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A lattice version of the Abelian Higgs model is studied in arbitrary Euclidean dimension. Two different

representations of the theory, one in terms of the Higgs and gauge fields and the other in terms of the

topological excitations, are used to understand what phases exist for the system. In addition to limiting cases

there is, in two dimensions, a plasma phase of vortex excitations. The vortices (instantons) in this phase

cause confinement (in the sense of %'ilson) of fractional, but not integer, charges. In three and more

dimensions, there is a plasma phase similar to the one in two dimensions as well as another phase which does

not confine any charge. %e argue that the confinement du to topological excitations in the plasma phase

has the same physical basis as the usual large-coupling-constant (high temperature) confinement of the lattice

gauge theory. Effects of a background field in two dimensions are also described.

I. INTRODUCTION

In this paper we will study the Abelian Higgs
model in various dimensions primarily with a view
toward understanding, at least qualitatively, what
phases may occur in the model. The physical mo-

tivations for studying this model have been dis-
cussed in Ref. 1 and will not be repeated here.

We formulate the Abelian Higgs model on a d-
dimensional, Euclidean hypercubical lattice. The
partition function (generating functional) for the

theory is

Z= 58~ j)6y j 8
r

~ ~

58p(j)5X(j)exp ted cos[4„)t(j)—8p( j)]+—g cos
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The sum over $ is a sum over all links of the lattice, and the sum over p is a sum over all elementary two-
dimensional squares, or plaquettes of the lattice. It was shown in Ref. 1 that when factors of the lattice
spacing a are properly included, (1.1) becomes the generating functional of the continuum Abelian Higgs
theory in the naive limit a-0. )((j) is the phase angle of the Higgs field and 8p(j) =aAp(j), where A„(j) be-
comes the gauge vector potential in the continuum. In (1.1) the radial degree of freedom of the Higgs field
is completely frozen.

For large P and tc (low temperatures), a very good approximation to (1.1) is'
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In this expression, unlike Eq. (1.1), to avoid infin-.
ities we must choose a gauge when integrating over
)( and 8p (this is indicated by the prime). The in-
tegers -~ & a„,b„„&~ are included in Z so that
this Lagrangian has a periodic structure like that
of (1.1). The tilde over the sum reminds us that it
is redundant to sum independently over all integer
values of a& and 5&„. As discussed in Ref. 1, one
must also "choose a gauge" for these integer
fields so that g is finite.

Using an exact duality transformation, ' the par-
tition function (1.1) can be rewritten in terms of the
topological excitations of the angles X and g„. In
Ref. I we showed that the topological excitptions of
this model in d' dimensions are closed "vortex"
surfaces of dimension d- 2, and open vortex sur-
faces of dimension d- 2 bounded by monopole sur-
faces of dimension d- 3. A similar duality trans-
formation applied to (1.1) results in an expression
which contains the same topological excitations as
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19 PHASE TRANSITIONS IN THE ABELIAN HIGGS MODEL 1199

the dual form of (1.1), and coincides with it when

P~ & &~& ~

Now the dual form of (1.1) is an exact represen-
tation of the theory. In this paper we shall use both
(1.1) [or its approximate form (1.2)) and its dual
form to understand the different phases of the theo-
ry. It turns out that a very simple picture of the
nature of the different phases emerges from a con-
sideration of the topological excitations. In some
phases the topological excitations are very large
and influential, and in others they are small and
relatively unimportant. In addition to examining
the partition function, we will discuss the expecta-
tion value I of a large electric gauge loop integral,
sometimes called the Wilson loop integral. ' The
large-distance behavior of this object is also de-
termined by the presence or absence of certain
topological excitations. We show that the asymp-
totic behavior of the gauge loop integral can also
be used to discriminate between certain phases of
the theory.

Section V contains a review of our results, but
we will briefly summarize the most important
points here. In addition to phases which are naively
associated with the limits P, a -0 or ~, we find in
two dimensions only one other phase. This is a
plasma phase of vortex points which have only
short-range interactions. The gauge loop integral
behaves like e ~ for fractional charges and e ~ for
integer charges where A is the area enclosed by
the loop and P is its perimeter. We also study the
effects of a background field in two dimensions and
find that in the presence of such a field the qualita-
tive behavior of 1- can be changed drastically.

In three or more dimensions (again, aside from
limiting cases) there are iwo phases. One phase is
characterized by a massive vector boson; the top-
ological excitations (e.g. , in three dimensions open
vortex strings with monopoles on the ends and
closed vortex loops) are small and not too import-
ant. I' -e for all charges. Another phase, a
plasma phase analogous to the phase in two dimen-
sions described above, has very large open and
closed topological excitations, and in this phase
p -e "for noninteger charges and I'-e for inte-
ger charges.

In addition to these phases, other phases exist as
limits of the coupling constants g and P. Of partic-
ular interest is the limit P -~ in which the model
becomes equivalent to theglobally invariant XY
model. 3 As we shall discuss, there is some reason
to believe that these phases also exist for large but
finite values of P.

The rest of the paper is organized as follows. In
the next section we discuss the model in two dimen-
sions. Vfe give a complete discussion of the vari-
ous limiting cases including the XY limit mentioned

above. We then argue that there is one and only one
additional phase, and we approximate the behavior
of 1 in that phase. Finally we describe what hap-
pens to the theory in the presence of a background
field. Section III deals with the model in three di-
mensions. We describe the different phases in
terms of the topological excitations and discuss the
behavior of I' in these phases. Section IV general-
izes the arguments of Sec. III to four (and more)

.dimensions. Finally, some remarks and a sum-
mary comprise Sec. V.

II. THE TWO-DIMENSIONAL CASE

A. Description of the phases in terms of the topological
excitations

In this section we will describe the phases we ex-
pect to occur for our model in two dimensions. We
shall usually deal with the periodic quadratic form
of the Abelian Higgs model. As discussed iq Ref.
1, this may be thought of as an approximation to
the full, compact theory. Both the full theory with
cosine interactions and the periodic quadratic the-
ory have the same topological singularities, and
are therefore expected to have qualitatively similar
phase transitions. Thus, our considerations should
apply equally well to both theories.

We will first discuss the model assuming perio-
dic (spherical) boundary conditions. At the end of
the section we will describe what happens when we
impose certain other boundary conditions which
correspond, in instanton language, to different 8
vacuum s.4

We begin by recalling that in two dimensions the
partition function (1.2) which is the periodic quad-
ratic form of (1.1) can be written'

Z =Z, g exp -z4v' gp(j)D(j -k;m')p(k),

(2.1)

where

Zo= 6 exp —— 2 3 2+m2 2 j

(2.2)

and D(j - k; m')-is the two-dimensional lattice
Green's function satisfying

[-a„'(j)+ m']D(j —k; m') = 5„.», (2.3)

with m2 =g/P. Zo is the partition function of a free
massive spin wave (massive scalar field). The in-
tegers (p(j)j are the vortex excitations of the orig-
inal y and g& fields and range f'rom -~ to ~. The
position vectors j refer to the sites of the dual lat-
tice. The dual lattice is obtained from the original
lattice by shifting the lattice by half a lattice spae-
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Hence the partition function (2.1) becomes

(2.4)

OO
P

Z- = (~p)"' g exp'-p(2~)'p p'(j),
75 + oo $ P(i)j= -

8., fixed

(2 5)

which is a theory of noninteracting vortices. (N is
the number of lattice sites. )

The last factor is a product of Jacobi 3 functions'
which are analytic for P &0, and so the free energy
F = (1/N) lnZ has no singularities in this limit. It is
also easy to show using (1.1) that the free energy of
the full Abelian Higgs model is analytic in this lim-
it and is proportional to lnp+clnIO(p), c being a
cons ta,nt.

As a second limiting form, consider the behavior
as jul -~ for fixed g. This limit corresponds to the
familiar KF model. ' To see this, look at Eq. (1.1).
As P -~, the only values of 8„(j) which contribute
to Z are those for which E„,=0. Hence 8&(j) can
be written as 8„(j) =h„A( j), and so the combination

y( j)—A( j) can be thought of as the angle of the ZCY

model spin. tNote that a„(y(j)—A(j)) is gauge in-
variant. j When m' =0, the Green's function
D(j —k; 0) ~ ln

~ j —k j when
~ j —k (»1. Furthermore,

a careful analysis of this limit reveals that with
spherical boundary conditions there is a neutrality
condition on the total vortici'ty: the only configura, —

tions allowed in the sum of Eq. (2.1) are those for
which Q,. p( j) =0.

It is generally accepted' that the d =2 XY model
undergoes a topological phase transition at some
temperature a =z,. Because D(j k; 0) grows log-—
arithmically and Q,.p( j) =0, the low-temperature
phase of the theory (& & &,) is dominated by a few
tightly bound vortex-antivortex pairs, in addition
to the spin waves described by Zo (with m' =0) in
Eq. (2.1). But the entropy for finding a vortex-
antivortex pair a distance r apart is also propor-
tional to lnr, and so for g less than some jt(.„ the
entropy dominates the free energy of a vortex-

ing in each direction.
To get a feeling for the possible phases of the

model, it is useful to consider various limiting
cases. Only the vortex contribution is relevant
since at finite m' the contribution from spin waves
+0 to Z is analytic . First of al l, in the very- large-
m' limit, it is easy to see explicitly that there is
only one phase. To be precise, consider & getting
large with fixed P. Expanding the lattice Green's
function in powers of (m') ', we have for the lead-
ing term

d'qe"" (i '&

D(j —k; m') =
2+p (1 —cosgp) + m

antivortex pair, and it becomes highly probable to
find pairs whose members are an arbitrarily large
distance apart. This unbinding causes certain cor-
relation functions which had been power behaved
for g &g to fall exponentially, and can be thought
of as signalling a phase transition. Note that the

I' model ha. s only a global U(1) symmetry as op-
posed to the local U(1) symmetry of the Higgs
model. This breakdown of local gauge symmetry
as m -0 will be important for distinguishing phases
of our system, as we shall discuss below.

With this picture in mind, let us now consider
the case of finite, nonzero m'. In this case we
have no strict neutrality condition Ialthough for
small rn there is some suppression of configura-
tions with g,.p( j) w0j. Furthermore,

D(j —k, m') -e I
i=& I/( m(j k ])

for large ~j —k ~, so the attractive force between
vortex-antivortex pairs is short ranged. Since the
entropy is still proportional to ln

~ j —k
~

it will be
very likely to find isolated vortices rather than
just tightly bound dipoles at any nonzero tempera-
ture for any nonzero m'. Hence, our naive expec-
tation is that the theory is always in the plasma
phase and there is no phase transition at finite
temperature. As we shall see in the next subsec-
tion, this situation is peculiar to two dimensions.

We have described the finite-m' case as well as
the limits g-~ with P fixed and P -~ with g fixed.
Now consider the infinitely massive limit P -0,
fixed. This limit generates a trivial theory. From
(1.1), we see that if P =0, the only term in the the-
ory is the Higgs interaction. But since we must
still integrate over (9„as well as g, we still have
the usual local gauge symmetry. Hence, no matter
what configuration of (y, 8„) we are given, we can
always gauge transform the theory to a state with
all )((j) =0. The theory is then a theory of nonin-
teracting gauge fields, or links g„and contains no
dynamics.

Finally, the limit g-0, P fixed describes the
pure compact gauge theory. In two dimensions this
is also a trivial theory (in the absence of external
sources) since the gauge fields have no dynamical
degrees of freedom.

Our naive expectation that the theory has no
phase transition for finite res' may have to be mod-
ified. A careful discussion requires analyzing the
large-distance behavior of the theory, i.e. , cor-
relations over distances large compared to the lat-
tice spacing. In the language of field theory, m2

plays the role of a bare mass when the theory is
defined with an ultraviolet cutoff 1/a, where a is
the lattice spacing. It is quite possible that there
is some positive value of m', m,' (which could be a
function of g) such that for m' & m,' the renormal-
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ized mass vanishes as g -0. If so, then, for m~

& m,2, the large-distance behavior of the lattice
theory will be that of a theory with m' =0, viz. the
Xp model.

We now want to give a summary of the various
phases we expect this theory to have. The discus-
sion of the next few paragraphs will be heuristic;
nevertheless, it is a good path to follow to get some
feeling for the structure of the theory. The de-
scription will be couched in terms of the behavior
of the vortices. Later we will be more specific
and compute correlation functions in the different
phases.

In Fig. 1 we have sketched what we believe is a
schematically correct phase diagram for this mod-
el. A distinct phase. of the model is defiried by a
range of the couplings P and g for which the large-
distance behavior of the theory (to be determined,
for example, by a renormalization-group calcula-
tion) is qualitatively the same. The dashed lines
are lines of constant m'. Phase I fulfills our naive
expectation for finite m, and is a phase which has
a massive spin wave as well as a plasma of vor-
tices interacting through a short-range potential.
Phases II and III are the high- and low-temperature
XF model phases, respectively. Phases IV-VI are
the trivial limiting theories described above with
VI being the pure gauge theory. It is not clear
whether these phases are only limiting cases or
whether they have finite two-dimensional support
in the diagram, although we think it more likely
that they only exist as limits. Furthermore, the
behavior of the theory at the corners of the dia-
gram is somewhat problematical and probably de-
pends on how the corner is approached. We shall
not dwell on that here.

l, o

x= /(p+i)
I

FIG. 1. Phase diagram for two dimensions (see Sec.
II for discussion).

The three interesting phases for finite, nonzero

P and g are delineated by the separatrices AB,
BC, and DB. We do not know the precise shape of
these lines, but their general features can be un-
derstood as follows: Point A. marks the critical
point of the XP' model. For P =~ and (v+1) ' &&,
the system is described by tightly bound vortex-
antivortex pairs. These pairs become effectively
unbound by the thermal motion when we raise the
temperature so that (v+1) ' &A. Now, if we make
the intervortex interaction weaker the vortex pairs
will unbind at a lower temperature. Adding a mass
to the vortex-vortex interaction certainly weakens
its large-distance effects. Therefore, for those
values of rn' and g for which we will be driven by
the renormalization group to the left-hand side of
the diagram, it follows that the larger m is the
larger & must be in order that we stay in phase III.
This accounts for the general downward slope of the
lines A.B and BC. The line BD is drawn vertically
for the following reason: Both phases I and II are
vortex plasma phases. They are distinguished by
the fact that in phase II the gauge fields are effec-
tively frozen in the large. (As. we shall see below,
this has implications for the behavior of the Wilson
loop integral. ) But this effect, naively, seems to
be controlled only by the size of p, hence BD is ex-
pected to be vertical.

These speculations could be wrong in several
ways. First, it is possible (though doubtful) that
AB is horizontal, or that point B coincides with

point A, or that point C is really at the origin.
(This could happen either smoothly or discontinu-
ously —i.e. the separatrix BC could have a discon-
tinuity at the z axis of Fig. 1.) The line DB could
alamo have a different shape; it could even collapse
onto the left axis so that phase II would only exist
for m' =0. Finally, it is also possible that phase
III exists only for ng' =0,

None of these possibilities can be ruled out with-
out doing a renormalization-group calculation for
this model (and we would not be too surprised if
some of them turned out to be correct). Neverthe-
less, there is some support for the general picture
painted in Fig. 1 from calculations done on similar
models. A self-consistent Hartree-Fock calcula-
tion for the d=2 O(n) Higgs model was carried out
by Bander and Bardeen' to leading order in 1/n.
They found two phases which roughly correspond
to the phases I and II in Fig. i. Phase III is not ex-
pected to e ist in two dimensions for the O(n) o
model with &2, so it is not surprising that it did
not appear ih their calculation. Of even more di-
rect interest is the approximate renormalization-
group calculation of Kosterlitz and Thouless' dis-
cussed also by Kadanoff. ' This calculation was
done on a version of the XF model which was mod-
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ified to incorporate a kind of local gauge symme-
try. Roughly speaking, it corresonds to taking the
periodic quadratic model (1.2) and setting all 9„=0.
The local gauge symmetry is then expressed
through the integers (a&, b&„) T.heir computation
showed very clearly the existence of two-dimen-
sional support for phases I and III, and in particu-
lar showed very nice renormalization-group flow
lines leading into the line of fixed points between
0 and A on the left-hand axis from region III. Qn
the other hand, phase II was relegated to the left-
hand axis of the diagram in their calculation. In
addition, there was some evidence for an additional
phase sitting where our phase II sits. But the na-
ture of this phase and even its existence in the
sense of having long-range behavior distinct from
phase I is in doubt. '

B. The gauge loop integral

We have qualitatively described the phases of
Fig. 1. We now want to describe the behavior of

the Wilson loop integral' (exp(iqg 9„dx")) for both
integer and fractional charges q. We have com-
puted some other physically interesting correlation
functions such as the vortex-vortex correlation
function and the Higgs-Higgs correlation function.
We will not discuss them in detail, but will refer
to them when appropriate.

In computing correlation functions of fractionally
charged objects, one must face an important tech-
nical problem. ' It is easy to see that using the
Lagrangian (1.1) and simply computing
(exp(iq $8„dx„)) will give nonsensical results. The
point is that the U(l} gauge fields must be periodic
with respect to the smallest charge in the theory.
Hence if quarks of charge, say, I/A, (A, an integer)
are introduced as external sources, the guage
fields must be able to couple to them in a U(1}-in-
variant way. This can be accomplished by defining
the unit charge to be 1/X and coupling a Higgs par-
ticle of charge A. to the gauge field. The Lagrang-
ian one uses is then

p 1
g = K ~ Cos(+~X —A, 8~) +

2
COS I 2) E~~B. . . 8 E a. . . 8 pgAp9~

One can now compute (exp(ic)8„dx„)) with this Lagrangian, where c is an integer, 0 ~ c ~X. This is the
correct way of computing an electric gauge loop of charge c/X in the presence of an integer-charged Higgs
particle, if the gauge group is U(1}.

Now, following the approach of Ref. 1 we can determine the periodic quadratic approximation to (2.6). In
any dimension it is

2 p
2 ~ (+P X P ~ural) g2 (d 2) [

Pvtxg ' ' (xg 2~lxg' ' ' tx PQ~P 0

2

(2.7a)

where 7„=—~8„, -~ & y, 7„&~, a„ takes on all integer values, and B„,takes on values ~g, g an integer, and
where certain restrictions apply to the sums over a„and 9„,. In particular, in two dimensions, we know
that the vorticity is p=&,„(s,a„+B „)sothatrestrictingB tovaluesof 4s does not change the allowed vor-
tex configurations. (This, however, is not true above two dimensions. See Sec. III.) Hence, to compute
the expectation value of a, gauge loop of charge q= c/& in the periodic quadratic approximation in any dimen-
sion we can use the Lagrangian

2

2 = — (4~/ —9p+2 FQ~) —') E~~~ . . . ~ E~ . . .~ pg4p8o+2v)lb~„p d ~
/Uter ~ ~ ~ CX 0.'~ ~ CX pO p 0 (2.7b)

and calculate (exp[i(c/A. )f9„dx„]). This is the peri-
dic quadratic approximation to the calcuIation of
(exp(ic)8„dx„)) using (2.6) with K = K and p = p/y'.

Consider now (2.6) and suppose we compute the
discrete form of Wilson's loop integral

I', -=(exp(ic $8„dx„))

58qby exp( C + i g 8q qq (,

where the loop integral covers an area large with
respect to the lattice spacing squared. Here, q„
is the "tangent vector" along the gauge loop. We

have absorbed the charge into its definition sd its
nonzero components have magnitude c. Because
the gauge loop is closed, we have ~„q„=0. Sup-
pose P, g &1. We can then expand e~ in powers of
p and z. If c =nA. (for integer n), it is clear that as
the gauge loop gets very large the leading contribu-
tion to I", will be a term of order (g)~ where P is
the perimeter of the gauge loop. This indicates a
relatively weak long-ranged force between the
"integer-charged quarks" represented by the ex-
ternal sources in this computation. Their charge
is completely screened by the Higgs particles in
the vacuum with which they form neutral bound
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states. This can be seen graphically by noting that
the terms in this high-temperature expansion
which give this leading contribution just corres-
pond to stringing factors of cos(b&)( —Ag„) along
the perimeter of the gauge loop. Suppose now that

In this case i.t is easy to see that the coef-
ficient of (g) is zero (being proportional to factors
like j'd8„e'"~j, n a nonzero integer). The leading
term in the limit of large gauge loops comes in-
stead from terms proportional to P, and is of order
(P)'", where A is the area enclosed by the gauge
loop. In this case the Higgs particle cannot com-
pletely screen the charge of the external quark.
To get a nonzero contribution to I', we must fill up
the interior of the gauge loop with gA. factors of
cosF„„. This generates a linear potential between

the quarks and gives us the area-law behavior

Ac 1nPJI', -e"""~, q'= —4 integer . (2.8)

(Note the dependence on the charge of the quark c.)
It is now instructive to compute the same quantity

in a manner which displays explicitly the influence
of the vortices. For that purpose it is convenient
to use (2.7). As we mentioned before, this is a
good low-temperature approximation to (2.6) and in

addition is expected to have features which cor-
rectly represent the qualitative behavior of the the-
ory [If. we computed I' using (2.6), the results
would agree with what follows at the quadratic lev-
el. ] Using (2.7b) we have

I', =
Z p 6X6~„exp p~- 2 (&,X-~,+2«)'- —(~„.~,8.+»B)' ~+iKq,a, , (2.9)

ap, B

where we have rescaled the gauge field so that now the nonzero components of q& have magnitude c/A, . B
takes on values which are integer multiples of A. and a„ takes on all integer values. Since (2.9) is Gaussian,
the integrations can easily be performed. Itis simplest to work in the gauge X =0 and to shift 9„-9„+2ma„
before integrating. Then one obtains

1 1I" = — exp —g [iq„(j)—2v(8e„„s„p(j)]D„,(j—k; m')
& (a~, a)

|t'

[ip„.(k) —2mpe„e„.a„lp(k)] ) ezpi Q [2wiq„(j )a,(j)—2W'pij(j)']
) jj

(2.10)

where the vorticity p( j) =B(j)+ e&„S&a„(j) and D„„ is the two-dimensional Green s function

~u &.~D„„(j k; m') =
~

5»—- ', '
~D(j- k; m') = (-6'+ m )D(j —k; m') = 5,». (2.11)

This expression can be simplified by noting that the gradient terms do not contribute. After some algebra
and summation by parts, we find

1 1I' = —exp ——g q„(j)q,(k)D( j—k; m')

(2.13)

x Q exp
i

—g D(j- k; m') f2v'xp( j)p(k) —2viqp(j )[m'a„(k)+ c„„h)(B(k)])
~

~ . (2 12)

Since g„q, =0, we may write q, as a curl, q, = e,„a„g, where Q is a scalar associated with sites of the dual
lattice. It is equal to c/y for each plaquette enclosed by the gauge loop and zero elsewhere. The last term
may equally well be written in terms of Q after summation by parts (Stokes's theorem) q„(j)a,(k)- q(j)s„,~„a„(k). Thus (2.12) may also be written as a summation over the area enclosed by the gauge loop

1 1I' = —exp ——Q q„(j)q„(k)D(j—k; m')
g

I
2p

x P exp(-Pa(j —p;m'){pe'xp(j)p(p) — i(m' p(ej) , (j„(ee)+aaep(j) ae()( ))a))ep. p
(a~, af

To understand qualitatively the behavior of (2.13), consider m' to be large, so D(j —k; m') -(1/m')6».
Then we can write

1 1
P = —exP ——P P (j)' P exP(- P(Pe'PP(j)' —Pel(j(j)ee„aea(j)])

le (a„,a
(2.14)
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The first factor. is simple,

exp ——Qq„(j)' =exp ——Q [s„Q(j))'1 ~ 1

2K

where p is the length of the perimeter of the gauge
loop. Now, in the limit we are considering, there
is no interaction between lattice sites, so

1 2 Q ~ exp(-2w~Pp —2wiqp)
2g +~ex p(- 2w'Pp')

(2.15)

where A is the area enclosed by the loop. Note,
however, that if q is an integer, then there is no

area term so that in?' is proportional to the perim-
eter.

The area law for noninteger charges means that
there is a long-range linear potential (modulo log-
arithms), i.e., arbitrary charges are not complete-
ly screened. In this sense, there is no Higgs phe-
nomenon for fractional charge. On the other hand,
this is precisely due to the vortices of the Higgs
field, since, if we set a,( j) =0 in (2.13), for ex-
ample, we would get a perimeter law for any q„
(for nonzero m'). [Note, though, that eliminating
the a,( j) is not the same as eliminating the com-
plete Higgs field which occurs in the limit z-0, P
finite. See below. ] If, however, the external
charge is an integer multiple of the Higgs charge,
then we find a perimeter law even in the presence
of vortices.

This discussion closely parallels the calculation
of Callan, Dashen, and Gross" for the continuum
Abelian Higgs model. But these results also agree
with those of the high-temperature expansion [cf.
(2.8)]. Here then is a specific example of a case
in which strong-coupling lattice confinement has
the same physical origin as confinement by instan-
tons in the continuum. Both follow from the com-
pact nature of the symmetry.

Next, we would like to examine the behavior of
I', in the limits where z or i) approach zero or in-
finity. Consider first the limit corresponding to
the Xk model, P -~, g finite. This limit is easily
implemented in (2.12) where we see that as P -~,
I', -1 independent of z. We do not even have any
residual perimeter effects. This is understand-
able; as Ig -~, the gauge fields are frozen and we
can write g„=b.„A. Hence, jg„dz&=0. [Note that
there is no contradiction with the existence of vor-

tices in this limit; the physical (and gauge invari-
ant) XF spin angle is )t —A, not just A. ] This naive
limiting behavior of I', may well be modified if we
actually do a renormalization-group analysis and
if phases II and/or III exist for finite P as in Fig. 1.
The precise behavior of I', depends on the behavior
of P,«-(1.), the running coupling constant as a func-
tion of distance, but I', is not expected to fall as
strongly as e . This qualitatively different be-
havior of I', can be used to distinguish phases II
and III from phase I; in particular it discriminates
between the two plasma phases I and II.

The pure gauge theory limit &-0, P finite is also
simple to analyze. The behavior of I, can be de-
duced from (2.9) [or from (2.6)] with the result
that I', -e " for any q. Qf course this confinement
has nothing to do with compactness of the gauge
group or with vortices. It is simply due to the fact
that the Coulomb potential in one space dimension
is linear. Finally, we can consider the two m-~
limits. For g ~, P fixed, the leading behavior of
I', is given by (2.15), while for i) -0, z fixed, I',
-0 for poninteger q.

C. The background field

Experience with the Schwinger model" and the
continuum Abelian Higgs model" suggests that, in
two dimensions, there are different, orthogonal
universes corresponding to different constant back-
ground fields. (These are referred to as different
8 vacuums. ) To realize this possibility in our lat-
tice formulation, we must depart from spherical
bounda. ry conditions to allow for cha.nges of phase
as the lattice is traversed. To this end, we sup-
pose our lattice is a square plane and we choose
"free" boundary conditions; that is, we will inte-
grate independently over all the variables (9„on the
boundary of our lattice.

To induce a background field, we place an ex-
ternal current J„around the boundary of the lat-
tice. Choose a closed current loop of magnitude
zo. The partition function for this system can be
derived by beginning with the usual Lagrangian
[say, (2.7)] and adding the term iQ J„g„At this.
point it is clear that, just as in the calculation of
the Wilson gauge loop, zo must be restricted to a
value c/X, with c an integer, in order to retain
consistently the U(1) character of the gauge group.
With this in mind, we may use (2.10) to Fourier
expand Z and derive the partition function in terms
of the vortices. Choose the gauge X = 0. We then
have

I

Z= 5lq5zgq exp ——
lq i~+(iq g+a2p)w-——z +iz(e~„hing, +2wB)+izaak„hing, (2.16)
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+i2n'zp —i27rzo p (2.17)

As in the calculation of the Wilson loop integral,
the extra g„ term in (2.17) will give rise to a vor-
tex-independent term, proportional to the perim-
eter of the space, in the free energy, which will
cancel in the calculation of correlation functions.
Aside from this term we see that we have a con-
stant background magnetic field zo coupled to the
vortices, which corresponds to a 0+0 vacuum.
This derivation clearly shows that spherical bound-
ary conditions imply a 9 =0 vacuum.

To help understand the effect of the background
field on the physics we can compute I', with these
boundary conditions. The calculation is analogous
to that leading to (2.15), and we find (in phase I of
Fig. 1)

1+2e '+Bcos27T(z, +Q) "
oc

1+2e ' 'cos2mz, (2.18)

For values of Q such that cos2z(zo+Q) &cos2wz„
I', falls exponentially with increasing area, and we
have confinement. For values of Q such that
cos2z(zo+ Q) =cos2zzo, perimeter terms will dom-
inate and we have freedom. If Q is such that

i

cos2m(z, + Q) &cos2wz„ I', grows exponentially with

A, the quarks are forced to the edge of space, and

we have exile. The situation is summarized in Fig.
2. Freedom is evidently a rather special condition.

where we have used Stokes's theorem to reexpress
the last term.

After integrating over {8„)and {I„)we can write
(2.16) as

1Z =~ dz exp ~ ——(e,S„z—J ) ' ——z '
(~)

1——A +i2n J~A),
pp X

=Zo g exp g —4v'aJ„(j)D»(j —k; m')J, (k)
fJ) )

(3.1)

D„„ is the three-dimensional lattice Green's func-
tion defined by

D„„(j—k; m') -=5„,— "z " D(j - k; m'),m'

with (3.2)

(-a„'+m')D(j —k; m') = 5„
and m' = z/P. This form was derived from (1.2) by
choosing the gauge y =0. The J~ are associated
with the links of the dual lattice and represent the
vortex strings of our model. The sum runs over
all possible configurations of currents whose com-
ponents are integer valued. Some of these config-
urations have Q —= Azjz wO, which may be inter-
preted as a monopole density. ' Point monopoles
exist because the gauge fields are compact. "~
Thus, the topological excitations in three dimen-
sions are closed vortex rings and vortex strings
which end on monopoles.

III. THREE DIMENSIONS

In three (and greater) dimensions qualitatively
new features appear which are absent in two di-
mensions. We begin our discussion by considering
the theory with charge X =1. (The theory with A, & I
is quite similar, although there is one additional
complication. This will be discussed fully below. )

Recall the dual form of (1.2) in three dimensions'
(we assume spherical boundary conditions)

oo

Z= 6A), exp Q l-
4 (e,pqApAq)'4 apX p

I =z
I

A. Description of the phases in terms of the topological
excitations

I

I

0
----- Confinement+ Exile '=

li

Freedom
Freedom

Confinement

I g
1.0

= Exile I

Freedom
Freedom

FIG. 2. Behavior of Wilson's correlation function of
two dimensions in the presence of a background field
[see Eq. (2.18)].

Suppose that m' is finite and let us examine the
behavior of the system as a function of &. Since
D((j —k) m') ~e-~Is-&I for

I j—kl+ 1, we may, for
this discussion, approximate D by retaining only
its diagonal term. Let us suppose also that the
temperature of the system is low enough that we
may neglect values of l J„l~ 2. In that case the sum
over {Zzj in (3.1) may be thought of as a sum over
closed vortex strings and open- strings ending on

monopoles. [When there is a significant probability
of strings overlapping (i.e. , l J„lo 2) a sum over all
possible string configurations is not the same as
the sum over {Z~).] Now, when m'=~, the parti-
tion function (3.1) is trivial and there is clearly no
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phase transition. But when m' is finite there are
nontrivial interactions (for example, from the

h&J& term} and hence the possibility of a phase
transition. To understand what to expect qualita-
tively, we note that we may associate a pseudoen-

factor, it is

6;= [4w'gD(0; m') —p, )L+O(lnL),

closed loops (3.4a)

6 = [4w'gD(0; m') —g]L —8v PD(0; m')+O(lnL),

4w'~D(0, m')L (3.3a)
open strings. (3.4b)

with a closed vortex loop of total length L, and

4m2~D(0; m')(L+2/m') (3.3b}

with an open string of length L, which ends on mono-
poles. We now ask whether it is likely or unlikely
to find a closed or an open string of a given length
in the system. The entropy for such an object is
just the logarithm of the number of different pos-
sible configurations. For an open string one end
of which is fixed at some point in the (dual) lattice,
this is just the number of nonrepeating random
walks of length L. By nonrepeating we mean that
once a link has been traversed it must. not be
stepped along again. Note that this is somewhat
less restrictive than .a self-avoiding walk —we al-
low a site of the dual lattice which has previously
been stepped on to be stepped on again, but the
traveler must proceed in a hitherto unexplored di-
rection. " For a closed loop of given length, fixing
some point of the circumference, the number of
configurations is equal to the number of nonrepeat-
ing random walks which return to this point. Un-
fortunately, very little seems to be known about
nonrepeating walks. However, the very closely re-
lated problems of self-avoiding and closed self-
avoiding walks have been much studied. Since for
large I. the leading behavior of nonrepeating and
self-avoiding walks is likely to be similar, we will
use results on the latter as a guide in what follows.

The number of possible self-avoiding random
walks of L steps is known to behave like p,~f, (L),
where [f,(L)]' ~ -1 as L-~." p, and f, both de-
pend on dimension and lattice type. The number of
possible self-avoiding random walks of length L,

which return to the origin has the behavior g,~f, (L)
where again [f,(L)]~~ -1 as L-~." (Domb" con-
jectures that f, (L) [f,(L)] is power behaved with a
positive [negative) exponent as L-~.) For a fixed
number of dimensions and lattice type it can be
proved that p, , = p, ." [For a three-dimensional
simple cubic lattice, p, (=g, ) has been estimated
to be 4.6826."] From these results it is quite
likely that the leading behavior for the number of
nonrepeating walks and closed nonrepeating walks
is the same: e '""' "" 'with p being close to the
self-avoiding value. The lnL, corrections should
differ for open and closed walks.

We can now calculate the free energy for open
and closed strings of length L;. Up to an overall

I.O Pic&'AVVXXXVV%XXXVXXXXXXXXXXXXX%%AX~~~~
0 y I(,I

/

I

Q
0 LM'AXMXYA'AM&'AM'A'AVXAM'AM'WM. t

I.OkM.M.&%MAM.M.M.MMMM'A'AX MMMM:A3

C E

FIG. 3. Phase diagram for three and higher dimen-
sions. (See Secs. III and IV for discussion. )

For g large (low temperature), 7 has its mini-
mum at L =0. For small enough g (high tempera-
tures), the minimum of 5 occurs at L, =~. The
transition takes place suddenly at a temperature
determined by p, =4m'g+(0; m'). This is a new

phase transition at finite m' which does not occur
in two dimensions. Physically, the low-tempera-
ture phase described here consists of massive spin
waves [Zo in (3.1)], and, in addition, small vortex
rings and elementary dumbbells, i.e. , monopole-
antimonopole pairs with one (or a few) vortex links
joining them. Larger topological structures have
an exponentially smaller probability of existing.
At some z=&„ the entropy term in (3.4) dominates,
and it suddenly becomes likely to have arbitrarily
large vortex rings and strings, Note that because
of the result p, , = p,„ the transition temperature is
the same for both open and closed strings. This
transition is similar to the vortex dissociation
transition of the 4=2 XY model. However, in two
dimensions for large enough m' (more precisely,
in the region of phase 1, Fig. 1) only the analog of
the high-temperature phase exists. The low-tem-
perature phase is absent.

In Fig. 3 we plot the expected phase structure for
this model. Phases I through VI are analogous to
the phases with the same numbers in Fig. 1 for the
&=2 case. The new phase described above is phase
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VII. Notice that the relative numbers of small vor-
tex loops to elementary dumbbells in thisphasede-
creases as m' is increased for fixed a Lsee (3.3)].
Phases II and III correspond to the high- and low-
temperature phases of the d =3 &F model. In phase
III we expect to find massless spin waves plus
small vortex loops. Phase II is characterized by
massless spin waves plus arbitrarily large vortex
loops. Note that in the limit P -~ there are no
monopoles. An estimate for the position of the
critical line AB may be obtained using a formula
analogous to (3.4). The long-range interactions be-
tween the vortex string bits in the ~-y phase [i.e.
the fact that D(j —k; 0) -I/~j - k ~] contributes an
additional power-behaved term to the energy. of a
vortex loop of length L which is proportional to L".
But r is expected to be less than one" 2nd so, in
the context of our crude approximation, will not
affect the- value of g, . For this reason B is a quad-
racritical point. (As usua'I, this naive picture may
be refined by a more careful renormalization-
group analysis. It could happen, for example, that
B is actually split into two tricritical points with
the left terminus of the line BE displaced above the
right terminus of AB, and resting on the line BD.)
As in two dimensions, the m' =~ phases IV and V
are trivial. Phase VI is again a pure compact
gauge theory phase, but in three dimensions it is
not trivial. In this phase"'" "the topological ex-
citations are free monopoles without strings.
From (3.2'I, we see that as g decreases for fixed

P, strings cost less and less energy to make rela-
tive to monopoles. Ultimately, in the limit that z

-0, the vacuum becomes filled with strings and
the only excitations we see are the monopoles. Re-
member, though, that as in two dimensions, this
is a singular limit of (3.2) and requires an extra
gauge choice in the integral of (3.1).

B. The gauge loop integral

We now compute the behavior of fractional- and
integer-charged gauge loops in this model. The
comments made in the last section about the qual-
itative similarity of the periodic quadratic and full
compact theories apply here as well. Moreover,
to compute fractionally charged gauge loops, it is
again important to work with the Higgs theory with
X &1. Let us first compute I, using the three-di-
mensional version of (2.6). For j(:,P small enough
and j(/P sufficiently large, we will be in phase I.
Using a high-temperature expansion as in Sec. II,
we will have I', -e for c & A. and 1 ~ -e, where
A is the minimum area enclosed by the gauge
loop, and P is its perimeter. Thus, as in two di-
mensions, we have confinement for fractional
charges (c/A, ) and freedom for integer charges. In
the limit & =0, we have the pure gauge theory
(phase VI), and, as discussed elsewhere" ", c'on-

finement for all charges.
To understand these results in terms of the top-

ological excitations, and to compute I', when g and

P are not very small, it is useful to use the dual
form of the partition function. %'e start with the
periodic quadratic form (2.7b). In three dimen-
sions we have

1

I ()o

I', =
g Q 5l(58„exp Q —

2
(b,„)t—8~+2va„)'-

4 (e„„),ajar, j)ip8, +2mB„„)' i gq„8„, (3.5)
apQp~

where g„ takes on integer values, B„„takes on values which are integer multiples of A. , and the tangent vec-
tor q„ is defined as in the two-dimensional case. Its nonzero components have the value c/A. . It will sim-
plify the tensor algebra to define B~ by B„,= e„zB~. The Gaussian integral may be evaluated as before,
leading to an expression analogous to (2.10),

I', = ' P ex)rI—P(rrr(jl-2x(lx rxXrJr(j)1D„(j—k„;rx*)(ir)„(j)— (l rJ, (jx)7rIrrr„,
ap, Bp

xexp ~ 2m'iq, j a, j - 2z'PJ, j (3.6)

where we define the topological current J~ =- B~+&„„,~„a,. The Green's function D„„ is defined by the ob-
vious extension to three dimensions of Eq. (2.11). Since the current J~ is not divergence free, the gradient
terms in D&„must be retained. Bearing this in mind, we arrive at an expression similar to (2.12),

I",= exp ——P D(j —k; m')q, ( j)q,(k) g exp 2' 2& g J„(j)D-„,(j —k; m')J, (k)Zo 1

L (a~,a )

x exp -2mi q& j m a& k' + e&& 6&B, k D j—k; m (3.7)
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Before proceeding with the evaluation of (3.7), it
is appropriate to mention the differences between
the three-dimensional Higgs theory with g =1 and

the theory with p &1. The partition function is ob-
,tained from the numerator (3.7) by setting all q~ to
zero. The resulting expression has in addition to
the factor Z„ the usual (quadratic) factor describ-
ing the interactions of the topological singularities.
The only difference is that since B„, is an integer
multiple of ~, B„is g times the corresponding B„
in the A, =1 system. Since ~„J„=a„B„, it is clear
that the monopoles in the X &1 theory have a charge
X relative to the possible values of flux (all inte-
gers) contained in the full current. Hence, the ba-
sic topol. ogical excitations in this case are closed
vortex rings of (any) integer vorticity and open
vortex strings whose flux is an integer multiple of
~ and which terminate on monopoles whose charge
is an integer multiple of A. .

Now, at the level of discussion associated with

Eq. (3.4), we might expect to have an extra phase
when ~ &1. The reasoning would be that since a
minimum flux of ~ is required to produce an open
string, Eq. (3.4b) becomes modified to read

F, =4]T'A.'eD(0; m') —pL —8v']).'PD(0; rn')+O(lnL),

while (3.4a) remains the same. Thus the transition
to large open strings would seem to occur at a
higher temperature than the transition to large
closed strings. One might therefore expect an in-
termediate phase, lying between regions I and VII
in Fig. 3 which would have arbitrarily large closed
strings but small open strings. Such a phase would
be distinguished from phase I by the fact that the
only important contributions to Z would. be those in
which one had a local balance of monopole charge.

That such a phase is not likely to exist may be
understood by remembering that all the flux from
the monopole need not pass along a single dual lat-
tice link. At any temperature where large strings
of a single flux are likely, configurations such as
those. of Fig. 4 will allow monopole-antimonopole
pairs to become widely separated with good proba-
bility. Such a configuration may be viewed as a
superposition of a single open string of flux ~ and
~ —1 closed strings of flux one. This configuration
has a lower free energy (as well as a lower energy)
than would a single string of flux A. joining the same
monopole-antimonopole pair. While this argument

FIG. 4. Typical favored configuration of vortex lines
between widely separated monopoles of charge A, (in
this case X= 7) in phase I in three dimensions.

seems quite convincing, only a renormalization-
group calculation can aecide the issue definitively.
One should therefore bear in mind the possibility,
however unlikely, of an intermediate phase be-
tween I and VII of Fig. 3.

Now let us return to a discussion of Eq. (3.7).
Consider the term in the exponent involving

q, ( j)q„(k). Since, for finite m', D(j —k; m') is
short ranged, this term contributes to lnl a piece
proportional to the perimeter. Consequently, if
we neglect topological excitations, we find lnI'
Qp: length of loop for all values of q= c/A. . To include
the effects of the topological excitations, it is use-
ful to first use Stokes's theorem to rewrite the last
term in the expression for I . To this end, we note
that, since ~zq~ = 0, we may write q„as a curl,

~X])v+])@p ~

where f]), is a vector associated with links of the
dual lattice. Choose a surface bounded by the
gauge loop. Then we may think of Q, as a vector
normal to each elementary plaquette of this sur-
face. Its value, like the components of q)„ is c/]). .
(To all other plaquettes, we may assign Q, =O. ) In
the last term of Eq. (3.7), we may sum by parts
and make the replacement

q„(j)a,(k) -Q), ( j)e),„,a„a,(k),

q„(j)c„p,spa, (k) —lIl~( j)ja~[n„B„(k)]—a'B), (k)) .
As before, it is useful to consider the behavior

of I', for m' large. Then (3.7) may be written as

)', = ' xxp ——Pp,(])' P expI-Q [2 'xppxj])'+2 ixQ (x]1 p'„"(j)]
I,

(3.8)

where J„"=—e„„~~,az.
Let us recall the interpretation of the topo)ogical

excitations represented by J&. The contribution
due to e~„,~„a, describes closed vortex loops car-

rying (arbitrary) integer flux. The contribution due
to B~ may be thought of as links between vertices
of the dual lattice where there may or may not be
located monopoles (depending on whether 7 ~ B x0
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or g ~ B =0 at that vertex). The flux associated
with each B~ is an integral multiple of ~. Thus,
the last term in (3.8) measures the net "closed
loop" flux which passes through a surface enclosed
by the gauge loop. Note that this quantity is invari-
ant under a change in the definition of the surface
on which Q), a0. [Notice also that fk]z( j)J(~ '( j)
= gz( j)&z(j) is always an integer, so, in fact, we
may write Q~(j)J'(j) =Q„(j)J(j) in (3.8).j

Now, although (3.8) resembles the two-dimen-
sional result (2.14), it is more difficult to esti-
mate, particularly when P is not large. We can,
however, argue qualitatively as follows. Suppose
we are in the Higgs phase, phase VII of Fig. 3. In
this phase, the flux loops are small. To obtain a
nonzero (and nonintegral} contribution to

Q fk]&( j}J(&')(j), we need a flux loop which encircles
the gauge loop like the links of a chain. Since we
have in this phase only small loops, they will con-
tribute to a perimeter effect in the limit of very
largeI'. Consequently, in phase VII, we always
will get a perimeter lam for lnI".

Now suppose me are in phase I. Since vortex
loops can have arbitrary size, it mill be highly
probable to find vortex loops which penetrate any
element of the surface on which [k]„XO but which
still encircle the perimeter of the gauge loop.

This will clearly give rise to an area-1am behavior
for noninteger q. To see this heuristically, we ap-
proximate phase I as a phase of essentially un-
coupled vortex string bits. (This is certainly not
a very good approximation but has the essential
feature me want. It is probably not difficult to pro-
duce a better, but still tractable approximation. )
If we ignore the terms which contribute perimeter
effects, then the evaluation of (3.8) leads to a form
like (2.15) and we have an area law for noninteger
q„. When q„ is an integer, the last term in (3.8)
has no effect, and the perimeter terms dominate
in the exponent. Thus the different large-distance
behaviors of I", for noninteger q can be used to
discriminate between phase VII and phase I. No-
tice that the monopoles played no essential role in
the preceding argument. (Paradoxically, it is
evidently the monopoles mhich cause confinement
in the pure compact gauge theory in three dimen-
sions. " We comment on this below. )

We nom wish to consider the m' =0 limits of
(3.7). This will put us in phases II or III (XY mod-
el), or VI (pure gauge theory) depending on how
the limit is taken. Consider first the limit P -~,
g fixed (XY model limit). It is useful to rewrite
the expression (3.7):

Z ' II', = [] exp ——,g q,(j)q,(k)D(j —k; m')
I~II

x g expI-2rr' Y [ (j)xq(r)+qe2p(ej) eqr( 0)]0(2j —D2; m')
fgpoBp

—(2eY 0 Q(j)D( j—k; m')Z $(k)+D(m )}. (3.9)

The last term O(m') in (3.9) disappears in any m' -0 limit and may be ignored. From this expression it
is clear that when p-~ we obtain a nonzero contribution to I'„(or Z) only if 6 B =Z J =0. This is just the
statement that there are no monopoles in the d= 3 XY model. Hence, the numerator of (3.9) becomes inde-
pendent of Qz and F, -l for all q. As in two dimensions, this is a reflection of the fact that when p -~ the
noninteger part of I„, is frozen so that 8„=A„A.

Next, consider the limit &-0, P fixed, the pure gauge theory. In this limit the expression (3.7) is not
defined, since the Higgs field disappears from the problem. Ãe must go back to (3.5) and make an addi-
tional gauge choice to render I', finite. This is easily done, and we find

I', = ' exp ——
P q(j le(k)D(j —k;0) g exp —2x+D(j —2;0)[ekm(k)m(j)+(Z Q(j)m(k)]}, (2 20)

where m(j) —=Z B(j)=Z J(j) is the monopole den-
sity. This expression has been discussed by
Polyakov. " According to his analysis, we have in
this limit I', -e " for all finite p and for both inte-
gral and nonintegral q. This result is due to the
monopoles, which do exist in this limit, interacting
with the scalar g Q according to the expression
(3.10). Note in particular that D( j- k; 0) is power
behaved, so that the effect of monopoles through
the mhole space is important for the confinement.

Nom, as we remarked above, this limit is rather
singular, since, when g=0, the Higgs term in the
Lagrangian disappears. But it is precisely this
term which gives rise to J ~z' and which is there-
fore .responsible for the confinement of fractional
charge in phase I. Furthermore, 'in the pure gauge
theory I",-e ~ even for integer charge, a resul+
which is clearly associated with the complete dis-
appearance of the Higgs coupling, since for any
nonvanishing g, no matter how small, I', -(g)~,
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according to the high-temperature expansion.
Nevertheless, we can get some additional insight
into the structure of the pure gauge theory vacuum

by the following heuristic reasoning: as g decreas-
es for fixed P, it becomes easier and easier to
make both closed and open vortex strings. This is
because the oscillations of the Higgs field are, less
damped. ISee e.g. (3.9}.] But the easier it be-
comes to produce vortex strings, the faster I", will
decrease, since there will be larger and larger
fluctuations in the amount of vortex penetration
through the gauge loop. In the limit g =0, we can
therefore think of the vacuum as a state which is
filled with vortex strings which cost no energy to
produce, and which cause confinement so that I',
-e ". The shortcoming& of this description are
evident, arid the reader is cautioned to bear them
in mind.

Z =Z, g exp »'~ J„-(j}J„(k)
f&p~ &p)

+ . q,(~)q,(I).v(, -', - )I, (4.1)

where Qp
——g Jp and D is the four-dimensional lat-

tice Green's function. As usual, Z, is the partition
function for a massive spin wave. The topological
current density is

Jp() = e pauv(Buv+ hu av Av au) . (4.2)

In the theory with a Higgs particle of charge A. , 8„,
takes on integer multiple values of A, , while a„
takes on all integer values. [Bu„and au are simply
the generalization to four dimensions of the quanti-
ties appearing in Eq. (3.5).j Recal'I the interpreta-
tion' of the topological excitations described by Jp
as closed two-dimensional manifolds and open
manifolds bounded by monopole current loops of
density Q . These closed and open surfaces are
obvious generalizations of the closed and open
strings existing in three dimensions.

The limiting cases, nz -0, ~, in four dimen-
sions are straightforward generalizations of the
corresponding cases in three dimensions except
that, in the limit x- 0, two pure gauge theory
phases are expected, depending on (3. In one phase

IV. FOUR (AND GREATER) DIMENSIONS

The phase diagram in four and more dimensions
is quite similar to Fig. 3, the diagram in three di-
mensions, but the topological excitations which in-
duce the phase transitions are somewhat different.
In four dimensions, the dual form of the partition
function in the periodic quadratic approximation
was given in Ref. 1, Eq. (47). After performing
the Gaussian integration on this expression, one
obtains

N(A+1) =N(A)+P(A), (4.3)

where p(A) is the average perimeter for an open
surface of total area A. It is obvious that p(A)
does not decrease as A increases, so that p(A)
o c &1. Using this in (4.3) we conclude that N(A)
~ e'". Since N(A) is bounded from above and be-
low by an exponential (modulo powers), its leading
behavior is exponential. As in three dimensions,
restriction to closed or open surfaces is not ex-
pected to significantly affect the leading behavior
of N(A}.

The arguments for phase transitions at finite m
now follow those of the last section, balancing en-
tropy and energy and looking for a minimum of the
free energy as a function of A. In region VII we
expect to find only very small closed or open sur-
faces, in addition to massive spin waves. Phase I
will contain arbitrarily large closed and open sur-
faces plus the ubiquitous spin waves. From argu-
ments analogous to those of Sec. III, we do not ex-
pect any intermediate between I and VII.. The other
phases also have properties which are direct gen-
eralizations from three dimensions. Moreover, it
ig clear that this pattern of generalization continues
for d&4.

We can now study the behavior of the gauge loop

the free energy is minimal when the closed topolog-
ical strings of the d =4 gauge theory are very small
and in the other phase when they are very large.

For finite m', we expect phases analogous to the
phases VII and I of Fig. 3. To see this, we need to
argue that the number of closed or open two-di-
mensional surfaces of total area 3 has for large
A the leading behavior e"". Consider, for in-
stance, open connected surfaces. Draw a link from
the center of a plaquette to one of its neighbors.
Continuing in this way it is possible to associate a
connected path with the surface. Sometimes the
path will be a single linear chain and sometimes it
will have branches. Moreover, it is clear that in
general there will be many such paths associated
with a given surface. On the other hand, up to
overall orientations, there is only one two-dimen-
sional surface associated with each connected
path, by the above construction. Now, the number
of configurations of a random walk of I. steps with

q branches is of order e" (modulo powers of L)
Assuming that summing over the number of
branches does not change this leading behavior
(except, perhaps, to change the value of p, ) we con-
clude that the number of configurations of open
surfaces with area A, N(A), does not grow faster
than eu" for large A (modulo powers of A). To get
a lower bound on N(A), we consider adding a single
plaquette to configurations whose area is A. with
A»1. Then N(A+1) is
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integral I",. First we note that for finite ys' and
very small, I', -e " for noninteger q and 1', -e
for integer q, just as in three dimensions. As be-
fore, this result follows from a high-temperature

expansion using the four-dimensional version of
(1.1). Next, we express I', in terms of the topo-
logical excitations. We start with the periodic
Gaussian approximation

(4.4)I', = — 5y58„exp ——(aq)i —8„+2va„) —
4 (2 cq, g, q e8 q p hp8 +2mB„„)' +i q„8„

& u&I. &

where B„„= B„„-, an integral multiple of A. , and q„, as before, is a "tangent vector" of magnitude c/A. .
Proceeding with the integration in a manner analogous to the discussions in two and three dimensions, we
find [cf. (3.7)]

I" = exp ——~D(j -k;m )q(j)q(k)Zp
Z g2p~

I

exp -iIv2 g J'„„(j)'+2m'p g D(j —k; m')b, &J&,(j)b,„J&„(k)
~~v'~Pe ~

~f

x exp 2'-g q„(j)[m'a, (k)+ A„B„„(k)]D(j—k; m')

where J„„=B„„+A—„a„-A„a&. As before, for finite m', the leading piece of the first exponent [involving
q„(k)q„(j)) is proportional to the length of the gauge loop. The last exponent may be written as an integral
over the area enclosed by the loop. Define an antisymmetric tensor Q„by q„= e„~„b,~Q,„. Then in the
last term in (4.5) we may sum by parts and make the replacement

(4 5)

q„(j)[m'a„(k)+ a„B„„(k)]- Q„(j)e«~„s~[m'a„(k)+ A„B»(k)] .
As in the discussion of the three-dimensional case, it is useful to consider the large-m limit, where we
find

I', = ' exp —— q„(j)' exp pv' g-J„„(j)' exp 2vi +Q„(j)e„~„A~a„(j)

Now the last exponent represents the net in'tersection of closed topological surfaces with the gauge loop.
Analogous to the three-dimensional case, these surfaces contribute at most a perimeter effect except in
those phases where surfaces of arbitrarily large extent are likely. Thus, in phase VII (the Higgs phase
where topological excitations are small), we expect I', -e . However, in phase I, where we have a plasma
of large closed (and open) surfaces, I",~e " for noninteger q and I', ~ e ~ for integer q.

V. DISCUSSION

It is perhaps worthwhile to summarize our pic-
ture of the different possible phases in three di-
mensions (Fig. 3). The limiting cases IV-VI cor-
respond, respectively, to theories of noninteract-
ing vortex loops and vortices terminating on mono-
poles, of infinitely massive, noninteracting spin
waves, and of the pure (compact), gauge theory.
Phases II and III are analogous to the phases of the
XY model. ' Wilson's loop integral is one in both
cases. (But recall the two paragraphs preceding
Sec. II C. ) In phase III, topological excitations are
suppressed; there are only small vortex loops.
There is long-range order of the Higgs field, anal-
ogous to a ferromagnet. In phase II, there is an
explosion of large vortex loops which leads to a
breakdown of long-range order, with the appear-
ance of a finite correlation length (mass gap).

Phase VII is another low-temperature phase in
which topological excitations are relatively unim-
portant for the large-distance structure. This
phase corresponds in the continuum limit to the
so-called Higgs phase and appears to be a theory

of a free, massive vector boson with only small
topological loops and dumbbells. The Wilson loop
integral obeys a perifneter law, i.e., it is propor-
tional to the length of the loop, so there is screen-
ing of arbitrary charge. At higher temperatures,
there is a transition to phase I in which one finds a
plasma of arbitrarily large vortex rings and mono-
poles with strings which cause a kind of disorder-
ing (see below). In this respect it is similar to
phase II, but now the Wilson loop integral is pro-
portional to the area enclosed by the loop for the
fractionally charged case. For integer charges,
it again is proportional to the perimeter, so there
is no Higgs mechanism but there is "quark trap-
ping", i.e., confinement of the elementary, frac-
tional charges of the theory. Our arguments indi-
cate that, even in the theory in which the Higgs
charge is not equal to the elementary unit charge
(A, &I) the dissociation of monopole-antimonopole
pairs occurs at the same temperature at which very
large vortex lo'ops become likely. Hence we do not
expect any phase intermediate between I and VII.
In higher dimensions, the situation is expected to
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be analogous to the three-dimensional case, and
we have discussed the picture in four dimensions
in some detail.

The Abelian Higgs model is the Ginzburg-Landau
theory of superconductivity in which the Higgs field

P is the electron pairing field. " Segments. of the
vortex rings of our model can be thought of as pen-
etrations of magnetic flux in a superconductor. It
is worthwhile to relate our results in three dimen-
sions to some of the known properties of supercon-
ductors. In particular, we would like to know
whether our model exhibits properties of a, type-I
or a type-II superconductor.

Recall that in a type-I superconductor, the pair-
ing field coherence length $ is significantly larger
than the magnetic field penetration depth 6. This
has the consequence that when magnetic flux pene-
trates the medium it prefers to do so in an ex-
tended, continuous region. Since (g) =0 at the cen-
ter of a vortex, the entire extended region becomes
normal (disordered), and we have a complete
breakdown of the Meissner effect. In a type-II
superconductor, on the other hand, 5 is signifi-
cantly larger than (. As a result, there is a phase
of the system as a function of applied magnetic
field which exhibits oddly a partial breakdown of the
Meissner effect. For a range of magnetic fields
H„& H & H, 2, flux penetration occurs in relatively
thin well-defined tubes separated by regions of
superconductors in which (p) w 0. Only for H & H„
is there complete disordering with (P)=0 everywhere.

To decide whether our theory represents a type-
I or type-II superconductor one might try taking
the naive continuum limit of our theory and identify
parameters with the parameters of the Ginzburg-
Landau theory. However, this procedure will not
result in a correct identification of the physics. In
defining our lattice theory, we have formally
frozen the radial degree of freedom of the Higgs
field on each lattice site. Hence, in the "classical"
naive continuum limit, the coherence length g is
infinite since p is never zero. But there is a dy-
namically generated radial degree of freedom (i.e.,
(p(i)P( j)) g 1) and thus, in general, a finite g which,
like the penetration depth, is temperature dep|;n-
dent. It is these dynamically meaningful quantities
which will determine whether we have a type-I or
type-II system.

It is possible to determine $ and 6 as a function
of the bare parameters of our theory p and & by
doing a renormalization-group calculation. In the
absence of such calculations we can turn to the
arguments we have presented as a guide to the
physics. Let us fix m' and vary z. Focus on val-
ues of g near the separatices AB and BE. Further-
more, let us discuss some large but finite region
of the material. For values of g which put us in

regions I or II we imagine restricting oursel. ves to
configurations of vortex strings fwe may ignore the
U(1) monopoles for this discussionj such that there
is some fixed (albeit almost arbitrary) net mag-
netic flux passing through the region under consid-
eration. '2 With these constraints, varying y so that
we pass from region III to II or VII to I is similar
to varying the external magnetic field on a super-
conductor from a value which allows no flux pene-
tration to a value which does allow flux to penetrate.

Now, in passing from region III to region, II we
encounter a complete breakdown of the Meissner
effect. The phase transition from III to II is, as
we have discussed, a topological transition, but it
is also the usual Wilson-Fisher phase transition,
and thus in phase II w'e have a complete disorder-
ing of the system: (p) =0 everywhere. This is
clearly the kind of behavior expected in a type-I
superconductor. Note that in these phases the vor-
tices can have a long-range disordering effect
since they are the sources of a massless field [see,
for example, the P -~ limit of (3.1)j. In contrast,
the transition from phase VII to I does not seem to
signal a complete breakdown of the Meissner ef-
fect. The dynamics of phase I are not. the dyna-
mics of normal scalar QED (for example, there is
still a massive vector field) and so it is not totally
disordered. Flux penetration does occur, but the
flux will penetrate in thin tubes separated by re-
gions where (P) w0. This is exactly what we expect
in the mixed phase of a type-II superconductor.
Naively, one expects that complete disordering of
the type-II system will appear in our model only at
finite "bare" temperatures —somewhere in the
elusive upper right-hand corner of Fig. 3. To see
this phase emerge clearly evidently requires a re-
normalization- group analysis.

Finally, it is amusing to note that our analysis
suggests that the difference in critical behavior
between type-I and type-II superconductors is just
the difference between a system whose long-range
behavior is described by a globally invariant theory
(XY model) and one described by a locally invari-
ant theory (Abelian Higgs model).

We turn now to a brief remark about the continu-
um limit of our theory. Unfortunately, it is dif-
ficult to be very precise about the correspondence
of our theories with the continuum theories in the
absence of renormalization- group analyses. But
we have seen that in two dimensions our lattice
discussion is quite similar to that of Callan et gl."
for the continuum theory. Moreover, as explained
in the text, it is quite plausible that at least some
of the topological excitations we have found exist
in the continuum limit of at least some of the
phases which our theories manifest. If these ex-
citations do persist in the continuum, they have
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very interesting consequences for field theories.
For example, our analysis suggests that the con-
tinuum compact Abelian Higgs model in four di-
mensions may have soliton solutions of two types:
(1) monopole-antimonopole pairs connected by flux
tubes and (2) vortex rings. Moreover, in our the-
ory it is clear that the two types of solutions are
related —whenever one, has solutions of the first
type, solutions of the second type also exist.
Nambu" has recently shown that there are solu-
tions of the Weinberg-Salam SU(2) &&U(1) gauge the-
ory which represent monopole- antimonopole pairs
connected by a flux tube. .A completely unjustified
analogical leap implies that closed vortex rings
may also appear in the steinberg-Salam model.
This is discussed elsewhere. '4

Other problems deserving further consideration
include a quantitative derivation of the area law in

phase I of the three-dimensional theory, and a
more precise exposition of the relationship outlined
in Ref. 1 between Higgs theories and models of
spin- glasses. Of course, a renormalization- group
analysis of the various phases of our theory would

be most interesting.
Note added in Proof. After completion of this

work, we learned of related work by M. E. Peskin,
Ann. Phys. (N.Y.) 113, 122 (1978).
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