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Classical quark statics
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The Institute for Advanced Study, Princeton, New Jersey 08540

(Received 23 October 1978)

I review and update the ideas on classical quark statics developed in two previous papers; with an emphasis
on the Euclidean spacetime formulation of the equilibrium field equations, and complete the calculation of
the order-g ' static qq potential in a Prasad-Sommerfield background. This background field increases the
order-g ' potential, as compared with the Coulomb potential, indicating a focusing of color flux lines, but for
widely separated quarks the focusing is not strong enough to give confinement. I briefly discuss the outlook
for future developments within the classical framework.

I. INTRODUCTION

In two previous papers" I.proposed a classical
approach to the problem of quark statics, based
on the idea of treating quark color cprreelations in
an exact quantum-mechanical fashion within an
otherwise classical framework. The purpose of
the present paper is threefold. First of all, in
Sec. II I give a review and update of the classical
algebraic approach, which I hope will clarify some
of the issues raised in Refs. 1 and 2. Second, in
Sec. IG and Appendix A I complete the calculation,
begun in H,ef. 2, of the order-g' static qq poten-
tial in a Prasad-Sommerfield background. While
not giving a confining potential, the result of the
calculation is nonetheless interesting in that it in-
dicates a focusing of color flux lines. Finally, in
Sec. P7 I briefly indicate directions for further in-
vestigationsin classical chromodynamics. In Ap-
pendix B I show the equivalence, to order g ', of
the methods of this paper and the Wilson loop
criterion for quark confinement. In Appendix C I
give a method for evaluating the spin-orbit poten-
tial.

QA&»QB&» =&IAB cQ&c,.&, jth particle a quark,
(1b)

N

2,",
, ) ~~osier singlet)=D, A=1, . .. , n' —1.

Q&»QB&,.&

=-qB "cQc&,.&, jth particle an antiquark,

@AB C &' (dABC + tfABC) A g g 1 2&2 ]

In Eq. (1) I have allowed for the possibility that the
color charges may contain color-singlet compon-
ents Q'„.&, as well as color (n2 —1)-piet components
QA&. » A =1, . . . , n2 —1, which, in the respective
cases of quark and antiquark, have the algebraic
properties of the Gell-Mann matrices —,'X" and

The structure constants which appear are
the usual f- and d-type SU(n) constants. The
color charges act on a finite-dimensional color
Hilbert space which is the direct product of the
color Hilbert spaces for the N source particles,
and which contains a color-singlet state specified
by

[Q&,.&, Q~&, &]=0, jc @, a, b, c=0, . . . , n2 —1, (la)

while the components of the color charge for a
given source are assumed to obey

II. REVIEW AND UPDATE

A. Classical algebraic chromodynamics

The basic idea of classical algebraic chromo-
dynamics is to set up a non-Abelian analog of
classical electrodynamics, in which the quark
(and antiquark) color charges are finite matrices
acting on a finite-dimensional color Hilbert
space. ' Taking the underlying color group as
SU(n), and considering a system with N source
charges, the color charges for distinct sources
are assumed to commute,

In general, the fact that the charge components
QA&,.

&
and QB& are noncommuting for A eB leads to

severe operator-ordering problems when one at-
tempts to use them as source charges in a gauge
field theory. The key result of Sec. I of Ref. 1 is
that a classical chromodynamics, with noncom-
muting source charges satisfying Eq. (1), can be
set up when the conditions specified by the follow-
ing definitions and theorem are satisfied:

Definition. An outer Product u& =P(u, v) on the
algebra of color charge operators is an antisym-
metric, anti-Hermitian, n -piet-valued bil linear
form on the n'-piet arguments u, e. That is, given
any two Hermitian n'-plets u', v', the bilinear map
w'=P'(u, v) =-P'(v, u) defines a new anti-Hermitian
n -piet w.
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Definition. An inner Product w =S(u, v} on the
algebra of color charge operators is a symmetric,
Hermitian, singlet-valued bilinear form on the
n'-piet arguments u, v. That is, given any two
Hermitian n'-plets u', v', the bilinear map ~
=S(u, v) =S(v, u) defines a Hermitian color-singlet
operator w.

Definition. The color ch-arge algebra 8~ „ is
the minimal set of n'-piet operators containing
N, quark charges, N, antiquark charges, and
closed under composition with the outer product
P. Note that since the color charges are finite-
dimensional matrices, the dimension of the alge-
bra QN N is necessarily finite.

Definition. The outer product P has the Jacobi
pxoPedy if, for any triplet of elements u, v, u be-

Definition. The inner product S has the trace
pxoPexty if, for any triplet of elements u, v, w be-
longing to any given color-charge algebra 6„
one has

S(u, P(v, w)) =S(P(u, v), w) . (Sb)

The inner product S has the restricted trace prop-
erty if, for any triplet of elements u, v, w belong-
ing to any given color- charge algebra Q & for

a
which color singlets can be realized, one has

longing to any given color-charge algebra ON

one has

P(u, P(v, w))+P(w, P(u, v))+P(v, P(w, u)) =0 .
(3a)

(color singlet ~
S(u, P (v, w))

~
color singlet) = (color singlet ( S(P(u, v), w)

~
color singlet) . (3c)

Theorem. Given color charges Q;, Q;-, an outer product P with the Jacobi property, and an inner prod-
uct S with the trace property (or with the restricted trace property), one can generalize classical SU(n)
chromodynamics into a classical algebraic chromodynamics by the replacements

gf"ec- igP, b "-e-S[or 5~- (color singlet ~S color singlet)]. (4)

All the standard derivations of classical chromo-
dynamics remain valid under these replacements, .

including the proof of the existence of a conserved,
gauge-invariant stress-energy tensor (or, in the
restricted trace property case, a conserved,
gauge-invariant color-singlet expectation of the
stress-energy tensor).

Obviously, a structural theorem such as the one
just stated has content only if the conditions of the
theorem can be satisfied. Whether color charges
Q„Q,—, an outer product P, and an inner product
S can be found with the requisite Jacobi and trace
properties is at present an open question. In Sec.
II of Ref. 1 I proposed a set of definitions which
satisfy the conditions of the theorem in the 2-par-
ticle (qq, qq, qq) cases. However, subsequent cal-
culations by several groups' have shown that, in
the qqq case, the definitions of Ref. 1 do not give
the trace property, even when 8 is restricted to
its color-singlet expectation. Another defect of
my original definitions is that they give S(Q„Q,)
cS(Q,—,Q,-}, and hence do not have a manifest
charge-conjugation symmetry between quarks and
antiquarks. In an added note to Ref. 2, I suggested

more general definitions of the color charges and
tht. outer and inner products, which may remedy
the defects of my original ansatz. The investi-
gations of the algebraic properties of these gen-
eralized constructions is in progress.

In the rest of this paper, I will assume that a
construction for the color charges and outer and
inner products can be found which satisfies the
conditions of the theorem, and that the construc-
tion, moreover, is manifestly symmetric between
quarks and antiquarks. According to the analysis
of Sec. II of Ref. 1, the color-charge algebra
9„„is expected to diagonalize into a set of
SU(j) Lie algebras, the overlying algebras for
the cV„N,- sector. In each overlying algebra, the
quark charges will be represented by c-number
SU(j) effective charges Q&,&", a=1, . .. ,j' —1, and

the dynamical problem reduces to that of a clas-
sical SU(j) Yang-Mills field with external source
charges. The local algebraic gauge invariance
of the underlying classical algebraic theory is re-
flected in the local classical gauge invariance of
each of the overlying algebras, and so the magni-
tudes, but not the Orientations, of the effective
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charges have physical significance. (Statements
which I made in Ref. 1 to the effect that the ori-
entations of the effective charges have physical
significance are incorrect. In fact, the gauge
freedom to rotate the effective charges plays a
role in orthogonalizing the source current to the
zero modes, as described in more detail in Sec.
IIC below. ) One could of course proceed directly
to a study of classical Yang-Mills field theories
with source charges, without the complicated al-
gebraic preliminaries, but getting the classical
Yang-Mills equations as overlying structures in
an algebraic approach accomplishes three things.
First, it gives a quantum-mechanical Hilbert-

. space construction for the color states and the
color-singlet condition, as is required to make
contact with quark-model wave functions. Second,
it gives formulas for the magnitudes of the effec-
tive charges and for the effective Lagrangians' in
the overlying classical field theories. And third,
it shows that the dynamical groups [the overlying
SU(j) Lie groups] are not in general the same as
the underlying color group SU(n). In particular,
the analysis of Refs. 1-3 in the qq case gives
SU(2) as the dynamical group independent of the
color group SU(n), and I believe that this result
will remain unchanged in a fully satisfactory al-
gebraic construction.

EJ =-D.b'j

+2b'xb' D.B~=O, (5a)

9
D-w = . w+b'&&wex'

D E'=~2go
O

~D B' = ~'X b' x D bo
E ~ spin m

(5b)

with source currents given by'

B. The classical equilibrium equations

Given a classical SU(j) Yang-Mills theory with
fixed source charges, what are the equations for
equilibrium field configurations analogous to the
equations of classical electrostatics? In Sec. I
and Appendix B of Ref. 2 I argued that the equa-
tions of classical "chromostatics" are not the
spec ialization of the Minkowski- space Eule r- Lag-
range equations to vanishing time derivatives, but
rather are a related set of equations differing by
a change of sign in one term in the "curl B" equa-
tion. Specifically, in the case of an SU(2) clas-
sical overlying algebra, the equilibrium equations
which I wrote down (with coupling constant g
scaled out) are"

Jo Jeff 53(x x )(n)
n=l

Tk ~ kl mD m

2 O
m'"' 53(x-x )spin (n) n

n= q

(5)

D =(D', D~), D w =b x w, (7b)

D'w =D.w = w +b' x w
Bxj

the compatibility conditions of Eq. (7a) just cor-
respond to the statement that the source current
J' is covariantly conserved,

D~J"=0. (7c)

I gave two arguments for the choice of Eqs. (5)
as the equilibrium equations. First, -when the sur-
face term at infinity can be neglected, these eq-
uations satisfy the principle of virtual work, '

6E,„,„=5D d E' ~ E'+ B ~ 8'
2g

=D d3x Qbl' ~ tstat ic (8a)

That is, any infinitesimal variation in the field
energy can be reinterpreted as a variation in the
potential energy of the sources, a condition which
must be satisfied by an equilibrium field configu-
ration. Second, these equations describe the field
Cauchy data 5'(x, f = 0), b~(x, t = 0) which maximize
the quantum transition amplitude into a state at
time t =0 with a specified source charge distribu-
tion. Hence they are the relevant equations for
describing physically occurring states.

I wish to give here a third argument for the val-
idity of Eqs. (5), based on the observation that the
concept of "static potential" is ambiguous with re-
spect (o the choice between "static with respect to
real time" and "static with respect to imaginary
time. " The ambiguity can be resolved by noting
that while physics takes place in Minkowski space-
time, the correct procedure to do calculations in

As noted in Ref. 2, by using the relation
e "D D,B'=0 and Egs. (5) and (6), one finds that
the quark effective charges and locations are con-
strained' by the "compatibility conditions"

eff gm
b (x ) xQ'"+B~(x ) x «& '"' =0 n =] 2. (7a)n (n) 2m

q

Adopting the natural Euclidean four. -dimensional
notation

b' =(b', b'), J' =(J,J,"„.„),
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quantum field theory is to first calculate in Eucli-
dean spacetime, where functional integrals and
perturbation-theory integrals have no mass-shell
singularities, and then to return to Minkowski
spacetime by an appropriate continuation proced-
ure. Quantities not depending on mass-shell con
ditions, such as static potentials, are given di-
rectly by the Euclidean calculation. , In Abelian
quantum electrodynamics, this statement has no
practical effect since the static (vanishing time
derivative) specializations of the Minkowski and
of the Euclidean field equations are the same.
However, there are field theories, such as both
non-Abelian gauge theories and the Abelian Higgs
model, where the static specializations of the
Minkowski and of the Euclidean field equations dif-
fer. In such theories, the fields which exist in
equilibrium with infinitely massive source
charges, and the corresponding static potentials,
axe determined by the Euclidean static equations.
Equations (5) are of course just the Euclidean
static equations for an SU(2) Yang-Mills theory. "

To continue these general observations a bit fur-
ther, I note tPe following:

(i) The Euclidean static equations satisfy the
principle of virtual work because they are the
time-independent specializations of the variational
equations for the Euclidean action

'S =D d'x (E' ~ E'+ B' ~ B')E 2

(8b)

and because the field-strength-squared term of S~
has the same functional form as the Minkowski
field energy. " That is, for static field configu-
rations satisf ying

C. The background-field approximation

Since the semiclassical approximation to quan-
tum field theory is a small-g' approximation, "it
is consistent with semiclassical ideas to look for
solutions to the static equilibrium equations in the
form of a series expansion in the coupling g'.
Writing

b =b+gb, + ~ ~ ~,

b' =b~+g b'+ ~ ~ ~
0 1

E&=E&yg E&+ ~ ~ ~
0 1

B' -B'+ &2B)+ ~ ~ ~
0 o 1

and hence give the leading classical approximation
to the functional integral for one-dimensional par-
ticle mechanics. In a similar fashion, the Eucli-
dean st@.tic field configurations will give the lead;
ing classical approximation to the functional in-
tegral for a non-Abelian gauge theory with extern-
al sources.

(iii) As discussed in detail in Ref. 2, Euclidean
static configurations are in general realized in
Minkowski spacetime at only one time slice along
a system world line; at subsequent time slices
along the world line, they undergo a complicated
time evolution in cases, such as non-Abelian
gauge theories, where the Euclidean and Minkow-
ski static equations differ. However, the gluon

'energy and the quark static potential remain con-
starit as a function of Minkowski time, as a con-
sequence of energy conservation. Hence, from a
Minkowski viewpoint, talking of "static configu-
rations" and "static equations" is misleading; the
terminology "equilibrium conf igurations" and
"equilibrium equations" is more descriptive of
the physics involved.

5Ss =-D d x(b ~ 5$ +B ~ bg„,„), (8c)
and substituting into Eq. (5), the zeroth-order po-
tentials bOo, bo~ evidently satisfy the source-free
equations

variations of the Minkowski field energy neces-
sarily reduce to surface terms around' the source
charges (and also a possible surface term at in-
finity, which will be further considered in Sec.
IIC below).

(ii) Euclidean static field configurations are an-
alogs, in non-Abelian gauge theories, of the eq-
uilibrium points x„where V'(x, ) =0, in the quan-
tum mechanics of a particle moving in a one-di-
mensional potential V(x). Recall" that such eq-
uilibrium points are static solutions of the Eucli-
dean equation of. motion

(10b)

D0~w =, w+b0 xwOj 8&d 0

"DOg BO' = -bo Do bo .
(10c)

The source currents first appear in the equations
for the first-order potentials, which are most
conveniently written in the Euclidean four-dimen-
sional notation



1172 STEPHEN L. ADLER

b~a = (bo„ i~i), (11a)

D'w =b'x w0 0 (11b)

D,'w =D»w =,- w+b, xw .
Rx

In the "natural" or "background-field" gauge"
where

Do~bi~ =0,
the first-order equations take the form

(D' b )' =DP);—b; + 2F' x b; =-J',

(12)

Pi gio Ei0 0 09
f'k j ~ k jm'gjm

0 0

Obviously, one solution to the above set of equa-
tions is obtained by expanding around the zero-
background-field solution to Eq. (10),

in asymptotic series in inverse powers of x. In
order for the integral of Eq. (17) to converge,
E,' and 5ai must vanish as 1/x2. at infinity. The
asymptotic behavior of B,', together with Eq.
(10b), implies only that b,' must vanish as 1/x at
infinity. Since it is not necessary for b, to have
the asymptotic form of a gauge transformation
G(S/Sx')G-' [with G an SU(2)-matrix function of
angular variables], the asymptotic behavior of
b0 does not define a mapping S'-S' analogous to
the mapping S'-S' defined by the asymptotic be-
havior of Euclidean finite-action solutions. "
Things get more interesting, however, when we
analyze the requirement that the electric field
contribution to Eq. (17) be finite." From E,'
=-D,"b'-1/x' we get D,'(b; b', ) =(S/Sxi)(b', ~ b')
- 1/x', which when integrated along the arc con-
necting radius vectors xx„xx, gives

b =b'=0,

for which Eqs. (11) and (12) reduce to

bJ=O
Bx

V2b" =-J"
1

with the Coulombic or quasi-Abelian solution

2 jeff
4+[/ x

~

9

2 2 8
- jeff &m

b,'= 2', ax' 4p (x —x„~

(14) (18)

Hence. ~bo'( must approach the same value in all
directions, "def ining a dimensional constant v 9

lim
(

b'
(

= ic .

The final step" in the classification is to define a
unit isotopic vector b =b, /~bo~, which inthe asymp-
totic region defines a mapping S -S with the
winding number

] Q A Q A

n = lim — d'S'e'"&'"'b' b' b'
Bm Bx Bx

This case is the non-Abelian analog of the usual
Abelian solution, and evidently does not give quark
confinement.

The possibility of interesting nonperturbative ef-
fects, within the classical equilibrium framework,
arises from the fact that Eqs. (10) admit nontrivial
background-field solutions with finite order-(-1)
energy E, „„,„,

2) -1E +E +EgTuon ~g I -i gluon 0 gluon g 1 gluon

(17)

a

8n

A 8 A

d bx ~iikeabc ba bb bc (20)ex' ax' ex'

(21)

consider now a finite-energy, static Euclidean
field configuration with asymptotic parameters
v and n. By an identity due to Bogomol'nyi" and
to Coleman et al. ," the energy integral of Eq. (17)
can be rewritten in terms of the topological quan-
tum number n,

When classified by their large-x asymptotic behav-
ior, these solutions group naturally into families
characterized by a parameter ~ with dimension
(length) ', and an integer-valued topological in-
dex n. To see this in a general way, let us con-
sider static Euclidean potentials and field strengths
as in Eqs. (10b), with finite energy integral Eq.
(17), but which need not satisfy the field equations.
of Eq (10c). I wi.ll assume that for large x = (x ~,
the potentials and field strengths can be expanded

Hence for the special class of self-dual solutions
of Eq. (10c) satisfying

B'=+K'0 0 9 (22)

Eaaii "aai =D4vg ~y$
~

(23)

and has no dependence on other parameters ap-

the energy is determined solely by the asymptotic
parameters,
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pearing in the solution. I suspect that self-dual
solutions are in fact the only finite E y ] „solu-
tions of the static Euclidean equations, just as
self-dual solutions are believed to be the only fin-
ite-Euclidean-action solutions of the full time-de-
pendent Euclidean Yang-Mills equations. '

Let me now examine the implications for Self-
dual background solutions of the principle of vir-
tual work. varying Eq. (17}and using Eq. (10c)
gives

5g- 1„o = lim D d „Eo -5bo, (24a)

indicating that for background solutions, changes
in energy can only arise from a transfer of energy
through the sphere at infinity. Since self-dual so-
lutions have 6E, „„=0for fixed &, all deform-
ations (i.e., zero modes" of the operator D'&»)
which have the asymptotic scale parameter & fixed
must satisfy the boundary condition

lim dS„' Zo ~ 6bo = 0 . (24b}

[It is easy to check that the dilatation 6b,'=(8/sv)b',
violates the condition of Eq. (24b). ] Hence in or-
der (g') ', self-dual background solutions with
given asymptotic parameters v, ~ describe energy
in equilibrium in the finite region of space, with
no energy transfer across the sphere at infinity.
This will continue to be the case when source
charges are added, provided that the surface
terms in orders (g')o', given by

5Eo &„,„~„=lim —D dS„'(Eo ~ 5b& + E~ ~ 5bo),

(25)

sn „„.„~„.= nm n fns'n, ' sn", , ,

also vanish. Since we in general expect b', -1/x
(or smaller) asymptotically we have 6b,'-1/x,
E,'-1/x', Eo-1/x' and the terms involving 5bo all
vanish. The term involving 6b~ vanishes because
5bo' vanishes asymptotically in general for defor-
mations at fixed v. (This is easily seen to be true
in the undistorted background-field gauge Do 5bo"

=0, where the asymptotic part of 6b'o must satisfy
bo x 5bo bo 6bo 0 and will be t rue in any othe r
gauge obtained by transformation" with a gauge
function st& which is bounded asymptotically. )
Thus, when source charges are inserted in a self-
dual background field, the virtual work equation
of Eq. (8a) is satisfied. Note that it is important
in this connection that the boundary condition of

Eq. (19) arises without the presence of a Higgs po-
tential, since when a Higgs potential is included
in the equilibrium equation, the background-field
energy can no longer be expressed entirely in
terms of the asymptotic parameters w, e.2'

To recapitulate the main conclusions of the pre-
ceding discussion, we have seen the following: (1)
Static Euclidean background-field configurations
of finite energy" necessarily involve a dimension-
al parameter e. Thus, they provide a natural
means for introducing a spontaneous breakdown of
scale invariance, which is essential to get the pos-
sibility of quark confinement. (2) Static Euclidean
configurations of charges built perturbatively on a
self-dual background field satisfy the principle of
virtual work, thus permitting the field energy in-
tegral to be reinterpreted as a quark potential en-

As a final general observation, $ note that the
background fields always occur in parity-conjugate
pairs, corresponding in the self-dual case to the
two choices of sign in Eq. (22}. Since the back-
ground field associated with a hadronic qq system
must have a definite parity, it will, in the clas-
sical limit, be an equal-probability-amplitude su-
perposition of background-field configurations
BDJ=Eoy and Bo~=-EOJ. In such a state, the expec-
tations of odd-parity quantities vanish, while the
expectations of even-parity quantities are those
calculated with either member of the background
field pair alone.

In the remainder of this section I review (and
correct in significant ways) the procedure devel-
oped in Ref. 2 for calculating the zeroth- and
first-order static potentials. I take the sources
to be a quark and an antiquark, with equal effec-
tive charge magnitudes ~Q&,'~&~=~Qt,'&' ~=Q (cf. the
discussion of Sec. II A above), and with the quark-
antiquark separation fixed at v ~X, —x, ~=2p. It is
first of all necessary to fix the q, q spatial loca-
tions and their effective charge orientations rel-
ative to the fixed choice of background field.
[Note that it is possible to introduce an arbitrary
SU(2) rotation between the effective charges and
the background field by first subjecting all phys-
ical quantities to an arbitrary local SU(2) rotation,
and then subjecting the background field a3.one to
the inverse rotation, bringing it back to its orig-
inally assumed form. I neglected this fact in the
discussion of Eqs. (44)-(55) of Ref. 2, which is
incorrect. ] The first condition to be imposed in
orienting the quarks is the zeroth-order approxi-
mation to the "compatibility conditions" of Eq.
( I),'

elf�dom

bb(x ) x jeff+ Htn(x ) y sn& sn& 0 / I 2 (28)
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(b„b)=-,f d'«b; ~ b' (27)

The remaining conditions are that, in the natural
inner product

static potential has vanishing order-0 contribution,
and it is also easy to see that the constant of inte-
gration in Eq. (8a) is such that the order-0 con-
tribution to E„„,„vanishes as well, "

p glupn p static (30c) '

associated with the differential operator L)2(» of
Eq. (13), the source current must be orthogonal
to all zero modes I»„ of Da&» [even if not normal-
izable in the inner product of Eq (27. )] which sat-
isfy the boundary condition of Eq. (24b),

To determine V, „,«, (and higher-order terms),
let me make a particularly simple choice of vari-
ation 5 in Eq. (Ba): I rescale the source current
by a scale factor X, J'- XJ", and take 6 to be
dldX. Then Eq. (8a) becomes

(2) (S)

(J, I)&s&) =0~ (28)

static ~D d sx ()&.(f)b
dX

(30d)

lim dS„'Ep b( ) 0.

The relevant zero modes are obtained by differ-
entiating the zeroth-order solution with respect to
all parameters (other than (&) on which it depends,
and always include the normalizable translational
modes

D'V = XdX 'dx '' ~ J"static dXdp
(30e)

with bs„ the solution of Eqs. (5a) and (5b) with the
source current rescaled by X. Integrating Eq.
(30d) now gives an exact expression for V„„,, to
all orders in g2,

O' '" '=D"(t&™s+ b'(x+a)(s) p (s) g&s p (29)

The gauge term D,"$I,'& is needed for the modes

5;,&t" ' to satisfy Eq. (12), but by virtue of Eq. (26)
it makes no contribution to the orthogonality con-
ditions of Eq. (28). The conditions of Eq. (26) and

Eq. (28) will in general fix the source locations
and effective charge orientations up to an overall
sign in the effective charges; a criterion for re-
solving this remaining ambiguity (which, as we

shall see, does not affect the static potential
through order g') is discussed below in Sec. IID.

With the quark spatial locations and effective
charge orientations fixed as a function of the sep-
aration 2p, I can now apply the principle of virtual
work to get explicit expressions for the order-0
and order-1 contributions to the static potential,

d'&b1" .J'. (3of)

Since from the definition of our perturbation ex-
pansion we have db&»ldh =g'b;+0 (g'), Eq. (30e)
gives an independent derivation of Vp „„i,=0, ob-
tained by using variations which do not deform the
background field. Consistency with Eq (30b),.
which holds for general variations, is possible
only when the source current is orthogonal to al/

zero modes (not just normalizable ones) satisfying
the boundary condition of Eq. (24b). Another way
of saying this is that unless the zero-mode ortho-
gonality condition is imposed, the background-field
approximation procedure does not generate a true
solution of the original differential equation sys-
tem given in Eqs. (5).

From Eq. (30e) we get the expression for
~1 static~

2 TJ' + ~ ~ ~~static "0 static & "1 static

The order-0 contribution to Eq. (8) gives

(30a)

(3ob)

The first-order perturbation b, can be calculated
from the source current by

which vanishes since 5bp is a zero mode and thus
is orthogonal to the source current. Hence the

b'"(«) fd «c"'"(«=«)d "'(«)

where G"''"(x,y) is the propagator defined bv

(31)

[D' D G"' "(x,y)+21 '( ) &&/" "(x,y)]'= Q' ' "( y)
(32)

qss b bb«(X y) 6C&b5)bb«5S(X y) 5&,'& (x)t)&~&(y) .
1&prmal i zabie
zeip mpdes s
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In evaluating the first-order static potential, it is convenient to define a subtracted Green's function by
separating off the leading short-distance singularity24 and removing divergent or ambiguous terms involv-
ing the zero modes,

gab gVG"'"(x,y),„„=G'"' (x, y) —
4 ~

— Q C(s)t)(s)(x)t&(",)(y),() () (33)

giving for the first-order static potential-

D-ly (1) ' (2)
1 static 4& ~g

Q(1) z)(2) Om Om 63&X X ')+ &1)( 1 2} &2)( 1 2} (1) (2)
4~ 4)~ 2 3 (1) (2) & 1 2~ ~&-x ~'

i1 2 1 2

+b0(xt)[(xi —x2) v( )(1T( ) 2—(x( )2(o)(1x —1 x2) ]})x, -x, [

eff eff l

4,
r4' '4 5o(x } 'bo(x }—@(1~I 'bo( 2@(2I b0(xl)](6 o(t& (2& ~( )ot2))

+ 2 d'Xd'y J'f' X G'"'" X y J "
y (34)

fn writing Eq. (34), I have followed the usual pro-
cedures of dropping the divergent quark self-ener-
gies arising from the divergent part 5"5""/
(4«~x- y ~) of the propagator, and of supplementing
the naive spin potential by the standard contact
term." I have also made explicit use of the fact
that the source current has been orthogonalized to
the zero modes. The individual terms in Eq. (34)
are not gauge invariant because the separation of
G'"'"(x,y) into subtracted and divergent partsde-
fined in Eq. (34) is not a manifestly gauge-invari-
ant procedure. Note, however, that the divergent
quark self-energies +&&I &s)&(I/(4«~x, —x, ~),
Q;2&. Q&2I/(4&& ~%2 —x, I) which have been dropped
are gauge invariant (the spin self-energies are
irrelevant, since we recall' that only spin terms
bilinear in the j and q spins are determined by
our procedure&, and so the sum*of all terms in
Eq. (34) gives a gauge-invariant static potential.
Quark confinement, in the background-field
approximation, would be signaled by an indefinite
increase of the final term of Eq. (34) as the quark
separation is increased to infinity, indicating a
focusing of the quark flux lines into a stringlike
configuration as a result of the influence of the
background field. In Appendix B, I show that pqs.
(30f}-(34)are the same equations for V),«„as

D;„D,„~"(x,y) = 6"63(x y),

with the result [the signs (w} correspond to the
signs ~ in Eq. (22)]

(36)

0'" "'(x, x) =Z"'"""'f z('z(sz(x, z)]-
x [D"n(y a)]"

q(%)P, VXK QPXQPK + Q+VtI)XK PPKPVX + Z P VXK

~0123

(36)

In the self-dual case, there are also powerful
techniques" which enable one to construct the

are obtained when the Wilson loop method for com-
puting the static potential is applied to a static
Euclidean background field. A method for evalu-
ating the spin-orbit potential is given in Appendix
C.

As discussed in detail in Ref. 2, for self-dual
background fields the techniques of Brown, Carl-
itz, Creamer, and I.ee" can be used to give an
explicit construction of the vector propagator of
Eq. (32) in terms of the scalar propagator &"(x,y)
defined by
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scalar propagator itself. In Sec. III, I give an ex-
plicit calculation illustrating the methods described
above when the background field is the n =1 spher-
ically symmetric Prasad-Sommerfield solution.

D. Discussion

I turn finally to a discussion of two issues
raised by the procedure for calculating a, static
quark potential suggested above.

1. Scale fixing and quantum stability of the confined state

The first issue concerns aspects of a theory of
confinement which are not purely classical, but
where inputs from the underlying quantum field
theory are needed. The perturbative construction
described in Secs. IIB and GC clearly does not
give a unique classical equilibrium configuration,
but rather a discrete set of such configurations,
corresponding to allowed" self-dual background-
field solutions with different values of topological
index n, and to an overall effective-charge sign
ambiguity in the allowed source charge insertions
in each background. Furthermore, as we have
seen, each configuration with n 10 involves an ar-
bitrary dimensional scale parameter v. A nec-
essary condition for there to be a classical de-
scription of confinement is that there exist a self-
dual background configuration which gives a con-
fining static potential in order g'. . A full theory
of confinement, however, will require two essen-
tial inputs from the underlying quantum field the-
ory: (i) First, the quantum theory must guaran-
tee that, in the limit of large quark separations
(and infinitely massive quarks, so that quark pair
creation can be ignored), the equilibrium configu-
ration built about the confining background field is
the true ground state and is stable against quantum
decay. The quasi-Abelian equilibrium solution of
Eq. (18), corresponding to vanishing background
fields, must be a metastable state, which is un-
stable against making a quantum transition into the
confining configuration when furnished with the re-
quisite transition energy. Another way of putting
this is that if a qg pair is created in the quasi-
Abelian state with very small separation, the sys-
tem must become unstable against making a first-
order phase transition to the confining state when
the quark-antiquark separation is increased suf-
ficiently. I give below a simple mechanism which
accomplishes this, based on Euclidean path-inte-
gral quantization ideas. (ii) Second, the quantum
field theory must relate the scale parameters f(.

appearing in the various sectors with different
particle content, together with scale parameters
associated with renormalization points, in such a

way that only one overall scale remains undeter-
mined. A plausible way to get this scale fixing is
to require that the asymptotic condition
lim„„b' ~ b' = v' be maintained in the presence of
quantum corrections in the form lim„(b' b')
=v', that is, radiative corrections should not re-
normalize the scale parameter &.

Returning to the question of quantum stability,
I make the assumption that when quark loops are
neglected, the procedure for quantizing algebraic
chromodynamics is to quantize each overlying
classical SU(j) Yang-Mills theory by the usual
path-integral procedure. Hence I will study the
Euclidean path-integral quantization of an SU(2)
gauge theory with external sources. Just as in
the discussion associated with Eq. (9) in Sec. IIB
above, it is useful to first consider the a.nalogous
Euclidean path integral for the quantum mechanics
of a particle moving in a one-dimensional clas-
sical potential V(x), which is formulated" in
terms of the functional integral

Z=N dx e

1 dx
S = dt — — + V(x)

,
2 dt

(37)

In the neighborhood of an equilibrium point x,
where V'(x, ) =0, the Euclidean action can be ap-
proximated by

S@—— dt — — + ~ (x —x,)2V"(x,) + V(x,)

(38)

Z=N d b~e (39)

which gives a convergent Gaussian functional in-
tegral provided that V"(x,) & 0. Suppose, as dis-
cussed in Ref. 12, that there are two equilibrium
points x,x, , both with V")0 but with V(x„)
cV(x, ). Which of the two is the true quantum-
mechanical vacuum which is stable against quantum
decay? The answer" is given by the following
rule: Regard S~ as a free energy functional of the
type familiar in statistical mechanics. Then the
classical equilibrium configuration of minimum
free energy is the true quantum vacuum. In the
above example, this rule gives the intuitively ob-
vious answer that the vacuum is the equilibrium
point with the smaller (smallest if there are more
than two candidates) value of V(x,).

Now let me return to the case of an SU(2) gauge
theory, with external sources, where the relevant
functional integral .is
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with Ss the action functional given in Eq. (8b)
above. As emphasized in Sec. IIB, the solutions
to the classical equilibrium equations Eqs. (5) are
analogs of the equilibrium points x, in potential
theory, so let me label them by a subscript c.
The total potential b" is then the sum of a clas-
sical and a quantum part, b'-=b,"+b,", and since
the classical solutions are extrema of Ss (for
fixed quark variables), we have

since E~ -8' is a total derivative, a term"

aS = QD dsx —E' ~ B'
g 2 (43)

(with P a complex constant) can be added to the
Euclidean action of Eq. (8b), leading to an ad-
ditional term in T 'Ss, given by Icf. Eqs. (21) and
(22) l

S~ =quadratic in b~+S~, ,

S~, =DT d'x, E, E&+B~.B~

(40) T 'nSs, =(f&D
g

d3x —
2 E', .B',

4m'
g 2 (44)

D4~q In )

2 g Vl stat ic
(41)

Dc d'xb J"cl

the classical action becomes

4m )n)
Ec g2

cO + cO syin

where I have made explicit use of the fact that the
equilibrium fields are Euclidean-time-independent.
In order to define the functional integral of Eq.
(39), it is of course necessary to add to the action
a gauge-fixing term $(D;b,")' and a compensating
ghost term, but these are simply additional parts
of the quadratic fluctuation term in the action,
and play no role in the stability analysis. I now

apply the rule stated above, according to which

S~ plays the role of a free-energy functional in
our analysis. Again, this rule predicts that the
classical equilibrium configuration of minimum
free energy Ss, is the true quantum vacuum. De-
veloping T 'S~, in a perturbation expansion in
coupling g' as was done in Sec. DC above, and
using Icf. Eqs. (23), (30c), (30f), and Ref. 8]

Only the real part of Eq. (44) is relevant to the
stability analysis, and so the effective f ree-energy
functional is given by

F, =- T '(Ss, +Re&Ss,)

. 4m&
2 (I'"I+"Rek)

-D d xbo ~ J +B~

g 1 i s~a~ie+0(g ) ~ (45)

Equatior (45) exhibits a number of very interest-
ing features. Fi-rst of all, the term g'V, „,«, ap-
pears with a negative coefficient. " Hence if there
is a confining equilibrium solution, for which

g V, „„,, becomes infinite as the q-q separation
approaches infinity, this solution (and not the
quasi-Abelian solution) will be the true quantum
vacuum for large q-q separations. Second, the
presence in W, of a zeroth-order term linear in
the effective charges resolves the effective charge
sign ambiguity discussed above, requiring effec-
tive charge alignment to give J d'xb', ~ J'&0, and
justifying the procedure of dropping parity-odd
quantities in averaging over parity-conjugate back-
ground solutions. Finally, the .stability analysis
at small q-q separation will be dominated by the

g ' term in Eq. (45); the details here will depend
crucially on the value" of the constant. Re/ in the
total derivative term &Ss of Eq. (43). For fixing
the value of Re/, just as for fixing the value of
the scale parameter ~, a deeper analysis of the
quantum structure of the theory is needed. (See
added note. )

-g'~, ...„.+o(g') . (42)
2. Classical stability considerations

There is one possible additional contribution to
Eq. (42), arising from the fact that it is ajways
permissible to add a total derivative to the action
without changing the equations of motion. Thus,

The second issue concerns the implications for
the validity of the background-field approximation
of the very interesting classical stability theo-
rems" proved by Coleman, Deser, and Weder."
These theorems state that there are no finite-ener-
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III. STATK POTENTIAL IN A PRASAD-SOMMERFIELD
BACKGROUND FIELD

I turn now to the task of completing the calcu-
lation, begun in Ref. 2, of the static qq potential
in a Prasad-Sommerfield background field. The
background potentials, which are readily verified
to give a solution of Eq. (22), are

x
h = v —,(1 —&x coth~x),

&&'&x~ wx

x' sinh~x

(46)

gy, nonsingular solutions of the Minkowski space-
time Yang-Mills equations for which the energy
within a sphere of radius 8 remains greater than any
positive e for all time. In colloquial langauge,
classical "lumps" or gluon bound states are not
possible. As applied to the background-field con-
figurations discussed above, the theorems state
that when such configurations are introduced as
Cauchy data in Minkowski spacetime at t =0, the
energy which is initially concentrated in a finite
radius rapidly disperses. At first sight this would
seem to be a disaster for the program outlined
above, but I believe that in fact it is not really a
problem, for the following two reasons. First of
all, even for a pure background configuration with-
out source charges, it is clear that despite the
spreading of energy the topological quantum num-
ber n of Eq. (20), which depends only on the as-
ymptotic scalar potential, does not change when
the time evolution is calculated with a sufficiently
regular gauge fixing." Hence a topological gluon
bound state, "even when spread very thin, retains
its distinguished topological character. Second,
the insertion of source charges was an essential
ingredient of the construction of Secs. IIB and IIC,
and when source charges are present the Cole-
man-Deser-Weder theorems no longer apply. The
physical reason for the failure of the theorems in
the presence of the source charges is evident:
Since the presence of the background field changes
the static potential of the source charge configu-
ration by a finite increment, and since energy con-
servation in Minkowski spacetime requires this
increment to be constant in time, the configuration
of sources plus background cannot relax to a Cou-
lombic source solution with all of the background
energy at infinity. What the Coleman-Deser-Wed-
er theorems do imply is that the procedure of per-
turbing about a background solution, while valid
on the initial time slice in Minkowski spacetirne,
cannot be uniformly valid for all Minkowski times.
No matter how small the coupling g', the back-
ground configuration will eventually spread to the
point where the effect of the source charges can
no longer be treated as a small perturbatiori.

In order to keep things relatively simple, I will
neglect spin forces throughout, since they are
only a small perturbation on the dominant charge
interaction terms. As in Sec. II C, I take the
quark and antiquark effective charges to have eq-
ual magnitudes Q, and fix the quark-antiquark
separation at z ~%, —%,

~

=2p. The first step in the
calculation is to fix the q, q spatial locations and
effective charge orientations. Substituting Eq.
(46) into the zeroth-order compatibility condition
of Eq. (26), and dropping spin terms, gives the
conditions

x x 'Q'' f = 0 n = 1 2 .n (n) (47)

That is, the quark effective charges must be ori-
ented parallel or antiparallel to their radius vec-
tors. The next step is to orthogonalize the source
current to the zero modes. The translational
zero modes may be calculated from Eq. (29) [or
equivalently, by substituting Q =boo into Eq. (85) of
Ref. 2, which gives them directly in the back-
ground-field gauge], with the resulting condition
on the source charges

n=1 n n

Since the function f(z) = 1/z' —1/sinh'(a) is mono-
tone decreasing for 0(z & ~, the only simultaneous
solutions of Eqs. (47) and (48) are

or

eff x e f = x
(49)

and so the source locations and effective charge
orientations are fixed up to the sign ambiguity in
the effective charges discussed in Sec. II. I will
assume, in the remaining discussion, that there
are no other zero modes (such as distortions of
the Prasad-Sommerfield solution) to which the
source current must be orthogonalized, although
this is an important open question. "

To evaluate Eq. (34) for the order g' static p-o-

tential, it is necessary to calculate the vector
propagator G'"'"(x,y) in the Prasad-Sommerfield
background solution. By Eq. (36), this propagator
may be expressed in terms of the scalar propaga-
tor in the same background field. An explicit con-
tour-integral formula for the scalar propagator,
in the singular gauge where the background poten-
tial takes the form 5 ( )=x-g' '""'s"in'(x), was
constructed in Appendix A of Ref. 2." The evalu-
ation of the contour integrals is basically straight-
forward, but tedious. The only minor subtlety
that arises is that it is important to take the tri-



19 CLASSICAL QUARK STATICS

angle inequality into account in determining the
locations of singularities relative to the integration
contours. For example, in the integral

82 tvdv, , &= x —y

G~~(x, y), „»=-x'y'G"' "(x,y; )t =1),„„.
In order to obtain a convenient expression for
G~~(x, y).„», I use Eq. (36) to get

x'O'G" n(x X 1)=f '4 sn'(x, x;1)"

(52)

the pole v =--,'i(&+ y —x) always lies in the lower
half complex plane, and so makes no contribution
when the integration contour is closed up. The re-
sult of doing the integrations is a very lengthy ex-
pression for the scalar propagator in the singular
gauge. The final step in the calculation is to use
the complex matrix of Eq. (A4) of Ref. 2 to rotate
this propagator to the physical gauge, where the
potentials are given by Eq. (46}. The rotation not
only cancels away all imaginary terms in the sing-
ular gauge propagator but also greatly simplifies
the remaining real terms as well, yielding the
relatively compact expressions for the physical-
gauge propagator &" given in Appendix A below.
(The simplification which occurs in doing the
gauge rotation suggests that there should be a bet-
ter way of doing the calculation, in which one
transforms directly to the physical gauge before
doing explicit evaluation of integrals. ) As a check
on the final result for &", I used numerical meth-.

ods to verify the scalar propagator differential
equation for a representative set of values%, y,
approximating derivatives by finite differences on
a very fine mesh. Relevant formulas for the dif-
ferential operator Do Do are also given in Appen-
dix A.

When spin terms are neglected, and the geomet-
ry of quark orientations and the scaling property
of Eq. (Al) are taken into account, Eq. (34) can be
rewritten in the form

2

t ()t(itic 4V t( P} 2 1 sx stt g
p

(51)

with

vt(p) =4w[G (pxt pxt), „»

+ G ( pxt 1
—pxt)s„»] 1

xa'(y z 1) '

with

&'(x y 1)~'

9
, &"(x,y)+e'"'b,"'(x)a"( xy)

K=1

An explicit expression for &'(x, y; 1)~' is given in
Appendix A. From the formulas given there, it is
easy to see that the leading singularity of the inte-
grand of Eq. (53), when x —z and y —z are both
small, is

1h'(x z 1)~'a'(y, z l)~» =,x y
)t- t.'- o

y-z 0

(z -%) ~ (z —y)
3 ~ ~ 3Iz-xt lz-yl

(55)

which gives the expected Coulombic singularity
when integrated over z,

1 „„(z—x) ~ (z —y)
(4v)'

i z —x i'
i z —y ['

1=x y . (56}

Similarly, the leading large-z behavior of the in-
tegrand of Eq. (53) is

1 „1 1 1 . 1 1~~(x z 1)"»(y z 1)" x-9—
(4s) x' x' sinh'x y' s(nh'X ) (5V)

which when integrated over z is proportional to a linearly divergent constant times a sum of projected
translational zero modes,
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(4v)2 g' x' sinh x y' sinh'y (58)

Hence comparing Eq. (33) with Eqs. (52)-(58), we see that

G»(x y) „= d z[b~(x, z;1)~ &~(y 8'I) j

[~ (x~, z;I "n.'(y, z;1",„„=&'x,~; "&' y, r; )"-
4

1 „(z-x) ~ (z —y)

(59)

1 „„1 1 1 1 1
(4~)' z* x' sinii'x i' sinli'i )

The integral in Eq. (59) is now convergent since
the potential logarithmic divergences arising from
the regions ~z —x~ 0, ~z-—y~-0, and z-~ all
vanish after the respective angular integrations
JdQ; „-, JdA; ~, )dQ; are done 24 Equation (59)
cannot be expressed in terms of elementary func-
tions, so I evaluated it by numerical integration,

with due attention to the need for symmetric angu-
lar integrations in the neighborhood of the points
z =x, z = y, z = ~. In order to minimize truncation
errors, I rewrote Eq. (59) in terms of subtracted
versions of the individual factors appearing in the
integrand, defined by explicitly removing leading
short-distance and large-distance behaviors,

&'(x, z; 1)~„'„—= &'(x, z; I)~~— 1 x'(x -x~)
4m z x' sinh'x 4n ) z—

[a'(x, z 1) '&'(y z 1) 'g =b, '(x, z 1)~' &'(y, z;1) '+ ~ ~ ~

(80)

The results of the numerical integration for n, ( )pare shown in Fig. 1, together with the Coulombic poten-
tial -1/(2p) and the total order-g potential u, (p) —1/(2p). The fact that n, (p) is everywhere positive in-
dicates that the effect of the background field is always to focus, rather than defocus, the quark color flux
lines. Note that an interpretation of V„„«,in terms of the density of quark color flux lines is warranted,
because from Eqs. (8a) and (10a) we have

&'x 2 D(E,' E, + B,' &,'+ 2E(~) ~ E,'+ 2130' ~ B2') —(divergent tluark self-energies), (61)

with E,", and B,', the changes in the color electric
and magnetic fields produced by adding the quarks
to the background-field configuration. However,
the focusing effect is not strong enough when the
quarks are far apart to give a confining potential.
The numerical results (for p & 10) indicate that
u, (p) =1/p for large p, g'iving u, (p) —1/(2p) =1/
(2p) in the asymptotic region. What evidently hap-
pens is that there is a significant focusing effect
when the quarks are located in the central strong-
background-f ield region p ~ 2, but not when the

quarks are in the asymptotic region of the back-
ground, where the background fields Eo Bo vanish
as 1/p'. In order- to get the possibility of confine-
ment, it appears that one needs a family of back-
ground-field configurations characterized by four
parameters a, a, in which the bulk of the back-
ground-field energy is concentrated around the
points +a, and for which orthogonalization of the
quark source current to the deformational zero
modes selects a value of a which, after transla-
tional orientation, puts the q and q in the strong
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The added surface term at infinity, when combined
with the cha. rge interaction term, can be reinter-
preted as the volume integral of a total divergence,
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FIG. 1. Order-g2 potentials in a Prasad-Sommerfield
background field, as defined in Eqs. {51)and {52) of
Sec. III.

DT — d'xb J + — d'S~b E
C 2 C C

sphere
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around source
charges

d S'b 'E~
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background-field regions. Such a family of back-
ground fields would obviously not be spherically
symmetric, but it could still have axial symmetry.
It is not at present known whether there are ax-
ially symmetric solutions to the self-dual back-
ground-f ield equations. "

IV. OUTLOOK

In order for the classical approach to quark
statics, outlined in this paper and in Refs. 1 and

2, to give a theory of confinement, two well-de-
fined problems must be solved. First, as re-
viewed in Sec. IIA, a construction for the quark
color charges and outer and inner products must
be found which has the Jacobi and (restricted)
trace properties. " Second, as discussed in Secs.
HC and III, a self-dual background-field solution
(very likely, an axially symmetric one) must be
found which gives a confining potential in order
g'. (A particularly interesting question in this
regard is whether the e =1 spherically symmetric
Prasad-Sommerfield solution can be embedded in
a more general axially symmetric family of ~ =1
self-dual background-field solutions s') A solution
to the second problem alone would permit the cal-
culation of the qq static potential in terms of the
two parameters & and g,«'. A solution to the first
problem is needed to get a color Hilbert-space in-
terpretation, and to open the way to the construc-
tion of an underlying quantum field theory.

Note added in proof

There is a simple and natural modification of the
definition of the Euclidean action functional, which
eliminates the order-(g') ' terms which complicate
the stability analysis of Sec. IID1. The modifica-
tion is obtained by replacing Eq. (40) by

1
+

g sphereat

,. (b', ~ E',), (N2)

d S'b 'E~
C C

D
T S~- Ec g2

d'x-.'(E +B )'

sphere
at oo

d S'b~ ' (E~+B',o)

(Ns)

and vanishes for both self-dual and anti-self-dual
background fields. The added surface term pro-
duces no change in the higher-order contributions
to S~,. Equation (45) now becomes

0, =D 2 n Re/ —D d'x(b, o
' J'+ B,o ' 8, „)

—g'V»„,«+O(g ) (N4)

and the order-(g') ' term vanishes when the con-
ventional choice" Re&] = 0 is made for the coeffi-
cient of the pseudoscalar total derivative term.
Thus, 0, contains no (g') ' term and there is now

no danger of a phase transition out of the confining
state at small q-q separations. That is, with the
redefined Euclidean action and free energy, there
is no free-energy penalty associated with having
topologically nontrivial background-field configu-
rations.
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APPENDIX A: PROPAGATOR FORMULAS

&. =
2 ~(~"If,(e,)+f,4,)]

1

-e "I.f, (e. )+f,(e,.))}
slnh(l —(y)x

d(y e ~ coshzy

In giving formulas for the scalar propagator &"
in the Prasad-Sommerfigld background field, it is
convenient to set ~ =1; to change to general ~ one
uses the scaling law -e 'Lf, (e .)+f,(e..) l)

(A4)

Writing

= &L"(vx, vy; 1) . (A1)
2 sinh 1 - o, )y

d(y e cosh(yx

gabx y. l y gab
4m sinhx sinhy

I find the following expression for Z":

Z"= o',.b x, y X,. x,y,

(A2)
a=fx-y(,
8 =x+y —+) 8+ =x —y —+)

z, =-x+y —&, z =-x —y —6,
e' —1

( )
e'-1 e

z 8'
c b

b X ~ P b X X
cr' =5' +, x'y-

x y x

gab Xayb

&a b xby a gabx
3 )

0'4 =
X2

X

y'y
y2

(AS)

It is easy to verify that, despite the factors x '
and y

' in the a' s, Eg. (AS) is in fact analytic near
x =0 and near y =0. Near x =y, Eg. (A2) has the
expected short-distance singularity

gab
4'~(x, y;1) ~ +g(1)

o 4w

0'5 = ~ y —x

&, =
&~ [f,(e..)+f,(e )+f.(e, )+f.(e .)I1

do. (1 —o, )e ~ coshox coshoy,

while the limiting behavior for large y, with x
fixed, is

1 x' 1 y'
b "(x,y;1) ~ —cothx ——

4m x x

coshx coshy —e ~ sinhx sinhy
x y x y

L-f,(,.)-f,( )+f.(, )+f,( .)l1

2 'd,1, ~ sinh~x sinhay

(A6)

which has h (x) as the x-dependent factor The.
expression for the differential operator D„"D„"used
in verifying the propagator differential equation is

8 ', 8 aP'+C Q'+C x~' . Q'+C x'x'Q~+C x~ P~+C x'
ex' ' ' ax' 3 4 gxa 8x'

C, = — . - cothx
1

C, =2 ——cothx C, —1+C (A7)

C, =-C4.

The projected covariant derivative of the scalar Green's function, defined by Eq. (46) of the text, is given
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by the following formulas:

a'(x y I)~'= . o"(x,y)~.(x, y),b 1
4w sinhy

1 % ~ y 8X4 x
r, ( xy)=

sinhx 4 & B~ sinh'x

2 xcoshx x st, x' %.y ea,
Tax y)= . — . , X2+ '+

sinhx sinh'x ' sinhx sx & sinhx 86

1 BX4

& sinhx s&
x

sinh'x
(A8)

1 xcoshx x BX4 x2- x ~ y BX'+
sinhx sinh'x ' sinhx Bx & sinhx

x2y2 8X2 x
r, (x, y) =- X5,& sinhx B~ sinh'x

with

BZ 1 1I+ ~ X4+ 2 ~ (e"[f,(z,)+f,(z )]—e "[f,(z, )+f,(z..)]],
1 1' =- —x4+ ~ (e"[f,(z,)+f,(z )]+e-"[f,(z, )+f,(z„))],

B) 2 1 coshx coshy —e e
x2y2 Q2

(A9)

BX2 2 1 sinhx coshy coshx sinhx sinhy
+

Bx x xy 6 x x y

In the region y» x, y» 1 the following formula is useful:

4'(x, y; l)~'= —x'y'v2+ ~ y' —x~,
~
v,' +O(e '),

1 1 1 x2-X y coshx

y x /y x sjnh2x 6 y x sjnhx

y coshx x 1 1 1
7 +

sinhx sinh'x & y+& —x y+ &+x

(AI0)

APPENDIX B: CALCULATION OF V . FROM THE WILSON LOOP

I show in this Appendix that Eqs. (30f)-(34) for the order-g static potential V, „,«, are also obtained

when the Wilson loop method' for computing the potential is applied to a static Euclidean background field.

I write the Euclidean Wilson loop formula (neglecting spin terms) in the form

d bg exp -D d4x 2
E' EJ+B~.B~ —zD

2g
d4xbo J'(x)

I

-1

x d b" exp -D d4x E~ ~ E~+ ~ B~
Q 2

exp -iD 4x b'(x) ~ J'(x) = e-vstatsc& ~»
(large T)

T/2

T/2

dx' d'x, B1
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with J (x) the static source current of Eq. (6). .The exponent iD-f d'xb'(x) 'J'(x) is just the natural gener-
alization, for the case of static Yang-Mills point sources, of the Abelian Wilson loop integral -i p dx'b&(x)
evaluated over a quark-antiquark loop of temporal extent T. The only unconventional feature of Eq. (Bl) is
the fact that I have allowed for the presence of a phase term on the right-hand side, which I assume does
not represent a true contribution to the potential energy.

To evaluate the functional integrals, I write b" =b," +b,", with b," a static Euclidean background field solu-
tion. Shifting to b, as the new variable in the functional integration, Eq. (Bl) becomes

e 1

d[b;]exp — d 'x Q(b;) —iD d'x b', (x) ~ J'(x) d[b; ]exp — d'x Q{b;)
I

I

= e ~"""r, Q(b,")= small fluctuation action quadratic in b;, (82)

where the frequency in the phase term of Eq. (B1) has now been identified as

n =-D d'xb', (x) J'(x) . (B3)

This is just the order-g term which, we saw, was present in the free energy functional of Eq. (42) but
not in the static potential or energy functional; I believe that the presence of the phase term is an indica-
tion that to do mean field theory properly in the presence of a background field, one should really not use
Eq. (Bl) but rather use the two-functional (free energy, energy) alternative developed in the text.

To evaluate the order-~' contribution to V„,«„ one develops the left-hand side of Eq. (B2) in a power
series in the source current J', through terms of order (J')', and compares with the expansion
exp(-V„,«,T) =1 —V„,«,T+ ~ ~ ~ of the right-hand side, giving the formula

D2
d'P, .,. .T= — d'xd'"(xl d'yd"(y) d(b;]exP — 'dQx(b.") b (x)b;(y)I'

1
db; exp — d xgb, (B4)

The Gaussian integral on the right of Eq. (B4) may be readily evaluated" in the background gauge D; b," =0
(with now Doo = 9/sxo+ b', &&), giving the result

g'V, „„,,T =g'D —,
' d'x d'y Jdo(x)J"(y)Gdo "(x,y ~x' —y') . (B5)

Here G"'"(x,y ~x' —y') is just the time-dependent version of the propagator defined in Eq. (32),

[D;„D,'„G' '"{x,y ~x'-y')+2t (x) x G"'"(x, y ~xo- y')]d = q'~'"(x, y)5(x' —y'),

d(x'- y')G'"'"(x, y ix' —y') = G"'"(x,y), (B5)

and so Eq. (B5) gives

D 'V = —' d'xd'y J' (x)G' ' (x y)J" (y)

in agreement with the result obtained in the text.
[In order for Eq. (B7) to be convergent and unam-
biguous, it is of course still necessary to choose
the source positions and orientations relative to
the background so that J' is orthogonal to the zero
modes which satisfy Eq. (24b), and to subtract off
the divergent Coulomb self-energies. ] Thus, the
order-g' confinement criterion stated in the dis-
cussion following Eq. (34) of the text agrees with

the Wilson-loop criterion as applied to quarks in
a static Euclidean background f ield,

APPENDIX C: EVALUATION OF THE SPIN-ORBIT

POTENTIAL

Although the formalism developed in this paper
is strictly applicable only to static quarks, it is
easy to infer, by analogy with t;he Abelian case
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1 static 1 static (charge-charge)

1 static (spin-spin) ' (cl)

Keeping x, cs„so that the contact 6 function does
not contribute, the spin-spin potential can be writ-
ten in the two equivalent forms

the rule for evaluating the spin-orbit interaction
potential (which is the most important nonstatic
correction). E&luation (34}of the text, after aver-
aging over self-dual and anti-self-dual background-
field solutions, contains no charge-spin interaction
term, and thus takes the form

'jeff 1 j
~ M(1) 2 +(1)

1 static (spin-spin)
mq

Pjeff & ~j
t ~&a» +&a&

m,
(c2)

which identifies the color magnetic field B,' (x,)c(g) 1
[5~ (x,}]induced at x, [at x, ] by the spin moment
associated with a&» [with o&»]. Similarly, let
E~z (x„) [E' (x,)] be the color electric fields in-
duced at x, at x, by the color source charge
gP&P&], as obtained from the order-g' perturbation
analysis. In terms of these quantities, the spin-
orbit potential is given by

L)-'V, .„...„„= g;«, [1.$5~ (x,)+5.' (x,)1.~]+@;,", [I.tB,' (x,)+5.' (x, )Z„~])

1 .g;,", [R,'„,(x, )P, +P,"E,'„,(x,)]o,"„e™+4;.", [%&„,(x, )P. +p, E,'„,(x,)]c"„,d "),
q

I j ~jim (x x )&Pm f j ~jim(x x )ltm (c3)

This expression is justified by the fact that it is the unique, gauge-invariant, "parity-even generalization
of the Abelian spin-orbit interaction arising from the Breit equation. "

~S. L. Adler, Phys. Rev. D 17, 3212 (1978).
2S. L. Adler, Phys. Rev. D 18, 411 (1978).
A related (but not identical) approach to the problem of
finding a semiclassical approximation to quantum chro-
modynamics ha, s been proposed by R. Giles and
L. McLerran, Phys. Lett. 79B, 447 (1978).

The definition of I' as anti-Hermitian, rather than Her-
mitian, is purely a convention. An investigation of
generalized parametrized recipes for the, color charge
algebra by S-C. Lee (unpublished) has shown that there
are parameter values for which the minimal algebra
containing Qq and Q—is only two-dimensional, but that
this two-dimensional algebra can nonetheless be em-
bedded in a five-dimensional algebra with Jacobi and
trace properties. The definitions and theorem of Sec.
II A would have to be reformulated to apply to such
degenerate cases, which may well be of physical in-
terest.

5P. Cvitanovic, R. J.Gonsalves, and D. E. Neville,
Phys. Rev. D 18 3881 (1978); V. Rittenberg and
D. Wyler, ibid. 18, 4806 (1978); I. Bars and C. M.
Sommerfield (unpublished).

6The effective Lagrangian for each overlying algebra
has the form of a classical Yang-MOls Lagrangian,
multiplied by a scale factor D which depends on the
underlying color group and the color state being
studied. The same factor appears as a multiplier
in the expression for the field energy.

~The notation follows that of Ref. 2, except that here I
use the notation b, rather than A., for the scalar po-
tential.

As explained in Ref. 2, the noncommutativity of the
Pauli spin matrices 0&„~ is to be ignored in all calcu-
lations. This approximation still permits the evalua-
tion of spin interaction terms bilinear in the q and q

spine. The spin currents J, ;„,J, , are defined so as
to satisfy

d'x did ~ J . = d3x

dbms

. J~ . .
spin spin o

the factor of i in &), , (which was omitted in Ref. 2)
is necessary to get the correct sign for the dipole-
dipole interaction. Since terms linear in the spins
are parity-odd and, as explained below, average to
zero, all spin energies are real. The sign of the spin
current &) P~;„has been taken from the Euclidean con-
tinuation analysis of F. Wilczek and A. Zee, Phys.
Rev. I.ett. 40, 83 (1978).

SFor example, in evaluating the Wilson loop integral.
[K. G. Wilson, Phys. Rev. D 10, 2445 (1974)l to get
the Coulomb force 1/(4&8) between test charges, one
evaluates the singular Minkowski space integral
j dt (T(AO (R, t)AO(0, 0)})by contour rotation to the
absolutely convergent Euclidean form

The "ie" prescriptions which define a Minkowski field
theory are all fixed by the continuation from the Eucli-
dean region.
I wish to thank C. M. Sommerfield for a helpful con-
versation about this.

~~SpecificaQy, the first term in Eq. (8a), divided by
the total time interval T, is just the Minkowski-space
field energy or "gluon energy" Et&„»= J d x TO&0„„,

where T",„,„ is the Minkowski-space gluon stress-
energy tensor. Note that according to Eq. (8), T ~Sz
is a Legendre transform of E ~&„,„, which is extremized
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by the static equations with the quark source currents
J,g, ,„held fixed. Hence it is not surprising that S~
plays the role of a free energy in the stability analysis
given in Sec. IID below. Both of the functionals Eg/Upn

and Sz are manifestly gauge invariant under the general
gauge transformation 6b ' =DJ Q Bv v Q v b,

B~, J,J p which is an invariance of Eqs. (5) and
(6). In my conventions, the Euclidean and Minkowski
covariant components of dynamically independent fields
are identical; the continuation from the Minkowski to
the Euclidean region is accomplished by continuing the
metric g&„ from one of signature -1 to one of signa-
ture 1;.being careful to include the appropriate factors
~-g (which continues as 1=~-g -i ~g =-i) in con-
tinuing the volume element d4x and the Levi-Civita
symbol e» ~~, which are respectively a scalar and
tensor density. The continuation of a convective cur-
rent j& can be inferred from the continuation of the '

current j& ——i Q*( g / Bx")P for a charged scalar field,
giving the rule j& —j&. Thus the Euclidean source
current J is a Hermitian operator and is real for
classical particle sources. However, since the spin
vector of a particle transforms as a pseudovector
density, the spin current g,„;„picks up as a factor of
i on Euclidean continuation relative to a convective
current, accounting for the factor of i in Eq. (6). See
F. Wilczek and A. Zee, Phys. Rev. Lett. 40, 83 (1978).

~2See Sec. 2 of S. Coleman, in the Proceedings of the
1977 International School of Physics "Ettore Majorana"
(unpublished).

~3See S. Coleman, Ref. 12, Sec. 1.
~4A. M. Polyakov, Nucl. Phys. 8120, 429 (1977);

G. 't Hooft, Phys. Rev. D 14, 3432.(1976).
~5See S. Coleman, Ref. 12, Sec. 3.2 for a discussion of

the S3 —S3 homotopy classification. Moreover, the
mapping S2--S3 has only one homotopy'class, apd so
does not define a topological quantum number.

~ 6The argument which follows is a sharpening of the one
given by M. A. I ohe, Phys. Lett. 70B, 325 (1977).
Note, incidentally, that the entire asymptotic classi-
fication argument applies to the unexpanded potentiaj. s
b, b', when the condition of finite E «~„,„ is replaced
by the condition that E diverge only in the neigh-

glU011
borhood of the source charges.

~7This conclusion clearly still follows if the assumption
Ep-x is weakened to E~p -x 3~ ', e &0 (which is the

weakest power-law falloff consistent with finite energy).
~ J. Arafune, P. G. O. Freund, and C. J. Goebel, J.

Math. Phys. 16, 433 (1975).
~ E. B. Bogomol'nyi, Yad. Fiz. 24, 861 (1976) -f.Sov, J.

Nucl. Phys. 24, 449 (1976)f; S. Coleman ~t al. , Phys.
Rev. D 15, 544 (1977).
It has been proved recently that self-dual solutions
are the only finite-Euclidean-action solutions to the
time-dependent Euclidean Yang-Mills equations that
are strict action minima (rather than saddle points).
Variational estimates of non-self-dual configurations,
such as the monopole-antimonopole calculation of
Magruder (Ref. 22 below), involve the imposition of
constraints which modify the equations of motion from

'
their pure Yang-Mills form.

2'Note that there may be zero modes which satisfy. Eq.
(24b) but which are not normalizable in the norm de-
fined in Eq. (27) below.

22This effect can be seen in the variational calculations

of S. F. Magruder, Phys. Rev. D 17, 3257 (1978).
The vanishing of Ep g]„0„ follows immediately from
letting 6 be the d/d~ operation defined just below;
then

In Ref. 2, I reacQed the erroneous conclusion Vp „...
&0 by confusing jd3xb+'J" with bfdaxb( Js. These
two expressions of course differ by J d3xbo ~ bJt',
which is nonvanishing when 5 includes a quark displace-
ment. As stated earlier in the text, the part of Ref. 2
from Eq. (44) through Eq. (55) is incorrect, and should-

be replaced by the discussion of the present paper.
24The fact that it is only necessary to separate off an

( x-y
~

i term to get a finite answer is a consequence
of a very general result of Hadamard, that logarithmic
potentials are not needed in odd-dimensional spaces.
See J.Hadamard, Lectures on Cauchy's Pxoblem in
¹nlinem P'mtia/ Differentia/ Equations (Yale Univ.
Press, New Haven, Conn. , 1923).
H. A, Bethe and E. E. Salpeter, Quantum Mechanics
of One- and Two-Electron Atoms (Springer, New York,
1957), pp. 107 and 108.
L. S. Brown, R. D. Carlitz, D. B. Creamer, and
C. Lee, Phys. Rev. D 17, 1583 (1978).

~See Refs. 26 and 2, and also Sec. VII of N. Christ,
E. J. Weinberg, and N. K. Stanton, Phys. Rev. D 18,
2013 (1978).
The number of background fields allowed by the condi-
tions of Eqs. (26) and (28) may well be finite. That is,
for solutions with topological index

~
n

~
larger than

some np, it may not be possible to orthogonalize the
quark source current to all the zero modes.

GR. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172
(1976); C. Callan, R. Dashen, and D. Gross, phys.
Lett. 638, 334 (1976);S. Coleman, Ref. 12, Sec. 3.
A determination of the allowed values of Q will require
an analysis of tunnelings of Euclidean static background
solutions into themselves, analogous to the 8-vacuum
analysis of the above references. The results of the
above references suggest that the answer should be
P=+ie, ~ real, Be(t) =0.

3 The same negative sign appears in the 'Abelian case,
where

T tSs ——fd x —
t (E~E~+B B ) —b J Ba(-

= f d xt(E'E'+ B B ) ,
—b J —b J,p~

Eliminating the source currents J and Jgpin by using
the classical equations

V'E~ =g2J

&k l mg1B m -g2g k
c syin

and integrating by parts, the above expression becomes
exactly

T~S~ = d3x —,
,

-,'=(E'E'+B'B~) -E'E,' —B'B~~
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with E'=Eo~+E, B =B,+B . We see that the quantum
fluctuation and classical contributions appear with oppo-
site sign in T S&. The energy functional, on the other
hand, is given by the positive-definite expression

d'xT«
gluoq gluos

d3x —'-(E~ E~ +B~B~).

When the quantum Quctuations are zero, we have
T ~Sz, =-E I„,„,. I wish to thank R. F. Dashen for
a heipful conversation about the issues of sign re-
versals in the free energy and quantum stability.

3~Note that classical stability, as defined below, is a
very different concept from the quantum stability of
equilibrium points referred to above.
S. Coleman, Commun. Math. Phys. 55, 113 (1977);
S. Deser, Phys. Lett. 64B, 463 (1976); R. Weder,
Commun. Math. Phys. 57, 161 (1977).
The topologi'cal quantum number is invariant under
time evolution in the background gauge Do&b(
=8&b(=0, since then the leading asymptotic term

Keg', t) must satisfy (8/8t) e (r, t) =P.
34Note, however, that there can be no classical Yang-

Mills gluon bound states in algebraic chromodynamics,
since non-Abelian classical overlying fields are pre-
sent only in sectors of the theory where there are at
least two quarks.

3 In a recent paper [Phys. Lett. 79B, 242 (1978)],
E. Mottola argues that the only normalizable zero
modes are the three translations and a gauge
mode. Mottola uses the procedures of L. S. Brown,
R. D. Carl. itz, and C. Lee, Phys. Rev. D 16, 417
(1977), to reduce the zero-mode problem in the
self-dual ease to the problem of an isospin-1 massless
Dirac field scattering in a 't Hooft-Polyakov monopole
background. According to this analysis, the number
of normalizable zero modes of the Prasad-Sommer-
field solution is 2k, where k is the number of zero
modes of the Dirac problem. Two sources of informa-
tion on k are available. The Dirac problem has been
studied by explicit partial-wave analysis by R. Jackiw
and C. Rebbi, Phys. Rev. D 13, 3398 (1976), who find
k =2. An alternative approach is to use generalized
index theorem arguments for counting zero modes in
three-dimensional open Euclidean space. The Dirac
zero-eigenvalue problem separates into two inde-
pendent two-component equationsLg =0, L$g+ =0,
with respective zero-mode numbers k, k+, and
k=k +k+. In a recent paper by C. J. Callias ICommun.
Math. Phys. (to be published)], an index theorem is
proved which in the isospin-1 ease gives index (L) =k -k,
=2n, with n the topological quantum number of the
't Hooft-Polyakov back&round field. In the case of
self-dual backgrounds and normalizable zero modes,

the argument of Brown et al. can be used to show
thatk, =p, giving k =2n. Hence the number of nor-
malizable isospin -1 Dirac modes-in the Prasad-
Sommerfield background is apparently k =2, in agree-
ment with the conclusion reached by Jackiw and Rebbi.
There are, however, loopholes in both of the above
arguments for k = 2, making them inapplicable to the
case at hand. The argument of Jackiw and Rebbi in
the isospin-1 case counts zero modes in the generic
case of an arbitrary spherically symmetric background
field, but does not search for possible additional zero
modes arising from special properties of particula~
background solutions, and of course self-dual solutions
are a very special subclass of the general case. The
argument of Callias requires L to be Fredholm, which
is true for nonzero fermion mass m, which Callias
assumes. However, for massless fermions (m =0),
as needed to analyze the self-dual zero-mode problem,
L is non-Fredholm in the integer-isospin case, and
the index theorem fai)s. The issue of whether the
Prasad-Sommerfield solution has axial distortions is
currently under study. Another open issue which de-
serves investigation is whether the restriction to real
background solutions, tacitly assumed throughout this

. paper is necessary. - It is possible that the mean-field
approximation to the functional integral relevant to
confinement is obtained, not from a real static Eu-
clidean solution, but rather from a pair of complex-
conjugate static Euclidean solutions; the Prasad-
Sommerfield solution is known to have complex dis-
trotions (see N. S. Manton, Ref. 37 below).

36An alternative construction of the scalar propagator
has been given by P. Rossi [Pisa report (unpublished)] .

~~Discussions of the axially symmetric case, with in-
conclusive results, have been given by N. S. Manton,
Nucl-. . Phys. 8135, 319 (1978); M. A. Lohe, ibid. B142,
236 (1978); P. S. Jang, S. Y. Park, and K. C. Wal. i,
Phys. Bev. D 17, 1641 (1978).
If confining background solutions exist in the SU(2)
case, I suspect that in the SU(j) ease the classical
solutions relevant for static confinement will. involve
only the SU(2) subgroups of SU(j), just as mini. mal
SU(j) instantons are obtained by embedding the SU{2)
instanton in an SU(2) subgroup of SU(j). [See,
e.g., C. W. Bernard, N. H. Christ, A. H. Guth, and
E. J. Weinberg, Phys. Rev. D 16, 2967 (1977).] If
this is so, then the color charge algebra proposed
in Ref. 1 already suffices for an approximate treat-
ment of confinement, since the calculations of Ref. 5
for the qqq case show that the trace property does
hold within each SU (2) subgroup of the SU (3) overlying
algebra. Of course, it would be much better to find
an algebra which does satisfy the conditions discussed
in Sec. II A; a search for an improved ansatz, along
the lines suggested in the added note to Ref. 2, is
currently being pursued by S-C. Lee (unpublished).

39H. A. Bethe and E. E. Salpeter, Ref. 25, p. 181.


