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%'e consider the properties of one-dimensional gauge field theories at finite temperatures and densities. The

massive Schwinger]model in the presence of a uniform charge background is shown to form a Wigner'

crystal which Debye screens charged impurities. The two-species Schwinger model with oppositely charged
fermions is studied at finite baryon density. This system does not undergo a phase transition as the density is
increased, but becomes progressively more polarizable until at infinite density Debye screening occurs.
Finally we consider the massive Schwinger model at nonzero temperature and show that Debye screening
occurs at infinite temperature. %'e speculate that in three dimensions this last transition occurs at finite
temperature.

I. INTRODUCTION

Quantum field theory is usually studied at zero
temperature and fermion number density. How-

ever, a good deal of interesting physics occurs
in environments of extreme temperature and den-
sity. Physics at temperatures and densities cor-
responding to the masses of electron and positron
pairs can be understood in the framework of per-
turbative quantum electrodynamics. However, it
is believed that when the temperatures and densit-
ies increase to the point where the average energy
density becomes comparable to that of hadronic
matter new phenomena occur. In particular, a
number of phase transitions have been conjectured
as the density of matter in a neutron star is in-
creased. These phenomena include pion condensa-
tion, ' abnormal nuclear matter, ' and the transition
to a state of free quarkss at high density and/or
high temperatures.

At these extreme conditions it is probably im-
portant to describe matter in terms of quark con-
stituents which interact through forces which at
zero temperature and densities can account for
confinement. For these reasons we will study the
high-density and high-temperature limits of one-
dimensional theories which display conf inem'ent.
In particular we will consider the Schwinger model
with one or two massive fermion species. We
would rather, of course, study quantum chromo-
dynamics in three dimensions, but we do not have
sufficient tools to do that at this time. We hope

that the questions we pose and some of the pheno-
mena we find in the one-dimensional models will
have their analogs in higher dimensions. This will
be discussed further in the text.

This article consists of six sections. In Sec. G
we review the properties of the massless and mas-
massive Schwinger models. The massless model
behaves as a plasma which can Debye screen an
arbitrary charge while massive model behaves
as an insulator. In the third section we consider
the massive Schwinger model in the presence of
a uniform background charge density. We find that
an opposing, nonuniform charge density is induced.
In fact, the induced charged fermions form a, sig-
ner crystal. In Sec. IV we consid'er the two-species
Schwinger model. and introduce a chemical potential
to control the particle density. At a finite chemi-
cal potential a phase transition occurs aod the
ground-state density of particles becomes non-
zero. However, the theory continues to confine
its fermions. Only as the density goes to infinity
does the dielectric polarizability tend to infinity.
Therefore, formally speaking, a transition to an
unconfined phase occurs at infinite density. Equi-

' valently, the long-range confining force between
static sources vanishes smoothly as the density
goes to infinity. Finally, in Sec. V we consider
the massive Schwinger model at high tempera-
tures. The system again undergoes a transition
to a plasma phase at T= ~. %'e speculate that in
the real three-dimensional world, this transition
would occur at finite temperatures. Some conclud-
ing remarks and discussion appear in Sec. VI.
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II. USEFUL PROPERTIES AND FORMULAS
OF THE SCHWINGER MODEL X=K —,'71'h + 8, '-cm'cos 2 m Ch

The massive Schwinger model4 is defined by the
(1+1)-dimensional Lagrangian density

,'F,„'-+gy"(8„-igA„)P- m|It(, (2.1)

where F„„=8„A„—8+„and m is the bare mass
of the fermion. The properties of this model in-
clude the following:

1. The spectrum consists of neutral, massive
boson s.'

2. If sources of charge +ag are embedded in the
vacuum at separation distance I, a confining lin-
ear potential occurs, '

V(L, e) = e'g 'f(e, m/g)L. (2.2)

For & = integer the sources are neutralized by the
creation of pairs whose members then bind to the
sources. This phenomenon causes f to be a peri-
odic function of & which vanishes whenever E.=O,
+1, +2, . . . . This behavior can be summarized
for small electric fields E by saying that the vac-
uum is a dielectric with a field-dependent dielec-
tric constant 1/f(E/g, m/g).

3. For the special case m =0 the long-range
force is Debye screened. This means that
lim g(e, m/g) =0 so that long-range confining
forces are now absent. In other words, long-range
forces do not occur whatever the charges +&g of
the sources. In this case the vacuum is referred
to as a "plasma" or "conductor".

The behaviors summarized in properties 2 and
3 give us a practical method of labeling a general
theory as either "confining" or "plasma".

These properties of the Schwinger model are
most easily obtained by studying the Bose form of
the theory. Writing the equivalent Bose form of
the theory in the Coulomb gauge consists of the
following correspondences' '.

(2.4c)

where we have ignored surface effects. Accounting
for nonvanishing boundary conditions for P is equi-
valent to placing charges of fractions +c at spatial
+~, respectively. '" Then Eq. (2.4c) becomes

P 2

X=N —,'w'+ —,'(8,$)'+ —(g+ ~me)'
I

—cm' cos(2 VV'}
J

or, shifting the field Q - Q - v &e,

2

K=N —'m'+ —'(8 @)'+—2 2 ].

(2.5a)

- cm' cos(2v wP —2wz) (2.5b)

Normal ordering with respect to the fermion
mass m is often inconvenient. Aside from the ap-
pearance of additive constants, different normal-
ordering prescriptions of K can be absorbed into
redefinitions of the coefficient of the cosine term. '
The prescription is

(M't~ ~4.
N„cos( PP) =l —

l
N„c so(P&}.

j),m)

Choosing M=g/vm, Eq. (2.5b) becomes

X=Nz[pw + 2(8,$) + 2M (jP

(2.6)

g 2

',4(~) j»- x j',4(v)d*AI (~ 4b)

Finally, doing two integrations by parts, the Bose
form of the Hamiltonian density becomes

2

X=Ã„—,'m'+ (8,&)'+—P' —cm' cos(2~m/)

:Pg:- —cmN cos(2 &~vs), (2.3a) —cmM cos(2~we —2mz)]. (2.7)

: Py, g: cmN s-in-(2 &mP),

1i„=:8'„0:-~ e„8"0,

:F&4:--'N. (8„4)',

(2.3b)

(2.3c)

(2.3d)

Much of the physics of the massive Schwinger mod-
el is very accessible when X is written in this
form. For example, one can easily confirm prop-
erty (2) listed above Eq. (2.7) and its generaliza-
tion to the two-species model will play a central
role in the following sections of this article.

where N denotes normal ordering with respect
to the fermion mass m and c is a numerical con-
stant. Now the Hamiltonian in the Coulomb gauge

III. THE MASSIVE SCHWINGER MODEL

IN A BACKGROUND CHARGE DENSITY

K= $(iy, 8, +m)g«

becomes

g 2

4 io(») I»-y l~o(»«dy (2.4a)

As our first example we consider the Schwinger
model in equilibrium with a uniform charged back-
ground. An external charge distribution p, (z) can
be incorporated into the Bose Coulomb gauge form-
alism of Sec. II by replacing j,(z} in Eq. (2.4a) by
i.(z)+ p.(z}
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K= g(iy's, +m)gdx

If we define Q, as

(3.1)

——,'g' [j,(x)+p, (x)] ~x-y ~[j,(y)+p, (y)]dxdy.

state. ' He argued, in fact, that at sufficiently low
temperatures such "Wigner crystals" would indeed
form. Before discussing the stability of such crys-
tals in our (1+ 1)-dimensional world we still study
the classical equations in more detail. It is con-
venient to rescale the space-time variables (z, t)
and define

1
pg ~ 14c 1 (3.2)

y =az, t=at.

Then Eq. (3.7) becomes

(3.8)

K=Nz[zw'+ z(~i%)'+M'(0+ 4.)'
—cmM cos(2~wp)] (3.3)

for the & =0 case which we study first.
A uniform charge background should be thought

of as the limit of a finite line of charge extending
from -L to +L. If the region is chosen symme-
trically relative to the origin, then

(3.4)P, =az

for ~z ~(L and &f&, is zero elsewhere. The Hamil-
tonian density then becomes

then the Bose form of the Hamiltonian density be-
comes

M2 mM ~Ql

P+ 2~wc, sin2~w(g —y) = 0.
a a' (3.10)

The solution to this equation can be determined
graphically and is shown in Fig. 1 for the case
m/g «1. To good approximation,

g = 2~wc —sin(2~wy), (3.1la)

(
8 9 - M AM
Bt' ~y a'P+ —,/+2~wc, sin2vw(g —y) =0.a'

(3.9)

Consider the low-density case in which "a" is
small and consider just the potential energy pieces
of Eq. (3.9)

K = N~[2w + 2(s, $) + zM'((f&+ az)

—cmM cos(2v wP)] (3.5)
so

for ~z ~(L. It is convenient to define a new field
Q = Q+ az. Then Eq. (3.5) becomes

K=N„[,'w'+ z(&, Q)'+—zM'$'

m
Q =2~&re —sin(2v waz) —az,

which generates an induced charge density

(3.11b)

—cmM cos2&w($ —az) ], (3 6)
1 m a

B,Q = 4~wac —cos(2~waz)—
w M w

(3.12)

where we have dropped constant terms coming
from the kinetic energy. In this form the Hamil-
tonian density does not have translational invari-
ance. The source of this asymmetry is the posi-
tioning of the center of the charge distribution.
Note, however, that K is invariant under the dis-
crete translation z -z+ ~w/a. The equation of mo-
tion following from Eq. (3.6),

/+M'P+2v wcmM sin2~w($ —az) =0,
et ez

(3.7)

has nontrivial static solutions which also only have
the discrete symmetry z -z+ ~it/a In particular. ,
the state of minimum energy is such a nontrivial
periodic solution of this equation. As will be dis-
cussed further below, these solutions consist of
periodic waves of charge density. Their appear. -
ance is not surprising since they have- a classical
physics analog. In 1937 Wigner considered the
possibility that the lowest energy state of a neu-
tral system of charges in a uniform background
charge density would be an ordered, crystalline

The ripples in Eq. (3.12) indicate the crystal struc-
ture alluded to above. Next consider the case m/
g»1. Then the induced charge density consists
of narrow spikes, periodically spaced. This is a
reasonable result, since in this limit one should
recover the classical Wigner crystal.

Do quantum fluctuations destroy the classical
Wigner crystal? One might expect an affirmative

FIG. l. A graphical solution to Eq. (3.10). The
abscissa is $ = P —y and the curves show the two terms
of Eq. (3.10) for different values of y.
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K=N~[2m'+ ~z(B,Q)'+ 2'M'(g+ az+ ~pe)2

—cmM cos(2~v/)].

Shifting the field Q- Q+az+ Wee, we have

+=X [-'m2+-'(s y)2+-'M'y'

—cmM cos2vm(g —az —v ne)] .

(3.14)

Qbserve that any nonzero E can be absorbed into
a shift in the position of the Wigner crystal and
therefore adds no volume-dependent energy to the
system. So, the Wigner crystal causes screen-
ing —the system behaves like a plasma, not a die-
lectric.

FIG. 2. Lowest-order graph contributing to the vac-
uum expectation value of flan, . The dashed line is a
boson propagator.

answer in view of the general theorems which state
that continuous symmetries (such as translation'in-
variance) cannot be spontaneously broken in one
dimension. " However, these theorems do not
apply to the Wigner crystal. because it is held to-
gether by long-range Coulomb forces. The stabil-
ity of the crystal can be tested explicitly in per-
turbation theory. For small m/g one can treat the
cosine term in Eq. (3.6) as a perturbation on a
massive free field. An explicit evaluation of the
lowest-order quantum correction to the vacuum
expectation of &f& gives

&j(i. , i)) = m~ircm fMsin(a~irai, ')

x n~(z -z', f-f';M)dz'dt',

(3.13)

corresponding to the graph in Fig. 2. Equation
(3.13) is a well-defined, finite periodic function.
The lack of infrared problems in the perturbation
series indicates that long-wavelength fluctuations
do not disorder the system. For large m/g the
classical analysis is reliable and it also indicates
the existence of the ordered crystal.

Next we wish to understand the confinement prop-
erties of the theory with a given background charge
density. Is there a long-range confining potential
between two widely separated static charges +eg'P
The external charges may be described by an ex-
tra contribution to the background charge density,
eg6(x —I ) —eg&(x +I ). Corresponding to this

j,(x, t), one must add to P a field which has the
constant value Wmc between the two sources and
is zero elsewhere. The coefficient of the long-
range potential then equals the change in the en-
ergy per unit volume in the region between the
two sources. Equation (3.6) now becomes

IV. THE T%0-SPECIES SCHVGNGER MODEL

AT FINITE DENSITY

As our next example we consider the two-
species Schwinger model in which the two species
have equal mass and opposite charge. This model
allows us to study a system at nonzero baryon num-
ber density but vanishing background charge den-
sity. Therefore, we have a one-dimensional ana-
log of the environment of colorless nuclear matter
as might exist in real neutron stars, say.

Again it is convenient to recast this theory into
an equivalent theory of Bose fields. " We associ-
ate a Bose field Q, with each fermion g, (i =1,2)
and take over the results reviewed in Sec. II for
each species. It is useful to introduce fields Q,
and &f& defined by

(4.1)

Then the total charge density is

1 2
P ~g l(41 42) ~ el 4

and the baryon density is

(4.2)

(4.3)

The Bose form of the Hamiltonian density reads

—cm' cos(2v wQ, ) —cm' cos(2~m/, ) . (4.4)

In terms of P, and &f& this becomes

[~& 2+ &(s y )2+M2y 2+Xv 2+ j(s y )2

—2cm' cos(~vQ ) cos(~mQ, )] (4.5)

in the case e =0 which we study first.
In some of our detailed analyses we will consid-

'er this theory only in the limiting case M»m.
Then one would expect that the low-energy behav-
ior of the theory would be described by Eq. (4.5)
by setting P to zero and adjusting the coupling
constant appropriately. The necessary rescaling
of the coupling constant (the coefficient of the co-
sine term) has been computed in Ref. 11 with the
result that

K=Ã„,' 'v+ z(B,Q—,)' —2cm' cos(v'2vp, )
I

(4.6)

if M»m.
We wish to study the two-species model of Eq.

(4.5) at finite baryon density. To do this we intro-
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duce a chemical potential p, and add to the Hamil-
tonian the term

(2 x/2
&(z)« = Vl-

(z (4.7)

(4.8)

Next define P, = P, + bz. This separation evidently
produce's a constant background Baryon density
(2/z)' 'b. Substituting into Eq. (4.5) we have

K=N [zm 2+2(8,$ ) +M P 2+zan, 2+2(B,Q, +b)2

—2cm' cos(v 2m/ ) cosa 2m(P, +bz)]dz

(4.9)

To avoid ambiguities we let the chemical potential
be nonzero between -L and +L and set it to zero
elsewhere. Now the Hamiltonian becomes

For the second case $, =0 and

K(static) =0. (4.12b)

/AT + 2 By —cm' cos 2 m dz

Evidently, for 4cm'& b', case 1 is favored and the
ground state has zero average baryon density.
However, if 4gm (b', the ground state will have
nonvanishing baryon density. Since we have not
made an exhaustive search for the optimal Q, it
is not clear whether this transition is abrupt or
continuous. Luckily it is not difficult to under-
stand the physical origin of this transition and
argue that it is in fact a continuous function of b.

To do so we consider a simpler theory —free,
massive fermions in the presence of a background
fermion number density. We may write this theory
using the Bose correspondences as a sine-Gordon
equation in the presence of a chemical potential

So,
+b S,&fdz (4.13)

K=N [zw +2(&,$ ) +M Q '+2n, '+2('s, p, )

—2cm cos(~2wg ) cosv2w(p, +bz)]dz

+ bz[&f&, (L) —P, (-L)] + p [P (L) —P (-L) l ~

(4.10)

dropping several irrelevant constant terms. We
now define b = —2p2/~m to eliminate the last two
terms.

Next we wish to minimize the classical energy
and find the system's ground state. Consider two
possible configurations for &f&, and Q:

1. Q =—bz and Q =0. Then the average baryon
density is zero.

2. P, = 0 and Q 0. Then the average baryon
density is approximately (2/~nb.
Which of these two configurations is energetically
favored'P We cannot solve the classical equations
analytically, so consider only the case M»m.
Then the M'P ' term in Eq. (4.10) forces P to be
small and we set it to zero and adjust the coeffici-
ent of the cosine term as explained above [c'
=—c(&2M/m)'~']

The chemical potential term can be integrated to
give an energy proportional to the total charge.
In terms of fermion degrees of freedom the Ham-
iltonian is

2+m2 x/2+b d

+ b„b„k +m '/ —b dy. (4.14)

Now consider the possible phases of this theory as
b is varied. For small b it is not energetically
favorable to populate any mode of the fermion field,
but when b &m it becomes favorable to populate
antiparticle states for which (k'+m')' ' &b. From
-this observation we can calculate the particle den-
sity in the ground state. All the modes are popu-
lated up to the "Fermi surface" k~ = (b' —m')'~'.
But the connection between particle density and

k~ in one dimension is simply p= (1/2m)k~, so the
ground-state density satisfies the equation b'
—4m'p'=m'. This equation is plotted in Fig. 3

K=N [zm, '+z(b, p, )' —2c'm'cos&2z($, +bz)]dz.

K(static) ~+ b'L —4cm'L. (4.12a)

(4.11)

Now we consider only static fields and compare
the energies of cases 1 and 2 listed above. For
the first case Q, =-bz,

FIG. 3. Ground-state baryon density vs chemical
potential. The dashed line applies to the theory of free
massive fermions. The broken dark curves depict cases
1 and 2 of the bvo-species Schvringer model.
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along with cases 1 and 2 considered above. Note
the general agreement between the various curves.
Therefoxe, we feel that the real transition in the
two-species model is continuous and our crude
estimates given by cases 1. and 2 are reliable for
b everywhere except in the immediate neighbor-
hood of the transition point. In that region a con-
tinuous curve resembling that in the figure is pro-
bably correct.

Now we return to the equation of motion follow-
ing from Eq. (4.11),

Clg, + 2v'2wc'm' sin v'2w(g, + bz) = 0. (4.15)

A classical solution of Eq. (4.15) would have peri-
odic solutions indicating the possibility of a crys-
talline structure. However, quantum fluctuations
are sure to destroy this ordered phase because
the perturbation is about a massless field and in
1+1 dimensions there are definitely divergences
here. " Indeed, the approximate description in
which Q =0 is equivalent to the massive Thirring
model in the presence of a chemical potential.
Since this model has no long-range forces, the
existence of a crystal will violate the theorems
on spontaneous ordel in (1+1)-dimensional sys-
tems. '

We now consider this model in the presence of a
pair of fractional charges +&g separated by a dis-
tance 2L. Following the logic of Sec. III we must
modify the Hamiltonian to be

3C=N {2w 2+ 2(8, (f& ) +M2$ 2+ 2(8, (f&,)2

[-,'w, '+ -'2(e, y, )2

—2c 'm' cos(we) cos V 2w($, + bz) ]dz.

(4.17)

To study confinement we must compute the ground-
state energy of Eq. (4.17). This is done in the Ap-
pendix for large densities, i.e. , M/b «1. There
we determine that the vacuum energy density shifts
by an amount proportional to (m'M/b) cos2(we).
The string tension is then

—2cm' cosv'2w[y + (w/2)'~'e]

cos~ 2w(p, +br)] dz. (4.16)

Again choosing M»m, the P degree of freedom
is frozen out and we can place P =0 in 3C,

2Mtension = const x m' —sin2(we).
b

(4.18)

Note that as the background density increases a
larger and larger percentage of the external charge
is screened away by polarization. However, only
at infinite density does. the screening become com-
plete. This behavior contrasts sharply with quan-
tum electrodynamics where a plasma occurs for
arbitrarily small density.

V. THE MASSIVE SCHWINGER MODEL AT FINITE

TEMPERATURE

and adjust K to keep the energy density finite order
by order in perturbation theory. We wish to calcu-
late the shift in the ground-state energy between
the charges y&g which are located at points ~,
respectively. This calculation yields the static
potential acting between the charges. The calcula-
tion will be done to first order in the fermion mass
m. Therefore, we need the vacuum expectation
value of cos(2~m/ —2we),

It is interesting to ask whether theories of con-
finement pass to an unconfined phase as they are
heated. This is known to be true of lattice quan-
tum chromodynamics in 3+ 1 dimensions. " Here
we will compute the temperature dependence of the
string tension in the massive Schwinger model.
General theorems concerning the absence of spon-
taneous symmetry breaking in theories of one spa-
tial dimension prohibit us from finding a transition
to an unconfined phase at a finite temperature. "
Instead, we shall find that the string tension van-
ishes smoothly as T, the temperature, goes to
infinity. We believe that it is reasonable to expect
this transition to appear at a finite value of kT
(k is Boltzmann's' constant) —probabily on the ord-
er of a GeV—in theories of confinement in 3+ 1
dimensions. "

To begin we review the calculation of the string
tension in the theory at T =0. We will do this using
the Hamiltonian without any normal ordering be-
cause then the generalization to finite T is most
elementary'. From. the discussion of Sec. II we
anticipate that the coefficient of the cosine term in
the Hamiltonian will then be renormalized order by
order in perturbation theory. So, we will write

3c= —,
'

w+2-,'( sy) 2-+,' My2-2m@ cos(2&wy-2we)

(5.1)

(cos(2~w&j& —2wc)) = cos(2we)(cos2~wg)+ sin(2we)(sin2vwg) = cos(2w&)(cos2~wg)

(2 )
2 n

= cos(2we) g (2~m "(p2").
(2n) )

(5.2)
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FIG. 4. Feynman graph depicting the vacuum expecta-
tion value of the square of a boson field.

F&G. 5. Feynman graph for (P ) .

Consider the first nontrivial contribution to the
right-hand side of Eq. (5.2),

d 0 1
(2.) k+M (5.3)

Define this integral to be I. The corresponding
Feynman. graph appears in Fig. 4. It is ultraviolet
divergent, so we cut it off at momentum A,

tension = 2m' sin2(1Te). (5.10)
Now we compute the finite-temperature string

tension. We will use standard finite- temperature
Green's-function methods. " The string-tension
calculation then runs parallel to the T= 0 case with
finite-temperature Green's functions replacing the
T =0 propagators. This causes the substitution"

1I = —ln(A/M) . ,
23

(5.4}
dk 1

(22/) k'+M'+ 41/'21'/P' '

It is easy to see that the general term in Eq. (5.2)
contains a factor of

(P'") = (2n - 1)!!I", (5.5)

where the (2n —1)!!simply counts the number of
ways the contradictions can be accomplished to
produce a graph of the topological structure shown
in Fig. 5. Now the sum in Eq. (5.2) can be done

in the previous calculation. The finite-tempera-
ture analog of Eq. (5.8) becomes

E(T) = -mKe "/2 cos(22/E)2L. (5.12)
'I

Now we evaluate I~. Following standard tricks of
statistical mechanics, " the sum over n is replaced
by a contour integral by considering

(2~2/ '"( '")=Q (')'"(2~2/ '" ' ' I"

1=Q (-1)"(41/}" „ I"

(2')"

= exp(-2').
So, the shift in the ground-state energy

E =-mK cos 2 m —2m'& dg

becomes

(5.6)

(5.7)

This expression useful because the quantity in
the square brackets haspoles of unit residue at
the points z = 21/n/p. Consider the contour integral

—2'P cot-2'Pz

+M'+g' '
r

where the contour I' (shown in Fig. 6) encloses
all the singularities of the integrand. Letting I'
recede to infinity in all directions and observing
that the integrand vanishes rapidly in all direc-
tions, we. learn that

E = -mKcos(2m&)e "/2L. (5.8)

To obtain the string tension we divide by 2I and
subtract the energy density in the absence of the
external charges

tension = mKe "/(1 —cos22/c)

= 2mKe "'sin2(1/e). (5.9)

Finally, as discussed above, we adjust K so the
combination Ke " =K~ is finite as the ultraviolet
cutoff A -~. Therefore, our final result is

2'P cot(2'Pz)
~

~dz .p2+ jQ2+g2
circle at
infinity

Applying the residue theorem gives

(5.13)1,cot[~2'p(k2+M')'/']
k2 +M2 ~ 42/2~2/P2 2

22 (k2 ~M2)1/2

cot[-w!3(k'+M')'/']
22 (k2 +M2) 1/2 (5.14)

Therefore, the sum entering the expression for I~
1s

1~ k2 +M2+ 4m2n2/P
cot[~2. 'P(k'+M')'/'] p

2z(k2+M2)1/2
—

2(k2+M2)1/, coth[2P(k +M ) ]

P
2(k'+M')' ' exp[P(k'+M')' '] —1

(5.15)
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sion falls to zero continuously. Formally speak-
ing, the system becomes a plasma at infinite tem-
perature.

~ '% VI. CONCLUSIONS AND DISCUSSION

FIG. 6. The contour I' enclosing the singularities in
the finite-temperature version of Fig. 4.

or

Ig =I+A~, (5.16b)

where we have identified the expression for I from
Eq. (5.3) and have defined the second term in Eq.
(5.16b) to be A~. Now Eq. (5.12) becomes

E(T) = mKe~'~co-s(2m&)e ""&2L

We identify the quantity K~=Ke " as in the
zero- temperature calculation. Then

E(T) = -mKz cos(2we)e '""&2L. (5.1Vb)

All the temperature dependence of E(T) lies in the
factor exp(-2m'~). As T -O,A 80 [at the rate
exp( MlkT)] a-nd we retrieve the zero-tempera-
ture result. As T -~, we can replace exp/(k'
+M')' ']-1 by P(k'+M')'~' in Eq. (5.16a) to ob-
tain the leading asymptotic behavior of Az

1 " dk 1
m, (k'+M')' exp[P(k'+M')' ']- 1

dk
mP k'+M~

(5.18)

So, in the high-temperature limit

E(T) --mKr cos(2m)e '" ~~2L, (5.19)

giving a string tension

tension - 2mKze '~r ~~ sin'(we). (5.20)

So, as the temperature increases, the string ten-

Substituting into Eq. (5.11),
1 " dk

2w, (k'+M')'~'

1 " dk 1
w, (k'+M')' ' exp[P(k'+M')' '] —1

(5.16a)

To conclude we would like to compare the re-
sults of our paper with various speculations con-
cerning field theories in extreme environments
in three dimensions. Consider first the possibil-
ity of pion condensation in high-density nuclear
matter. Pion condensation is the appearance of a
macroscopic condensate of the pion field. Because
the pion couples to nuclear matter through a p
wave, it is thought that the condensate is nonuni-
form with, in fact, a periodic spatial dependence.
It is interesting to compare this phenomenon to
the two-species Schwinger model at finite density.
The field Q, is a pseudoscalar field which is mass-
less in the absence of fermion masses and can be
taken as an analog of the pion field. In the classi-
cal approximation the pseudoscalar field was shown
to have periodic spatial variation. Thus, at the
classical levef, pion condensation in the two-spec-
ies Schwinger model occurs at an arbitrary non-
zero density. However, general theorems assure
us that in one dimension this spatial inhomogene-
ity is destroyed by quantum fluctuations. " In
three dimensions, quantum fluctuations do not
necessarily destroy the analogous ordered state.
We have seen in the text that the development of
periodic inhomogeneities in the field P, is related
to crystallization. It is interesting to speculate
that in real nuclear matter the formation of a pion
condensate induces a crystallization of the nuclear
matter also.

Another phase transition of interest involves the
possible disappearance of confinement at high den-
sity. ' One might speculate that Debye screening
occurs in high-density nuclear matter eliminating
the color-confining long-range potential. It is
not known if this occurs in three dimensions but
in one dimension we have seen that a sharp trans-
ition of this type does not occur at finite density.

. To our knowledge no general theorem concerning
one-dimensional physics forbids phase transitions
as a function of density. Nevertheless the confin-
ing forces between colored particles become suf-
ficiently weak at high density that they probably
can be ignored in considering, for example, the
system's equation of state. In other words, at
large density, free fermion physics should gov-
ern the equation of state" even though confinement
may actually persist.

As temperature increases we also did not find
a sharp transition to an unconfined phase in the
massive Schwinger model. But, in this case, our
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conclusion follows just from general theorems of
one-dimensional statistical mechanics. ' The fact
that the confining forces do, however, disappear
as the temperature goes to infinity suggests that
in higher dimensions Debye screening should occur

at finite temperatures. Lattice calculations in
three dhmensxons support th~s conjecture. "

The work of J.K. was supported in part by the
A. P. Sloan Foundation.

APPENDIX

In this Appendix we shall sketch the calculation of the string tension in the two-species Schwinger model
at large baryon density. We begin with the Hamiltonian of Eq. (4.17),

X=N [-,'w, '+ —,'(&,Q,)'+ —,'k'P, ' —2c'm' cos(we) cosa 2w(P, + bz)]dz. (Ala)

Equation (4.17) contains a, mass term —,k'(t),' which will be set to zero at the end of the calculation. Nonzerc
k is introduced to avoid ambiguities in the intermediate stages of the computation. Itis alsobest tonormal
order the Hamiltonian with respect to 4. Then, using the normal-ordering theorems reviewed in Sec. II
and recalling that c'= c(2M/m)'~', we have

R=:~zw,'+ ~z(&2(t),)'+ gk'P, ' —2v 2cmv'Mk cos(wt) cosv 2w($, +bz): dz. (A lb)

Here, ::denotes normal ordering with respect to k. Since 0 is an auxiliary parameter it should not enter
our final answers. Its disappearance from those answers constitutes a partial check of our arithmetic.

The string tension will be calculated in perturbation theory in the parameter m. It is easy to see that
the lowest-order contributions vanish identically,

ndr''= —2&2crsdMB cos(ee)(: castbe(B, +bz}:dz),

= -2v 2 cm VMk cos(we) [:cosr)2eb, :cosdbebe —:sin t2eb, :sind2ebz)dz), (A2)

because the factors cosa 2wbz and sinu'2wbz cause the integral over all of space to average to zero. The
second-order contribution to the ground-state energy is

nda'nt Bc I Mkcos''(e=z')(f cos(dbebe)cos(dbebz')(T;cosd2 B,(e, t):casd2ed, (z', t'):)dzdz dtdi''
+ s}n(dbebz) sin(dkebz )(T:sindbed. (z, t)'::sind2eb, (z ', t'); )de dz dtdt'), '

(AS)

where & is the time interval over which the perturbation is turned on. Counting arguments similar to
those appearing in the string-tension calculation of Sec. VI can be used to compute the vacuum-expectation
values in Eq. (A3)

(T:cos bt 2w(t, (z, t)::cos 2('2w(t), (z ', f '):) = cosh [2wG (z '- z, t '- t; k) J,
(T:sin 2('2w rf&,.(z, f)::sinb('2w (f),(z ', f '): ) = sinh [2wG (z '- z, f ' —f; k) ],

(A4)

where 6 is the boson propagator with the mass k. We are interested in the long-distance contributions to
the integrals in Eq. (A3). Then the Euclidean propagator can be approximated by

j.
G(z —z ', t —f '; k) -—ln (k[(t —f ') + (z —z') ] }

Now we have
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~+'&=2c'm'Mk cos'(we)

dzdtdz'dt' cos 2mb z +z' +cos 2&b z —z'
k z —z' + t-t'' 'i

x[cosv 2wb(z —z') —cos~2wb(z+z ')] k[z —z' '+ t —t' ' '~'

—k[(z —z ')*+ (t —t ')'] '~'}),

which is identical to

cos v'2wb (z —z ')
1hZ'2'dd=4c m Mkcos2(we) dzdtdz'dt' . ,2,»l, +k[(z —z') +(t-t~)]'~ cosv'2wb(z+z')

k[(z —z')'+(t-t')' ' '

(A6)

It is convenient to define variables
(Av)

z, =z + z', t =t +t'

so then
I

AE"'& =c'm'Mk cos'(wz) dz,dt, dz dt . ..» +k(z '+t ')'~'cosa 2wbz. .
k z '+t ' '~'

(A8)

(A9)

The second term gives zero since the average of eos42mbz, is zero. To evaluate the first term, evaluate
the integrals over z, and t, . They give the factor 4452K. Next the z integral is evaluated:

cos ~2wbz
(~2 )z'+ ' '"

where K, is a modified Bessel function. So, finally
OO I

AE"'= 16c'm'M cos'(wz) K,(~2&bt )dt 2I
I 0

and changing integration variables

(2 16 2 M 2cm' —cos'(we) K(s) sd2I
v'2m

Dividing by 2I, and subtracting the c =0 version of this equation we have the string tension

(A10a)

(A10b)

tension = const x m' —[cos'(we) —1]
b

(A11)

which displays confinement (the tension vanishes whenever z equals an integer) and vanishes in the infinite-
density limit.
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