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Nonlinear two-dimensional cr-model instanton as a tunneling process
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We study the instanton in the nonlinear two-dimensional 0. model and show that it can be interpreted, in
Minkowski space, as 'a tunneling process through a potential barrier between two vacuums. In this case the
process carries nontrivial winding number. We then show, using this interpretation, that the cr-model
vacuum is nevertheless unique by demonstrating that two such vacuums may also be connected by processes
that carry zero winding number and which do not require tunneling through a barrier. Some geometrical
aspects of instanton solutions are also given,

I. INTRODUCTION

It is well known that the nonlinear 0 model in
two dimensions shares many properties with non-
Abelian gauge theories in four dimensions. In
particular, both theories are asumptotically free,
and both contain instantion or pseudoparticle
solutions of the field equations. Nevertheless
the nonlinear o model is a much simpler theory
than a non-Abelian gauge theory, first because it
is two dimensional, but second and more impor-
tant, its global rotational invariance is enormously
simpler than the local invariance of a gauge theory.

In this paper, we mish to discuss certain as-
pects of instanton physics in the n = 3 nonlinear
0 model. As the title implies, tunneling is the
main focus. The 0 model provides a simple
example in which to study the process of tunneling
through an instanton directly in Minkowski space.
A formalism for doing this has recently been
developed by tmo of us and applied to the instanton
in gauge theories. " The calculation of the tunnel-
ing amplitude as well as the way the angles defin-
ing the 0 field move around on the unit sphere
during the tunneling process are discussed in some
detail in the body of the paper in Secs. III and IV.

In addition, we have been interested in comparing
and contrasting the vacuum structure and the role
played by instantons in determining the properties
of the vacuum in the two cases. The existence of
a topological charge, ususally called winding
number. The minding number q is the integral
of a density p over (Euclidean) space-time. The
instanton solutions carry definite, integer values
of q, so winding number is first associated with
the whole tunneling process which begins and
ends in a classical vacuum configuration. How-
ever, in gauge theories in certain gauges, e.g.
the temporal gauge, winding number also becomes
a label for classical vacuum configurations, which
involves properties of the system at a fixed time.
This arises because the winding number density

p can be expressed as a total divergence of a
current K~ and surface terms at spatial infinity
are dropped. Thus q, by Gauss's 1am, is expres-
sible in terms of the difference at large positive
and negative times of the spatial integral of the
time component of K,. This allows the winding
number label to be attached to the classical
vacuum configurations themselves and leads to
the multiple- or 8-vacuum description of the
gauge theory.

Since the nonlinear 0 model shares so many
properties with gauge theories, it is fair to ask
if a multiple-vacuum description is possible here
too. As is clear from the above discussion, a
necessary prerequisite is that the winding number
density p be expressible as the total divergence of
a current K„. The 0 model does have this feature
as discussed in Sec. III A. However, upon applying
Gauss's law, the contributions from the surface at
spatial infinity are not negligible in general, and
in fact, can be as important as the contributions
of the infinite time surfaces. This evidently pre-
vents the assignment of any physically meaningful
topological index to the classical vacuum config-
urations themselves. In Sec. V we argue that
there is no multiple-vacuum description for the
nonlinear a model.

It should perhaps be pointed out that the notion
of tunneling is still meaningful even in the ab-
sence of a multiple-vacuum description. The
quantum theory of a simple pendulum provides an
example. A unique classical vacuum configuration
can be defined, but nevertheless in the quantum
theory tunnelings in which the pendulum turns all
the way over and returns to this classical vacuum
configuration will occur. These tunnelings can
play an important role in understanding the quan-
tum ground state if the gravitational field is suf-
ficiently weak. Our point here is that one need
not tunnel from a given field configuration to a
different one, but that initial and final configura-
tions can be the same if the field space is multiply
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connected.
The paper is arranged as follows. In Sec. II we

review the Minkowski description of tunneling.
Section III A covers the basic properties of the
0 model. The pseudoparticle solutions found by
Polyakov' are discussed and the current, K„,
whose divergence is the winding number density,
is identified. In Sec. III B we discuss the geo-
metrical interpretation of the model while Sec. IV
contains the actual calculation of the tunneling
amplitude. Finally in Sec. V we address the ques-
tion of multiple vacuums in the 0 model.

II. TUNNELING IN MINKOWSKI SPACE

The one-dimensional quantum- mechanical tun-
neling problem involves finding the wave function
at some point b, given the wave function at an-
other point a, when a and b are separated by a
classically forbidden region. There are, of
course, many ways of calculating this wave func-
tion. In the %KB approach, the amplitude for a
particle of energy E to tunnel through a slowly
varying potential V is e o where the function Ro
satisfied in the (zeroth-order) WKB approximation

(~~,)' = 2m[V(x) —E] (2.1)

b

R= d 2 Vx —&
a

(2.2)

where m is the mass of the particle. The wave
function at point b is usually written as

e f Sog (2.3)

where S,= iR, . Higher-order corrections can also
be computed systematically, assuming that all
of the conditions for the validity of the WEB method
are satisfied. A similar result emerges from
the Feynman path-integral approach.

The multidimensional tunneling problem can
also be solved in the WKB approximation. " The
tunneling amplitude follows from the obvious gen-
eralization of Eq. (2.1). This differential equation
is intractable, however, unless we can reduce
it to an equivalent one-dimensional problem. This
is done as follows. Consider a path in the multi-
dimensional space connecting the points of inter-
est, a and b. At each point E on the path, choose
a local orthogonal coordinate system in the field
space with one axis tangent to the path at I; the
rest, call them collectively n, will be perpendicu-
lar. If a path can be found for which the deriva-
tives of R in all of the n, directions vanish, then
only variations along E need be considered and the
problem becomes one dimensional. This particu-
lar path is called a most probable escape path
(MPEP) and lies along a minimum of R. Should

there be several such paths, the corresponding
contributions to the wave function would be added.
Contributions to the amplitude from other paths
will be exponentially small in comparison.

For convenience we will parametrize the MPEP
as l(X) with A & X& X, such that X= A corresponds
to the point a and X= X, to b. The tunneling ampli-
tude is then simply e + with

Ro= d A(2m (X)[V(X) —E]] (2 4)

and S,=iR,. Note that in general the effective
mass of the particle becomes A. dependent.

Consider, for a moment, an arbitrary path that
does not correspond to a minimum of R, that is,
not an MPEP. At a given point on that path,
linear variations in the n,. direction need not
vanish and thus the problem does not reduce to a
one-dimensional equation. In the local coordinate
system, Eq. (2.1) becomes

(V,R)' = 2m(~)(V —Z) (V,R)'

2m(X)(V E). (2 5)

If variations in all but the l direction are ignored,
the solution obtained will constitute an upper
bound on R according to Eq. (2.5), and thus will
give a lower bound on the contribution of that
path to the amplitude e ~. If one then minimizes
this R, the MPEP contribution is again obtained.
A complete discussion of this method is given in
Refs. 1 and 2.

After discussing the nonlinear cr model and its
instanton solutions in the next section, we will
use this Minkowski-space tunneling formalism
to discuss the instanton as a tunneling path in the
(infinite dimensional) field space.

III. THE NONLINEAR a MODEL

A. The Euclidean solutions

We work in two dimensions with a single three-
component scalar field s(x) = rr(x)/g of constant
length

~s(x) = 1/g', (3.1)

(3.3)

or P=1. The 1 axis is the ordinary space direc-
tion, while the Euclidean time direction is the
2 axis. Because of Eq. (3.1), s can be parametr-
ized in terms of two scalar fields 8 and 4 accord-
ing to

s(x) = —(cos 8(x), sin8(x)cos4 (x), sin8(x)sinC (x))
(3.2)

and additionally we require that

s(x)=-(1,0, 0), r-™
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that is, 8-0 at spatial infinity, z=(z, '+z, ')'~'
We will use the term "classical vacuum

configuration" to refer to a situation in which at
a fixed x, s(x„x,}= (I /g) (I, 0, 0) for all x,.

The two-dimensional field theory is then defined
by the Lagrangian density

2 (x) = —,
' [V,s'(x) ]'

= —([v,8(x)]' + sin'8(X)[v„e(x)]'), (3.4)
2

where p, =1,2. For later convenience we define
the two-component vectors

(3.i4)

a' b=0. (3.16)

We will find that the explicit solutions, given
below, satisfy Eqs. (3.14) and (3.15) even in the
unintegrated form with a(x) and b(x).

The most general solutions of the equations of
motion which follow from the Lagrangian, Eq.
(3.4), were first given by Polyakov, ' and are

a(x) = (%,8(x), sin8(x) V, 4 (x))

b(x) = (V,8(x), sin8(x) V, 4(x))

and in terms of which

2(x) = —[a'(x) + b'(x) ] .
2

(3.6)

(3.6)

(3.7)

where z = x, +i x, and c, the "size" of the instanton,
isa constant. The winding number isq=Zm, &En&.

Consider now the simplest nontrivial case of
winding number one, that is, m, =1, rn,. =0, i&1,
&,. =0. The spin field is given by

(3.i6)

d'x e „„a"(x)b"(x)

1= —a~ b.
4w

For the dot product we write

a b = d'x a(x) b(x)

and for the cross product

ax b= d'xg„,a'(x)b"(x}.

(3.8)

(3.9)

(3.io)

The winding number q assumes only integer values
for fields satisfying the condition (3.3). It can be
used to label the different classes of finite-action
field configurations as we will discuss in a mo-
ment.

The action is bounded by

S= 1 (a'+b') (3.11)
2g 2

(3.12)

«fax b//g =—4mq

where ~a
~

=(a')'~' using Eq. (3.9). The minimum
s.etion for each topological class thus occurs for
field configurations which satisfy the two conditions

The x,-x, plane S' is equivalent to a two-sphere
S' if all points at ~= ~ are identified as in Eq. (3.3).
The field s(x) then constitutes a mapping of S'-S',
with the degree of mapping given by

3

8m

and

C(x)=tan ' —'
xg

(3.17)

2Q
a(x) = (-x„x,)r(r' + c')

(3.18)

b(x) = (x„x,),
~(r' + c')

(3.19)

whi~h ~ati~fy
I
a(x)

I
= lb(x)

I
and a(x) ~ b(x) = 0 as

we promised earlier. From Eq. (3.11) we find
that S= 4m/g which is what we expected for the
minimum-action solution belonging to the class
/=1 ~

Finally we wish to identify the current K„whose
divergence gives the winding number density p.
Defining p to be the integrand of Eq. (3.8), i.e. ,

q = p(x)d'x,

we find from (3.8)

(3.20)

(3.21)

%e can express p as the divergence of a current
E~ given by

where r = (x,'+ x,')'~' and we have chosen the posi-
tion of the instanton z, = 0 for convenience. The
constant c determines the "size" of the instanton.
Equations (3.5) and (3.6) then give
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1K„=—q „,(1+cos8)8„C,
4m.

where K~ satisfies

(3.22)
the sphere is given by

q(x, ) = — dg(x)d8(x)sin8(x),
4w c

(3.24)

(3.23)

In (3.22), we have included a divergenceless term
(1/4~)&~„8,4 in the definition of K„. The modifica-
tion is necessary to remove the singularity associ-
ated with the polar coordinates at 8 = m.

B. Geometrical interpretation of the model

Since the isovector field s has fixed length 1/g,
its components may be associated with the coordi-
nates of a point on the surface of a sphere of
radius g '. According to Eq. (3.2) we take these to
be the polar angle 8 and the azimuthal angle 4
which are, of course, functions of x, and x,. Thus
8(x) and C(x) constitute a mapping of the compacti-
fied xy x2 plane onto the surface of the spheres
where all points at infinity map onto the north
pole.

The two-component vectors a and b defined in
Eqs. (3.5) and (3.6) also have a simple interpreta-
tion. For motion of the point (x„x,) in the x, -x,
plane at constant x„a is the corresponding "vela-
city vector" of the point (8, 4} on the surface of
the sphere. Similarly, b is the "velocity vector"
of the same point associated with the motion of
the point (x„x,) at constant x,. In other words,
a is the local tangent to the curve on the sphere
that is the map of the straight line x, =constant
and b is the local tangent for x, = constant.

Any infinite line in the x,-x, plane has as its
map a closed continuous curve on the surface of
the sphere, passing through the pole (8 =0 is
always associated with x, -+~ or x, -+~). This
is illustrated in Fig. 1. The fractional solid angle
that a curve x, = const subtends at the origin of

which is equivalent to Eq. (3.6) integrated only
over the interval -~ & x,' & x,.

The expression Eq. (3.24) is nothing but the
winding number carried by the fields 8, 4 at x,.
At x, =-, the entire curve collapses onto the
north pole corresponding to an aligned spin con-
figuration.

At a later "time, " q(x, ) is nonzero and, in gen-
eral, nonintegral according to Eq. (3.24). If as
x, »+~ the curve sweeps the whole surface of
the sphere once and then contracts to the north
pole, then q(~) = 1. If the sphere is covered n
times as x, progresses from -~ to ~, then q(~}
= n and one says that the mapping carries winding
number n. In contrast, if the curve only sweeps
part of the surface and then contracts back to the
pole at x, -+, the winding number does not
change. As a mapping proceeds in x„ it can be
labeled at any time by q(x, ) and the difference in

winding number for field configurations at two
different x, points can be determined by following

q from (x,), to (x,),.
The instanton that carries one unit of winding

number is easily described in this geometrical
. picture. %e found in the preceding section that

the condition for minimum action is a b=0, that
is, the "velocity vectors" on the sphere for motion
along constant x, and along constant x, are ortho-
gonal. Thus the grid of orthogonal constant x,
and constant x, lines in the plane should map to a
set of orthogonal curves on the surface of the
sphere. An example of such a mapping is an inver-
sion with center P (the pole of the sphere) and con-
stant radius g ', since an inversion preserves
angles. In this case the curves on the sphere are
circles passing through P; the circles corres-
ponding to constant x, are orthogonal to the circles
for constant x, at their points of intersection. The
angles 8 and C can be easily computed in terms
of x using Fig. 2 and are precisely the solutions
found in Eqs. (3.16) and (3.17).

2 I/2

FIG. 1. The projection of the spin sphere onto the
x~-x2 plane.

2 2
r=(X~ +X2)

FIG. 2. The projection defining the angles of the @=1
instanton.
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FIG. 3. The spin configuration for various values of
Xf ~

It is instructive to compare the development of
the spin configurations in the x plane with the one-
instanton solution 8 and 4 on the sphere as a func-
tion of increasing time x, as shown in Fig. 3.
We can think of the spin configuration at x, = -~
as being comprised of a row of atoms joined to-
gether by a string along the x, direction, with
all of their spins aligned in the up direction. At
a slightly later time, x, =-T/2, with T large,
some disalignment has set in (smoothly) accord-
ing to Eqs. (3.16) and (3.17), which then develops
according to the later x, slices shown in the figure.
Note that the spins near the ends of the string
x, = +~ do not wind around the string as x, -+~,
but only dip slightly in 8 as 4 progresses from 0
to 2m. Those spins near the constant x, line that
passes through the south pole of the sphere do,
however, dip below the string in 8 and thus do
wind completely around the string. At x, =+~ the
spins are again all aligned in the up direction.
The string connecting the atoms now has two
"twists" in it because only a finite length of spins
wrapped around while the others did not. In gen-
eral, an instanton carrying integer winding number

q connects spin-aligned states at x, =+~ which
differ by q+ 1 "twists" in the string. The twists
we discuss here are only a useful guide in visual-

FIG. 4. The curves traced on the sphere for x~ ——+T/2,
for the q =1 instanton.

izing the mapping of the sphere in a given winding
number sector. As we discuss further in Sec. V,
there is no physical difference between the aligned
configurations at x, =~~. It is clear from observ-
ing the development in x, that the q = 1 instanton
solution defines a mapping of the plane into the
sphere once. For multi-instanton solutions tracing
the x, development makes clear the q-fold nature
of those mappings. The curves traced on the
sphere for a large early time x, = —T/2 and a
large late time x, =+T/2 are shown in Figs. 4
and Figs. 5(a)—5(c) for q = 1, 2, 3, 4.

IV. PSEUDOPARTICLE AS A TUNNELING PROCESS

A. Field configuration associated with an MPEP

We can now discuss the instanton solutions in
Minkowski space as a tunneling between two
aligned-spin configurations which takes place
through a mapping with nonvanishing winding
number. According to the formalism of Sec. II,
the tunneling problem is first reduced to a one-
dimensional quantum-mechanical problem in terms
of a dynamical variable Xe. [-~,~], where X para
metrizes the intermediate field configurations
with X= - corresponding to the initial aligned-
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FIG. 5. The curves traced on the sphere for x2

=+T/2, for (a) q=2, (b) q=3, (c) q=4.
I

tion, the most probable escape path (MPEP).
The Minkowski-space Lagrange function for the

nonlinear 0 model is

(Ve)2+ sin2S[e' (Ve)2 j). (4.l)
'9OO
7
4
I

/

/
/

/
/

/
/

/

/
/

spin state and X=~ to the final state. The magni-
tude of the wave functional at each X gives the
relative probability for that configuration to occur;
in particular, the transition amplitude is propor-
tional to the ratio of the magnitude of the wave
functional at X=-~ and X=. The second step
is to maximize the tunneling amplitude by deter-
mining the optimal intermediate field configura-

We will parametrize the intermediate field con-
figuration according to

(4.2)

(4.3)

where 8 and C correspond to aligned-spin config-
urations at X(t = -~) = -~ and X(t = ~) =~; there
is a change of winding number q = 1 when X varies
from -~ to+.

The analogs of Eqs. (3.5) and (3.6) are then (x,
-x and x, -t)

X(x)=(r „e(x,~), sine(x, X)V„e(x, X)) (4.4)

a(x) =(~,e(x, X), sin8(x, X)V,4(x, X)) (4.5)

with the inner and cross products defined similarly
to those of the preceding section. The winding
number is generalized to describe the noninteger
values of the intermediate field configuration
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according to

q(X) = — dX' dx q „Q"(x,X')B"(x,X') . (4.6)

The effective one-dimensional Lagrangian is

& = —,'m(x) ~' v(z), (4.7)

where

tional.
For the above configurations we have

A(x, ~) = ' (-x, ~(t))
r(r' + c')

a(x, X) = (~(t), x)
r(r2+ c2)

(4.1V)

(4.18)

m(X) = dxa'(x, ~) (4.8)

and

(4.9)V(X) = dxA'(x, X) .1

2g

Using the WEB method, we can solve the single-
parameter Langrangian Eq. (4.V) for the tunneling
amplitude, and find an amplitude of e "with

with x'=x'+ X', for which A B vanishes trivially
since we had a ' b = 0 for the corresponding Eucli-
dean solutions. Actually, any multiple of the
above A and B could be used as there is no restric-

ft( ~nthe~Bd

B. Tunneling potential in winding number space

The tunneling potential, according to Eq. (4.9), is

d~2~ ~V~
woo

1 oo

d& dxB' x, A.

I

which is bounded by

(4.10)

X/2
dxA'(x, ~)

(4.11)

(4.19)

(4.20)

v(~) = —,'m(x) =
(~2 2)3/2

The WEB tunneling amplitude e " is then from
Eq. (4.11), simply

gxB1

g2
(4.12)

A ~ B=O, (4.14)

although the condition ~A
~

= ~B
~

is not required as
it was in the Euclidean treatment.

An explicit parametrization can be obtained by
replacing the time coordinate x, in the @=1Eucli-
dean pseudoparticle solution by X:

(4.18)

The maximum rate corresponds to an intermediate
field configuration which satisfies

which is the appropriate rate for a unit winding
number.

Since both V and q are given as a function of ),
the tunneling potential can be expressed as a func-
tion of q alone. Of course, the q(X) defined in
Eq. (4.6) is far from unique; we can use any func-
tion Q(X) which agrees with q at integer values.
In particular, we wish to rewrite thekinetic term
in the Lagrangian so that

2m(X)X -2M@' (4.21)

with M independent of Q. The appropriate replace-
ment is

e(x, X(t)) = cos '-
x2+ $2+ g2

C (x, X(t)) = tan '—
x

(4.15)

(4.16)

with

OO 2
d~'[m(X')I"'

{g oo

(4.22)

(4.23)

According to Eqs. (3.16) and (3.17) these config-
urations provide a path between aligned states and
carry winding number one. Although Eqs. (4.15)
and (4.16) are simply related to the Euclidean
solutions, we emphasize that X is not a time para-
meter. In particular, it is not the Euclidean time
nor an analytic continuation of it. In the %KB
approach, X labels the position along a most prob-
able escape path, which as explained earlier,
determines the main variation of the wave func-

For the explicit configurations of Eqs. (4.15) and
(4.16),. we have

(4.24)

and

(4.26)

where
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FIG. 6. The tunneling potential in winding number
space ~

g2

X2+ C2
(4.26)

The functions B~ and B are the incomplete and
complete P functions, respectively. Clearly
Q(A. =-~)=0 and Q(X=~)=+1. Equation (4.24) can
be inverted numerically to express X as a function
of Q. The tunneling potential obtained from Eqs.
(4.19) and (4.24) is shown as a function of Q in

Fig. 6. Thus we can visualize the tunneling pro-
cess as a particle of (Q-independent) mass M
penetrating the potential barrier V(Q) in winding
number space. The tunneling rate is, of course,
unchanged by the new parametrization.

C. Zero modes

In the next WKB approximation to the tunneling
amplitude, the effects of so-called zero modes
will be encountered. The next WEB approximation
consists of calculating the factor which multiplies
e 0 by including Gaussian fluctuations around an
MPEP. ' Zero modes arise when an MPEP is not
isolated but is a member of a family of paths
related by a symmetry operation. Fluctuations
which correspond to moving from one MPEP to
another in the same symmetry-related family is
not damped, and the effects of such zero-mode
fluctuations cannot be computed as Gaussian inte-
grals. For example, an instanton centered at
some other location than the origin in the g, -g,
plane corresponds to an MPEP in the same family
as the MPEP associated with an instanton centered
at the origin. The fluctuation which corresponds

to moving the instanton infinitesimally is clearly
not damped and gives' rise to a zero mode. The
treatment of these effects is now standard. ' In
this treatment, the integral over the coefficient
of the zero mode is replaced by an integral over
a collective coordinate, and a factor of group
volume results in the tunneling amplitude. In the
nonlinear o model there are four such zero modes
corresponding to the symmetry operations of
space-time translation, scaling, and rotation
around the 3 axis in spin space. Each of these
operations will have a corresponding collective
coordinate. In addition to the four symmetries
just mentioned, there are two independent rotations
which change the direction of the 3 axis in spin
space. These operations do not change a collective
'coordinate associated with the instanton, but
instead are a change in the boundary condition
Eq. (3.3) requiring s to approach (1/g)(1, 0, 0) at
infinity. The divergence of the Gaussian fluctuation
integral around an instanton which these rotations
cause would also appear in computing the Gaussian
fluctuations around the uniform background field
s=(1/g)(1, 0, 0).' As pointed out by Jevicki, ' if
one normalizes the instanton amplitude by the
vacuum persistence amplitude associated with the
classical vacuum state s = (1/g)(1, 0, 0), the result
will be finite. Of course physical quantities such
as Green's functions are not affected by this
divergence.

To summarize, we have seen that the instanton
solutions can be used to calculate the tunneling
amplitude between aligned spin configurations.
The intermediate field configurations were found,
the tunneling potential constructed, and the tunnel-
ing rate determined using the Minkowski-space
formalism discussed earlier. Although we have
given an explicit intermediate field configuration
only for a winding number change of unity, a simi-
lar treatment obtains for the multi-instanton case.

I

V. MULTIPLE VACUUMS

In this section, we take up the question of the
existence of multiple vacuums in the a model.
Let us start by reviewing the standard presentation
of the situation in gauge theory. ' In any gauge,
the winding number q can be written as the integral
of the winding number density p,

where I'„„is the usua, l field strength tensor and
~F'„„=2g„„,I",,. Further, the density p ca,n be
expressed as the formal divergence, of a current
E„given by



1222 BITAR, CHANG, GRAMMER, Azn SrACK 19

167) 2

where K, satisfies

9 K~= p,.

(5.2)

(5 3)

q = lim d'xK, (x„x)
x'4» co

—lim d'xK, (x„x),
«00

(5.4)

so that winding number can be expressed as the
difference of terms at large positive and negative
times. This allows the winding number to be
assigned to the classical vacuum configurations
themselves and leads to the multiple- or 8-vacuum
description of a, gauge theory.

Now let us investigate whether there is any way
to realize a multiple-vacuum picture in the non-
linear o model. We begin by considering the way
the value of q is built up for the q = 1 pseudopart-
icle, applying Gauss's law to the space-time
volume V between the surfaces x, = -T/2 and

x, =+T/2. The limit T-~, or equivalently V-~,
will be taken at the end. For the instanton, the
current K, is not singular or discont nuous inside
V so we have

q = lim
V» c~

p $2x = lim
V-~ V

= 11m K dz,
V» co

(5.5)

where the surface Z in the last equality includes
the spatial surfaces normal to the 1 axis at x,
= +~, as well as the constant time surfaces at
x, =+T/2. As x-~ in any direction, the spin
vector goes to the top of the unit sphere. Using
this we may obtain q on Z, which has 8-0, as

- ~ =T/22

q = 1.1m - — 81@~x
„27T ~ x2= -T/2

+g/2 +OO

+ ~24 GX2
2 7t' -2'/2 xy = -'~

(5.6)

We use the term formal divergence as a reminder
that there may be singular or discontinuous. points
in K, even when the density p is a smooth function. '
However, there exist gauges, notably the temporal
gauge, in which the time evolution is continuous,
and no singularities or discontinuities of K, need
occur. The additional assumption is usually made
that the asymptotic behavior of the gauge fields
is such that the contributions of surface at spatial
infinity can be ignored. Under these conditions,
Gauss's law gives

1
N = —lim—

X
S,~l&(x„x,)dx, . (5.7)

For the instanton solutions of winding number q,
discussed above, denoting the initial and final
values of N as ¹ and N&, the relationship

q =N~ —N; (5.8)

holds.
The topological index N defined by (5.7) and the

winding number q are logically distinct quantities.
The index is defined in terms of the curve at the
top of the sphere which specifies the spin config-
uration at asymptotic early and late times. How-
ever, the winding number q is defined in terms
of the solid angle covered on the sphere in the
tunneling process defined over all space-time.
Nevertheless, for the instanton solutions, the
two are related by Eq. (5.8).

So far everything we have said is consistent
with a multiple-vacuum interpretation. The criti-
cal questions- in deciding whether a multiple-
vacuum interpretation is really correct centers
around Eq. (5.8), which so far holds only for
pseudoparticle solutions. If, for example, N&
=+—,

' can only be reached from N,-= ——,
'

by mapping
the whole sphere once (q = 1), then there is indeed
a barrier between these two classical vacuums
and N is a valid label for distinct vacuum config-
urations. The q = 1 instanton would then only be
distinguished among all q = 1 mappings by giving
the maximal tunneling rate. On the other hand,
if N&= —,

' could be reached from N, = —2 without

which evidently expresses q in terms of the total
change in the aximuthal angle 4 in moving around
the surface Z. From the explicit formulas (3.16)
and (3.17), which give 8 and 4 for the q = 1 instan-
ton, we can easily see that the contribution on the
x, = + surfaces are negligible. This means the
winding number comes solely from the large time
surfaces, just as in the gauge theory case. On
these constant time surfaces, the motion of the
spin on the unit sphere traces out closed curves
through the north pole as x, ranges from - to
+~ (see Fig. 4). From the geometry of the curves
or using the explicit functions 8 and 4 from Eqs.
(3.16) and (3.17) in Eq. (5.6) above, we can see
that the value q = 1 comes about as —,

' from the
integral at x, = T/2 and -(--,') from the integral
at x, = T/2, i-n the limit T-~. The case of a
general value of q goes through in an entirely
analogous way.

With these results in hand, it is tempting to try
to set up a multiple-vacuum description by labeling
the classical vacuum configurations with a number
called "topological index" defined by
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mapping the sphere at all (q = 0), then vacuum con-
figurations with K=+—,

' are not separated by a
barrier and there would be no physical meaning
to the label ¹ We now proceed to show that this
latter possibility is the correct one.

Let us return to the situation described in Fig.
4. For x, = -T/2, as x, ranges from -~ to ~, the
spin vector maps out a counterclockwise curve as
shown with change in azimuthal angle 4 given by

lim~C, ———4 —,——
(

~= v, (5.9)
T Til
2

' 2i)
corresponding to N = ——,'. Similarly, for x=+T/2,
we have a clockwise curve with

T
X

2

x&=0

=0

tan(8/2) = c/(x, '+ T'/4)' ~', (5.10)

and K=+&. The q =1 instanton takes the early
time curve into the late time curve by enlarging
it, moving it down through the bottom of the
sphere and up on the other side, finally arriving
at the late time curve. However, we can trans-
form the early time curve into the late time
curve directly without ever leaving the top of the
sphere. This is clear geometrically and we can
express it analytically by parametrizing 8, 4 as
follows:

FIG. 7. The sequence of cuxves traced on the sphere
for intermediate times by Eqs. (5.10) and (5.11).

is not a "Bloch wave" in the nonlinear o model.
A final point of interest is to return to the

formula for winding number q in terms of the
current K„. Since as we have said the spin re-
mains at the top of the sphere in the limit T-~
of the process described by (5.10) and (5.11), the
transition has q=0. From (5.6) we have

~' tan'— (5.11) "1
0 = limT" 2r

" x2= T/2

We define 4 unambiguously by taking the argument
of the inverse tangent to lie between 0 and r.
These curves agree with those mapped out by the

q = 1 instanton for x, =+2 T, but for intermediate
times, remain near the top of the sphere. The
sequence of curves traced out as x, ranges from

T/2 to +T/2 is—shown in Fig. 7.
Given the specific form of 8 and 4 from Eqs.

(5.10) and (5.11), it is straightforward to apply
our previous formalism and calculate the tunneling
amplitude. We omit the details: A turns out to be
O(1/ ')Tand clearly vanishes as T -~. Physically,
this is obvious since in the limit T-~ the spin
vector remains vertically upward for all x,.
Therefore, a classical vacuum configuration of
index+ —,

' is not separated by any barrier from one
of index ——,'. Similar -arguments handle the case
of other pairs of values of initial and final indices.
Since the actual spin vectors are identical for
classical vacuums of different index and as dis-
cussed above they are not separated by a potential
barrier, it is clear that they are physically identi-
ca,l. In short, there is no evidence for multiple
vacuums here, or put another way, the vacuum

+
2r

(5.12)

The first term contributes +1 here, just as for
the q = 1 instanton. Therefore it is clear that the
spatial surface terms must be non-negligible in
this case. Using (5.11) we have

8 f= 20 for x~ =+~, (5.13)

(5.14)

and (5.12) is satisfied as

0= 1+0———T.2r
2r T

(5.15)

This example shows that the winding number q
will not always be expressible as the difference of
two asymptotic time surface integrals. Spatial
surface contributions may or may not be negligible.
The cases where they are not negligible account
for the failure of the relationship (5.8) between
index and winding number to hold in general.
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Note that no physical quantity (energy, momentum,
etc.) is involved in these nonvanishing spatial
surface terms.

To summarize, in the two-dimensional nonlinear
o model, the classical vacuum configuration with
all spins up is a physically unique configuration,
not a set of different configurations separated by
potential barriers. As mentioned in the Introduc-
tion, the notion of tunneling is nevertheless still
meaningful. A vacuum configuration may reach
another vacuum configuration through a sequence
in which the spin vector always remains near the
top of the sphere,

'

but the transition may also
involve mapping the whole sphere one or more
times. The latter processes are tunneling pro-
cesses in the true sense of the word. They have
the feature common in problems involving angular
variables that the initial and final configurations
are the same. These tunneling processes must

be understood in order to develop a quantum
theory of the o-model ground state. '

The lack of a multiple or 8 vacuum suggests a
possible difference between the nonlinear 0 model
in d = 2 and non-Abelian gauge theories in d = 4,
which are otherwise quite analogous in their
properties. Before drawing this as a hard conclu-
sion, however, it would seem worthwhile to re-
analyze carefully the assumptions made in the
usual treatment of gauge theory about the be-
havior of gauge fields at spatial infinity. We
intend to explore this question in future work.
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