;P, k„k, = 0), (19)

where 4 0 defines the region near the pinch sing-
ular point where the integral is being investigated.
It is chosen such that in the region considered
above, no other pinch singular point correspond-
ing to the vanishing of other momenta are includ-
ed. Equation (19) can be written as

G j,jj3„3),q(4 jP j k, j k3 0)

-Qf d'jq fdl, j, d. . .(j(j),j,). ,
lj 4

(18)

Consider now the amplitude

G„,),3j.3j.4(4; P, k„k,).
Power-counting arguments of Sec. II can be used
to show that this is quadratically divergent as
k„k, -Oat p'=0. From Eq. (18) it is seen that
by differentiating the integrand of Eq. (1V) with
respect to the independent fermion loop momenta
in turn, a zero-energy photon is in turn attached to
each corresponding jet loop. When k, -0, and k,
= 0, then at the corresponding pinch singular point,
the jet lines of the loops go on shell and their mo-
menta become proportional to p. By considera-
tion of the integral in Eq. (18) in the neighborhood
of this pinch singular point of interest we will
now argue that G»+ + jj,(4;p, k„k, = 0) is less than
quadratically divergent as k, 0, i.e. , there is a
suppression with respect to the power-counting
estimates of the preceding section.

In Eq. (18) a term in the sum, corresponding
to, say, the ith loop is selected. Consider a par-

x d'l, (E„. ((l),p, k, ) i, „.p,

—&j,j 3j 3'�)'» k)) I ) & = ()& )o+d, ) .
Thus; the fact that the integrand in Eq. (19) is a
perfect differential enables us to do the dl' inte-
gration, and in the integrand of Eq. (20), l' as-
sumes values only at the boundary.

For 40, this corresponds to an off-shell val-
ue for l' and hence when the remaining integrals
in (20) are evaluated the quantity

(20)

lim )).3G „„,(4;p, &k„k3=0)=0.ljje2V3~4 (21)

so obtained will be more convergent as k, -0
than suggested by the naive power-counting ar-
guments of the. preceding section. This same ar-
gument is true in the neighborhood of a pinch sin-
gular point for each component of p4 and for each
term on the right-hand side of Eq. (18). Thus we
see that term by term,
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This is derived with k, fixed at zero and k, scaled
to zero, but it is obviously also true if k, is fixed
at zero and k, is scaled to zero. We therefore
consider Eq. (21) indicative that G~,u, ~,~~(4;p, k„
k, ) is less than quadratically divergent as both k,
and k2 are together scaled to zero. These argu-
ments, in conjunction with the Ward identity can
now be used similarly to show that the amplitude
for the emission of n soft photons is less than nth-
order divergent as the soft photon momenta are
together scaled to zero. Hence, when we integrate
over the soft photon momenta to get the contribu-
tion to the entire four-particle scattering ampli-
tude, which is naively logarithmically divergent,
we get a finite answer. Thus, we see that when-
ever there are soft photons associated with the
photon-photon scattering amplitude we get a sup-
pression in the naive power-counting estimates
and the corresponding reduced diagram has no
logarithmic mass singularity. The only reduced
diagram that gives- rise to a logarithmic mass di-
vergence is shown in Fig. 8 which shows that
apart from renormalization effects the amplitude
has a well defined zero- mass limit.

For the case of color-singlet scattering in QCD
we again consider each jet individually and start
with the amplitude for emission of two soft gluons
from the hard photon line to lowest order in the
electromagnetic interaction. This is shown in
Fig. 12. In this the incident photon of momentum

p emits two soft gluons via virtual interactions and
is connected to the rest of the graph by an internal
gluon line of momentum P'. The amplitude

is not amputated in the (hard) gluon line carrying
momentum p' and is quadratically divergent as

0 at p 0 As before we now show that
there is a suppression with respect to this power-
counting estimate. The arguments we outline be-
low are similar to Ref. 12 where use is made of
the axial-gauge differential Ward identities. We
use the differential Ward identities in the form
shown in Fig. 13. The notation is that of Ref. 14.
In this form, the Ward identity is an algebraic

identity and is valid at each point in loop-momen-
tum space. The first term on the left-hand side
of Fig. 13 may be written as

g 8-ig " G".. o.".: ~ ~ q. ' ~

ext' BQ'

lines

where the sum is over derivatives with respect
to all independent external lines that carry color
and f'" are the structure constants. In the sec-
ond term the sum is over derivatives with respect
to all independent loop momenta of colored fer-
mions and gluons. For gluon loops, for example,
a typical term included in the sum is of the form

d4l fScil 9

XF'' 6 Ix '( If '

) (22)

where the notation is as before and E is a func-
tion of independent external momenta and other
loop momenta.

The term on the right-hand side of Fig. 13 re-
presents the insertion of a zero-momentum line
with group and spatial indices c and p, , respective-
ly. Using the Ward identity, the amplitude

can be related to G'„',„„(1;p,k, ). Thus,

8=-igf'2'~' G"' (1 P k )'v&v2» I
1

9

+ terms with derivatives with respect
to the independent loop momenta. (23)

But by charge-conjugation invariance G'„&".„„(.~ ~ )

, =0, and hence

G"'2' ~ (2;P, k, k = O)lf"2g vl V2 1 2

equals a sum of terms of the type (22). In their
derivation of the Ward identity, Sugamoto et al."
show that such terms vanish when integrated over
the entire range of loop momenta. In what fol-
lows we are, however, only interested in a partic-
ular region where the integration contour ispinched
as the k, 's-0. This region is chosen to contain

FIG. 12. Same as Fig. 11 for the amplitude
G~

&
&„~2'.„„2(2;p, k &, k 2) in QCD. Wavy lines here are

gluons and broken lines are "photons. "

gQ
loopsext.

lines

FIG. 13. Differential. Ward identity for QCD in the
axial gauge.
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no other pinch singular points. By a power-count-
ing examination of the integrals of the type (22)
in the neighborhood of the pinch singular point as

&, -0, we can argue that

Galaal b (2 p y g —0}
2 1 2

is less than quadratically divergent as k, -0. The
procedure is exactly analogous to what was dis-
cussed earlier for massless QED. Thus,

lim &'G""".„„(2;p, Ak„k, = 0) = 0.
X~0

This is indicative that the amplitude for two-gluon
emission is less than quadratically divergent. when

ky &2 0 ~ An iterative argument based on repeated
use of the Ward identity in a similar manner as
above can now be used to show that the amplitude
for emission of n gluons is less than nth-order
divergent. For example, the amplitude for r-gluon
emission can be related through the Ward identity
to that for (r+1)-gluon emission. If the former
amplitude is less than xth-order divergent then
one argues that the amplitude for (r+ 1)-gluon
emission is less than (y +1)th- roder divergent.
The suppression is thus established and just as

for the case of QED discussed earlier we see
that for color-singlet scattering in QCD, the only
reduced diagrams that have a logrithmic mass
divergence are those shown in Fig. 8 which im-
plies that the wide-angle "photon-photon" scatter-
ing amplitudes in gauge theories also satisfy the
renormalization- group equations.

In conclusion, we would like to emphasize that
in this work we have everywhere treated the ex-
ternal particles as fundamental fields. It is not
yet clear how the formalism of this paper can be
applied to composite particles and hence this work
may be regarded as instructive but not complete.
It is hoped that a suitable modification of this
formalism can also be used to study the wide-
angle scattering of composite particles.
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