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gorentz invariance from classical particle paths in quantum field theory of electric and
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Richard A. Brandt, Filippo Weri, and Daniel Zwanziger
Department of Physics, ¹~York University, New York, New York 10003

(Received 17 July 1978)

%'e establish the Lorentz invariance of the quantum field theory of electric and magnetic charge. This is a
pnori implausible because the theory is the second-quantized version of a classical field theory which is
inconsistent if the minimally coupled charged fields are smooth functions. For our proof we express the
generating functional for the gauge-invariant Green s functions of quantum electrodynamics —with or without
magnetic charge —as a path integral over the trajectories of classical charged point particles. The electric-
electric and electric-magnetic interactions contribute factors exp(JDJ) and exp(JD'K), where J and K are
the electric and magnetic currents of classical point particles and D is the usual photon propagator. The
propagator D' involves the Dirac string but exp(JD'K) depends on it only through a topological integer
linking string and classical particle trajectories. The charge quantization condition (e,.g- —g;e,.)/4m = integer then
suffices to make the gauge-invariant Green s functions string independent. By implication, our formulation
shows that if the Green's functions of quantum electrodynamics are expressed, as usual, as functional integrals
over classical charged fields, the smooth field configurations have measure zero and all the support of the
Feynman measure lies on the trajectories of classical point particles.

I

I. INTRODUCTION

The generalized Maxwell equations which de-
scribe the interaction of the electromagnetic
field E„„with the currents J„and E„of, re-
spectively, electric and magnetic charges are'

/or- J
E"=E, (1.2)

e;& —=(e;g; —e&g;) =4mn;, , n&& =O, a 1,+2, . . . ,

(1.3)

among the electric charges ei and magnetic
charges g; be satisfied, as ori.ginall. y shown by
Dirac. ' The reason that the constraint (1.3)
arises upon quantization of the unconstrained
classical theory is that an action formulation of
the classical theory is required for quantization,
and an action must include the vector potential
(or something equivalent). The classical action
can be defined only modulo each factor c;,, and

where E„„=&e „„+E". is the dual field. In rela-
tivistic particle classical mechanics, these equa-
tions, together with the generalized I orentz force
law, are I orentz invariant for any values of the
electric and magnetic charges. In quantum
mechanics, however, the fields do not provide
a complete description and a vector potential A„
is also required. '' Then, a consistent (rotation-
ally invariant) theory is possible when E SO only
if I„„is physically equivalent to &„A„—8„A„
=(& &A)~„, and that requires that the charge
quantization condition

that leads to the weak quantization condition'

Egg = 2770]gV q (1.4)

with v a fixed but undetermined constant. Upon
quantization, (1.4) becomes strengthened to
(1.3), in which v =S =1. But, unlike the classical
particle theory, the classical field theory is
never consistent, even without an action principle.
The classical charged field p, carrying charges
e, and g, is minimally coupled by means of the
affine connection D'„(presumably D'„=8„+ie,A„
+ig, 8„)with curvature [D'„,D'„] = i (e, E„„+g, E f„).
The Jacobi identity Q[D„, [D&,D„]]=0 is violated
for we find instead, from Eqs. (1.1) and (1.2),

D„, D„D„=ze.E.„-g.J„.
In the classical theory of charged fields, the, cur-
rents are smooth functions, and (1.4) is of no
avail in making the right-hand side of this rela-
tion effectively vanish. It is the pointlike
nature of the charged particles which leads
to the consistency of the first-quantized the-
ory. Now, quantum field theory (the second-
quantized theory) is obtained by quantization of
the inconsistent classical fieM theory, not the
consistent particle theory, and so it appears high-
ly, suspect. Of course, the classical field theory
acquires various particle aspects after quantiza-
tion, and the possibility exists that these aspects
are sufficiently strong so as to reinstate I orentz
invariance. In this paper we will argue that this
is exactly what happens. '

It is extremely convenient to use functional
methods to study problems of the above type. For
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example, the role of the classical particle theory
as the prequantized quantum mechanics is dra-
matically illustrated by Feynman's' representa-
tion of the Schrodi. 'nger wave function as an inte-
gral over all classical trajectories weighted by
the exponential of the classical particle action.
Gauge-invariant observables are seen in this way
to be rotationally invariant because of (1.3) and
the fact that the action changes only by e~& under
rotations. ' Analogously, the Green's functions
of the quantum field theory may be expressed as
functional integrals over classical fields weighted
by the exponential of the classical field action.
It thus appears that even the gauge-invariant
Green's functions will not be Lorentz invariant
because of the noninvariance of the classical
field theory. Consistency of the nonrelativistic
quantum mechanics is crucially dependent on the
point nature of the charges whereas most of the
contributions to the functional field integrals
would appear to correspond to spread-out distri-
butions of charge. What we will show is that,
in.spite of their appearance, these functional
integrals have their essential support on the tra-
jectories of classical point particles. Relativistic
invariance then follows.

There have been a number of investigations
of quantum field theories of electric and mag-
netic charge. ' " What has emerged from this
work is that (1.3) is certainly necessary for the
consistency of the theory. The sufficiency of
(1.3) to guarantee Lorentz invariance has, how-
ever, never been demonstrated, even formally.
Schwinger's" original argument for Lorentz in-
variance depended on delicate limiting procedures
which implied in addition that the integers n;&
in (1.3) are divisible by four. Schwinger" has
more recently abandoned this approach and re-
scinded his c-laim about the n;, and, consequently,
by implication about Lorentz invariance. A
local formulation of the quantum field theory is
given in Ref. 14. This formalism displays what,
beyond (1.3), is sufficient for relativistic invari-
ance. This turns out to be a particular condition
on the physical states which is not subject to
analysis at the present time. The perturbative ex-
pansion of the theory also sheds no light on this
issue since it is manifestly noninvariant, only
because, we hope, (1.3) cannot hold in finite
orders of perturbation theory.

A convincing demonstration that the existence
of magnetic monopoles is consistent with the
combined principles of quantum mechanics and
relativity has thus been lacking. The purpose of
this paper is to indicate how to fill this gap.
Using formal but standard functional methods,
we explicitly establish the Lorentz invariance of

II. CLASSICAL AND FIRST-QUANTIZED THEORIES

Classical relativistic particle electromagneto-
dynamics is characteriz ed by the generaliz ed
Maxwell equations (1.1) and (1.2), in which the
currents

J„(x)=P e; I dz, ll'(x —z), (2.1)

the gauge-invariant Green's functions. Our results
thus strongly suggest the consistency of the quan-
tum field theory, and we can conclude that the
reason that monopoles have not yet been found
lies elsewhere than in their possible inconsistency
with relativity and quantum mechanics.

Our analysis for the case when the charge-bear-
ing fields are Lorentz scalars uses Feynman's
path-integral representation" for the exponential
of the external field propagator. An analogous
representation for Lorentz spinor charged fields
has not been heretofore derived and so we have
had to deduce such a representation. We present,
in fact, two such representations. The first is
appealing because the current of the spinor par-
ticles has the same form as for scalar particles.
Unfortunately the relevant quantities appear to
have only a rather formal existence, as discussed
in Sec. IV, and for this reason we pass to a sec-
ond representation. Fortunately this one is on
the same footing as the one for scalar fields,
except that we must average over not only al. l
possible classical trajectories, but also over all
possible classical first moments defined on these
trajectories.

Our study of Lorentz invariance for the quantum
field theory rests heavily on the invariance of the
classical action formalism and of the first-
quantized theories and so we devote Sec. II to a
review of these simpler theories. This section
also contains an extension of the classical theory
to include anomalous first moments in the charged
currents and an illustration of the noninvariance
of the classical field theory. Section III is a short
review of the second-quantized theories of mono-
poles. Our path-integtal representations are
deduced in Sec. IV. This section includes a
general discussion of how to represent the time-
ordered exponential of a matrix integral as an
unordered functional integral. Our proof of
Lorentz invariance of the quantum field theories
is given in Sec. V. We explicitly treat only the
generating functional of the conserved current
Green's functions. Using the path-integral rep-
resentations of Sec. IV, we establish Lorentz in-
var iance for both spin-0 and. spin-~ charged
fields. The final Sec. VI contains some conclud-
ing remarks.
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E„(x)= Qg; dz„5d(x —z}
I'g

arise from charged point particles, and by the
generalized Lorentz force law

(2 2)

(2.3)

E,»»
= —e;»~ ~~, »', ,j =1, 2, 3, E„,=O. . (2.4)

4w

The corresponding magnetic field is

r
H =

4m r' (2.5)

The above equations of motion follow' from a
number' "'"of different-looking but actually
equivalent' action principles. For example, the
action given in Ref. 17 is essentially

y(c) 1(c)
n + n (2.6)

with

m»Z» = [e; E(z») +g; E'(z;)] z,.
Here e;, g», m„and I', =(z;(s); -~ & s & + ~]
are, respectively, the electric charge, magnetic
charge, mass, and trajet:tory of the ith particle,
i =1, . . . , I; s is proper time; z =dz/ds, ete.
This theory is obviously Lorentz invariant for
any charges. The solution describing a single
monopole of strength g at rest at r =0 has the
usual Coulomb form

(1.2) is an immediate consequence of the relation
r

E=n A —Q", (2.11)

where

c = (n ~ &) "»» ~z, (2.12)

which follows from (2.6) upon variation of E. But
to obtain the correct Lorentz force law (2.3)
from variation of 1;, (2.6) must be defined modulo
each e»& (Refs. 6, 18) (otherwise I ', which
changes by e&& when the trajectory of the 1th par-
ticle sweeps through the string attached to the
jth particle, will not be a continuous function of
the trajectories I';) and in the line integrals in
(2.8), a contour prescription must be used when
a trajectory I'» intersects a string' (otherwise
the equation m;2; =[e»(8 AA)+g;(8 AB„}]~ z»,
which differs from (2.3) when a particle hits a
string, will result from variation of I"»}. When
the actions of Refs. 10 and 14 are similarly
amended, they can be shown to be equivalent to
(2.6}.'

Note that in (2.11) the physical field E is seen
to differ from ~&A, which carries an unphysical
string singularity, by the singular function G,
which removes this string singularity. For ex-
ample, the static Coulomb field (2.4) is given by
(2.11) with the Dirac symmetric vector potential

I"=-I m& fdr (2.7)
g ( nxr»txr

8»»r ~&r -n ~ r r+n ~ r (2.13)

and
The Coulomb magnetic field (2.5) is given by

H =V'xA„- —h-, (2.14)

with

where

(2.8) K„-(r)=--,'dx f dX[IP(r-dx)- il'(r rdX)].
0

B„(x)=f dx d (x-m)=(x X)'x ~ d (x).

(2.9)

Here w„(r) defines a path from w„(o) = 0 to
w, (~) =~ which, for simplicity, is chosen to be
a straight line w„(v') = rn„(n' = -1). In the second
equality (»» ~ s) ' is the integral operator with
kernel'4

(x r)- (x)=fdr)[() (x-xr,-))-d (x+xd)).
0

(2.15)

Although the Lorentz invarianee of (2.6), de-
fined as in Ref. 6, is obvious from the Lorentz
invariance of the consequent equations of motion,
it is instructive to demonstrate this invariance
directly. Consider the combined string rotation
and (singular) gauge transformation'

/

A A. +N, , B„-B„(r»'~ 8x) 'n' ~ E
(2.16)

The function &(x} is determined by the condition

(2.10) 8 A N, =([(n' ~ &) n' —(n ~ s) n] AKj, (2.17)

The antisymmetric form of this kernel has been
chosen to invoke dual invariance, and this choice
will be maintained throughout this paper. 4

The first Maxwell equation (1.1) follows from
(2.6) upon variation of A and the second equation

which requires that it have a discontinuity +g&/2
through the surface Z» = I',. x (v'r»' x rn: 0 & 7, r' & ~)
for each j. The contribution J J d'I to (2.8) then
changes under (2.16) by Q;&e»»Ã»&, where N»» is
the number of times (positive, negative, or zero)
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that I'; intersects Z,. (or, equivalently, :-I'~ inter-
sects Z;). I„' is thus invariant to (2.16) if it is
defined, as in Ref. 6, modulo each. &;;. I„' must
therefore be considered as a map onto a circle
of some radius r, and consistency then demands
that the quantization conditions (1.4) are satisfied.

We consider next a generalization of the above
classical theories in which magnetic and electric
moments contribute to the currents:

d„(x) = Q f d» [e~x„(x)+e;,„(x)e"]e'(»—x),
0

(2.18)

(2.19)

We wish to show that these generalized theories
are also Lorentz invariant, even after quantiza-
tion, with no further consistency conditions beyond
(1.3), i.e., for arbitrary moment functions o„„
and &„„. (In particular, the theory is consistent
if all e;; vanish for any c and A..) The basic reason
is that the moments couple to the fields rather
than to the potentials. This can be seen simply
by noting that a trajectory I'~ that loops around a
str lllg of flux z @ now gives

is, e.g. ,

= p 4T&~„T o'8 ~ ~ -s s ~ & Ag,

(2.22)

which vanishes if trajectories do not intersect
strings or if a suitable contour prescription is
used.

The theory obtained by first quantization of the
nonrelativistic limit of the above classical theory
is described by the Schrodinger equation

(2e) '(i ]]'- eA", )'4p-, =El," . (2.23)

Here 4;(r) is the time-independent quantum-
mechanical wave function and A," is related to a
given solution of the classical equations of motion
by (2.11). A specific example is (2.13). Given
(1.3), a string rotation in (2.23) is equivalent to
a gauge transformation, and so the theory is
rotationally invariant. '"'" The string indepen-
dence of the theory can also be seen in a way
which emphasizes the functional methods which
we will use in the following sections. According
to Feynman, '

e„(x)=lq fd pex[p Ie[,X( p)/ p], (2.24)

+ dual contribution

g8f gj+ g 47O'jap 7' 'fI' ~ S&E

where the integration is over all classical tra-
jectories 1, terminating at x. A gauge-invariant
observable such as

p„(x) =-P„(x)e„(x)=dd' I dp„exp[d „'(X,)(d]

+ dual contr ibution, (2.20) (2.25)

where (2.11) and (2.12) have been used. The con-
tribution of the second term clearly vanishes if
particle trajectories do not hit strings or, more
generally, if a contour prescription is used as in
Ref. 6 if a trajectory does hit a string. To be
more precise, consider the effect of the string-
changing gauge transformation (2.16) on the action
(2.6) in which now

is represented by an integral over all closed
trajectories y„ through x. Since a string change
changes I„' (y, ) by Qe;&N;&, (2.25) will be string
independent given (1.3).'

A classical field theory differs from the above
classical particle theories in that the currents
are given not by the pointlike forms (2.1) and
(2.2) but by continuous distributions. For ex-
ample, the currents appropriate to l charged
scalar fields y;(x) are

J =Q [i«&lpga &Q; —2e;(e;di+g&B)QJQ&] (2.26)

=g fde[i; (e;d+d;d„).

+ —,'[a, ~ (8&4)+y,. ~ (8@B„)]j.(2.21)

and

& = Q [iakpI&4] —2S~(«&+a] B)4~ 4x] ~

(2.27)

The induced change in the first-moment terms The theory is then described by the Maxwell
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equations (1.1) and (1.2) together with the equa-
tions

[(iS —e;dt -g; B„)'—m ]Q; =0 (2.28)

[with (2.9)-(2.12)] for the charged fields
As shown in the Introduction, because of viola-

tion of the Jacobi identity, this field theory can
never be consistent for E+0. This inconsistency
cannot be avoided for continuous distribution of
charge by a charge quantization condition and
singular gauge transformations. For example,
the equation (2.17) for the gauge function which
compensates a string change has no solution for
a smooth E such as (2.27) because the left-hand
side of the equation must vanish if the right-
hand side is nonsingular. We will show in the
remainder of this paper that the corresponding
quantum field theory is nevertheless Lorentz
invariant when (1.3) is s atisf ie1.

III. SECOND-QUANTIZED THEORIES

We will consider quantum field theories in
which the electric- and magnetic-charge-bearing
fields are either spin 0 or spin &. The equations
of motion and action in the spin-0 case are for-
mally the same as the classical forms, except
that a gauge-fixing term and quartic self-inter-
action terms

~;,(e~'e()(ate, )
1j

must be added to the action. For the spin-& case,
the electric and magnetic currents are simply

(3.1)

O'„= Q e;P;y)„(i&, (3 2)

&„=p g;0;r, &;, (3 3)

and the charged fields obey the generalized Dirac
equation"

(imam; —e'&—g —g;P)P; =0. (3 4)

A suitable action is

g (x) g g(x)
n n+ (3.5)

I =Pf dxdi(i) -m, )d, . (3.6)

The Green's Eunetions in these quantum field
theories are given by functional integrals over the

where I„ is still given by (2.8) (plus a gauge-fixing
term) and

$( 0) $ y.$( 0)

with

$'" =s +$'"
n n (3.8)

$„=-~ dx n ~ ~&A. ne ~AS + n ~ &A+

and

[s(n &)]'+ (&-B,B- -dt)], (3.9)

d ' = P jd x[(—ii —e;d-d, d)d;

x (zs —ei 4 gi B) p(

—m, 'y,'0, —Z, (e,'y, )']

for spin 0, and

(3.10)

S 'l = P d'xP, (iP-m; —e'~g -g(P)g, (3.11)

for spin &. Now the action is a local function of
the independent variables A, B, and the charged
fields, and the n dependence resides in the ex-
plicit n's in $„, which includes a gauge-fixing
term. Variation of dt and B in (3.8) gives the
correct field equations (1.1) and (1.2), with

F=n W [n ~ (SAR)]-fna[n (& d( B)]]', (3.12)

and with currents (2.26) and (2.27) for spin 0 or
(3.2) and (3.3) for spin &, and also gives the
gauge-fixing equations

~'n A =8'n. 8 =0. (3.13)

Variation of the charged fields in (3.8) gives the

corresponding classical fieMs. For example,

(Olre, "i (O& (( J=dddd(iidd, dd)e, ", ~ d,

x exp[iI i"(4, E, f, ~ ~ ~ g„)],
(3.7)

where the 8~ are any local operators in the spin-&
theory and N is a normalization constant. Such
integrals are well defined (apart from renormal-
ization) provided either a gauge-fixing term is
included in I„' or a Faddeev-Popov" gauge-
fixing factor is included in the measure.

In the above formalisms, the independent vari-
ables are the potential A, the electromagnetic
field E, and the charged fields. The potential
B =B„ is explicitly given by Eq. (2.9) as a non-
local function of E, and all of the n dependence
of the actions resides in this function in I„
[Eq. (2.8)]. It is more convenient for us at this
point to use the alternative formalism of Ref. 14.
Although equivalent' to the previous formalisms,
it has the virtue of manifest locality. The actions
are

/
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DAA(q) =D/d/d(q) =[-g""+(q"n'+q'n )(n q) ']

x(q'+is) ',
DA"N(q) =-D/eA(q) =(nnq) "."(n q) '(q'+is) '.

(3.15)

(3.16)

The ie prescription for (n q) ' is irrelevant
in (3.15) because of current conservation, but
must be the principal-value prescription in (3.16)
in order to maintain dual invariance. ' The
resulting noncovariant perturbation expansion can
be shown to be unitary, consistent with the
Faddeev-Popov formalism, dual invariant, and
renormalizable. ' For the exact theory, on states
for which (3.14) vanishes, the canonical Poincare
generators satisfy the Lie algebra of the Poincare
group and, if (1.3) is satisfied, can be integrated.
to give a group representation. " The key question
is whether there are enough states on which

~ M =0. We will not investigate this question
directly but will instead explicitly estab1. ish the
Poincare invariance of the gauge-invariant Green's
functidns.

The Green's functions for local operators
6, ~ ~ ~ 0& in, for examp1. e, the spinor theory are
given by the functional integral

(OIV ee, (O) =),rr J dAd "(de, ~d~r~ die„)e, ~ ~ ~ e,

x exp[iSpl(A, f), g, ~ ~ ~ T))N)].

(3.17)

correct equations (2.28) (with -2 Q/&&/q);q); Q/)
or (3.4). Finally, because of the explicit n de-
pendence, the canonical genera1. ized angular
momentum tensor M»„which arises from (3.8)
is not conserved. Rather'

8 M=-nr /n [(n ~ 8) 'J n, (n ~ 8) 'ff]"). (3.14)

The above theory can be quantized as usual
and developed in a perturbative expansion in
which the gauge field propagators are given by
the noncovariant expressions

For gauge-invariant 6)'s, this expression is
equivalent to (3.7).' For such 8's, we will show
in Sec. V that (3.17) is n independent.

IV. PATH-INTEGRAL REPRESENTATIONS

In this section, as an important preliminary to
our proof of Lorentz invariance, we will derive
path-integral representations of matrix elements
of certain unitary operators. We consider the
standard representation of the canonical commu-
tation relations

[X„,P„]= ig„-„

among the operators X~ and P~. We will use
both the position representation
([x& = jx,&fx, &[x,&[x,&)

&x[X=x&xj, &x[P =f8&x[,

and the momentum representation

&PIP =P&PI, &PIX=-ie.&PI,

with

(4.1)

(4.2)

(4.3)

&x[p& =,e "". (4.4)

The normalizations are

&xix'& =5'(x-x'), &pip'& =5'(p -p),
and the completeness rel.ations read

(4.5)

d4xx x =1, d4p p p =1. (4.6)

The matrix e1.ement of interest in the spin-0
theory is

U(7", x, x')=&x~ exp(Nir[[P —a(X)]' —m'j)(x'&,

(4.7)

where a„(x) is an arbitrary function. The repre-
sentation given long ago by Feynman is"

7'

r)(v;x, x')=)V f d)'(v", x, x')exp( —-'(vx'v —( dv'[-'e'(v') e(x(v')) ~ e(v')]I,
0

(4.8)

in which the integration is over all x-space paths
I'(r; x, x') between the points x' =z(0) and x =z(r).

It would be nice to derive an analogous expres-
sion for the matrix element

the Trotter formula
i( B)A+i.

(
(A/N is /N)N

in (4.9) to obtain

(4.10)

V(T; x, x') = &xj exp(i T[p —((t(X) —m])[x'& (4.9)

in the spin-& theory. Note that (4.9) is a 4 x 4
matrix in the spinor space. We begin by using

y(T x xe) —l;m &x~[e-'('/N)Nee&'/N&&N'™)]N(xe&

(4.11)
We next insert the completeness relations (4.6)
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in (4.11) f&] and I&/ —1 times, and use (4.2)-(4.4):
4~P & ... Par -&( p/]([) e])(E) -&/» {&(-E ) &((p/]}() )[/(]}(-»&). . .) I ]&[ 1 (2v)4 (2v)4

-i{&/E)k{xj) -ip~ {xj-x ) i{&/E)(q-m) (4.12)

Note that the order of the factors is important here because of the noncommutativity of the exponents.
We now write

N- j.
lim d xi 2m d i =N' dI' 7', x, x' dQ,

i=j i=y

to cast (4.12) into the form

(4.13)

T T

y(y;x, x')=EE f dp(e;x, x') f dQ»xp —i dy'p(y') &(x'}—(ym y exp i de [&((e ) '—i('(x('y'}&]I,
0 J 0

(4.14)

in which the integrations are over all x-space
paths I'(r;x, x') from x'=z(0) to x=z(r) and all
P-space paths 0 between unrestricted points P(0)
and P(v), and T denotes 7' ordering.

Let us next change integration variabl. es in
(4.14) from P to v P —a(x). We obtain

(, , -S' ~C(r, x)=, , ——„,+V',~C(i, x)=0,

(4.18a)

(4.18b)C(0,x)=0, C(0,x) =64(x).

This is a hyperbolic partial differential equation
in v and x" but the initial surface v =0 is space-
like instead of timelike (with respect to the hyper-
bolic operator). In this case no soiution as an
ordinary distribution exists. A related feature
is that usual Feynman path integrals are basical. ly
Gaussian and are related to parabolic partial
differential equations [typically (i8/ex+&')X=0]
rather than hyperbolic or elliptic ones. It is
true, however, that expression (4.17) can be
given an unambiguous meaning on a class of
testing functions. The power series representa-
tion

P(y x, x &= fdp(x;x, » )E(P(y;x, x »

dr'a(z(r')) k(7') iTm-,&& exp -i
0

(4.15)

where the functional.
'r

E(&')—:B' fdey expIi dy'[i((y') —e(y') &(y )]I'
0

(4.16)

is independent of a and of m. Our final expression
(4.15) is formally very similar to the scalar rep-
resentation (4.8). Unfortunately the expression
(4.16) appears to have a purely formal existence.

To illustrate the difficulty with (4.16), we
consider the related ordinary integral

r

E(e-, x) —= (pe) f d pe»*»'"'e . (4.17)

&(&'x) = g (Ty —.)s' 6( x)

2=0 .

T / Q//264(x)
j even

v/ {/-z) /2y, 66'(x)
1

j odd~
(4.19)

Formally this is 5~(x+ 7y), but the nonexistence
of (4.17) as an ordinary distribution follows from
its formal properties:

is obviously well defined on polynomial testing
functions, and the Fourier transform

8 —y"S„~E(r,x) =0, F(0, x) =6d(x).
8""'~= cosa'+ sins WP2(P') ' (4.20)

The quantity E may be expressed in terms of a
Lorentz scalar function C(r, x)

E(y, x) =
(
—ey'e„) (:(x;x)

which satisfies

is well defined on testing functions f(P) which
approach zero for P'- - faster than e '7 {~P2)1/2 ~

e.g. , on functions of compact support in P'.
We will not attempt here to show that (4.16) is

well defined in the context in which we will use it.
We will instead use a different representation for
the spin-& case and only use (4.15) to illustrate the
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formal similarity between the spin-~ and spin-0
theories.

Before proceeding with the spin-& case, we
consider the general v-ordered exponential

t T

U;J(r) = T exp —i dr'h(rd), i,j=1, . . . , M
0

(4.21)

resentation since

H(r)a J0 = Q h;, (r)a»r Q .

Furthermore the desired quantity is

U;»(r) = (a»r 0, U(r)aJ 0)
where

(4.25)

(4.28)

[a;, a& ], = 5;&, [a», a&], = 0, (4.22)

and let the operator

where h (r') = h, , (r') is an arbitrary MxM ma-
trix function of r' (not necessarily Hermitian).
We wish to exhibit (4.21) as an unordered func-
tional. integral. Let a;, a;, i =1, . .. , Mbe a set
of M Bose or Fermi annihilation and creation
operators

U(s)= Pexp -s I ds U(s )''
0

(4.27)

is recognized as the time displacement operator
for the quantum-mechanical system with time-
dependent Hamiltonian H(r) =a» h»&(r)a&. The
matrix elements in a harmonic-oscillator basis
of the time displacement operator can conveniently
be expressed as a functional integral using the
analytic representation. " Let U(7') be written as
the limit of an ordinary operator product:

U(r) = lim exp[ - i eH(ne)] ~ ~ 'exp[ —i eH(me)]
If (r) =—a»rh;, (r)a, (4.23)

x ~ ~ exp[ —

i'd&(e)],

(4.28)

correspond to the matrix h;&(r). The set of one-
quantum states

g&=a&0, j=l, . . . , M (4.24)

where 0 is the ground state, a&0 =0 for
i =1, . . . , M, provide a basis for the identity rep-

where e =r/n. The generic wave function
g =r/r(s;) is represented as an analytic function of
complex variables s; =x; +iy;, i = 1, . . . , M. (We
have placed a bar on the s; to agree with the con-
vention that creation is done by a~- s and an-
nihilation by a- s.) The mth infinitesimal time
translation acts according to

P„(s;")=exp[-iaaf(me)]g„, (s; )

N ( m ld- m l
exp[s, "s," ' —its, "h„(me)s, '- s; 's; ']P„,(s;I™),

gr
&~l

where (2»» i) 'ds»d s; = w 'dx»dy;. The desired functional integral representation follows:

U„(s) = J $ ll [(Psi)'ds, (s')de, (s')]s;(s)s, (e)
0 ~~T ~ &T 0"l

T

X exp -s; 7' s; 7' +i d7' -is& z' s& 7' -s; T' h;& 7' sj
0

(4.29)

(4.30)

(4.31)

The quantity in the exponent may be symmetrized
T

exp —;s;rs; 7 +s; o s; o +i dv -i 2 s;s;-s;s& -s;h;&s&
0

he formulas we have just written apply in the Bose case, but the change to the Fermi case is trivial. "
The reason either a Bose or a Fermi representation may be used is that only one-quantum states appear
in (4.25) and so only one-quantum intermediate states occur in (a»tQ, U(r)at»G) if U(r) is written as the
operator product (4.28).

We are now in a position to exhibit a path-integral representation for the matrix element

W(r; x, x')»& =(x( [exp(»»»ir{[P - a(X)]' - m'- —;iy"y"f„„(X)])]»,~x'), (4.32)

where a (x) and f»(x) are arbitrary functions and i and j are Dirac spinor indices. The procedure used
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above for (4.V} gives

W( yx x )as 'Wf=dp( yx x&p exp j--,'im'y-i Jl dy'[-,'b'(y'&+b(y') (a( e)y) 'eiyyf„(( x„)y)]
0

Using the representation (4.30) for the ordered exponential of the matrix, this takes the form
T

W(ex, x') ]-—fd (Px ,xx)e pxj
——'im'y-i dy'[-'b (y')+a(x(y')) ~ b (y')]I

0

dZ g sg g sg 0 exP — d7'
ff, P 7 )o'

p

where

, &dsds)
dZ(~) =—'j]j I .

~
exp —s, (7)s, (7.)- . dT' s; (T')0; (v')

(4.33)

(4.34)

(4.35)

and

(4.36)

This representation does not suffer from the
formal difficulties of (4.15) and will be used in
the next section to prove the Lorentz invariance
of the spin-& theory.

V. .:I.ORENTZ INYARIANCE

The set of Green's functions (3.1t) for all local
fields '6)~ (e.g. , A„, (I), E„„,.T(&g:, :Q„g:}is equivalent
to the full quantom field theory. The Green's
functions for gauge-invariant e» [e.g. ,
E„„,J'„E~, :$(ib„-A„)g:]contain all bf the ob-
servable info(rmation( (in particular the S matrix)
about the fie|d theory. It is only necessary to
establish the Lorentz invariance of these gauge-
invariant functions. We will treat in detail only
the case when the 8's are the conserved currents
J' and E. The extension to include the other gauge-
invariant operators is straightforward. We thus
consi.der the generating functional

W„(a, b) = (0 j
T exp[- i J d x(J' ~ a +% b)] ( 0),

functional integral representation of (5.1) is

W„( b) =ax I dddp ( '[db;db&
(='i

x exp i S[' (A, B,Q„.. . , Qtb)

W„(a, b) = W„(a„b„),
b

where

ad)(x) =-A 'a(Ax), bg(x)=- A 'b(Ax),

for an arbitrary Lorentz transformation A„„.
Since it is obvious from (3.8)-(3.10) and (5.2)
that

W (a b) = Wd (ad bd). )

(5.3)

(5.4)

(5 5)

it is sufficient to show that W„(a, b) is independent
of n, i.e.,

—Jl d'x(d a +X ~ b)
I

.

(5.2)

We want to demonstrate the Lorentz-invariance
condition

(5.1) w„(a, b) = w,„(a,b) . (5.8)

where a„(x) and b„(x) are arbitrary functions.
The current Green's functions are obtained from
(5.1}by functional differentiation with respect
to a and b followed by setting a and b to zero.

We consider first the spin-0 theory specified
by the action S„e of Eqs. (3.8) and (3.10). The

We begin by explicitly performing the Gaussian
integrations over the charged scalar fields in
(5.2). [In this analysis we omit the quartic inter-
action term in (3.10). Its effect can be included
by introducing a position-dependent mass ][(('(x).
Then Eq. (5.2) can be written as

ty(a, b)le= jexpli g ba fdxi b, }W„"(a, b) (5.7)

where W„" is the generating functional in the position-dependent mass case. The Lorentz invariance of
W„[„ then follows from that of W[ "]~„,. The modifications to our path-integral formula necessary to in-
clude a position-dependent mass are trivial. ] The well-known result gives
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w(a, b) Nf=dAdBa'*"exp((-()Q Trra[[(l -c )'-ei ]r'(p'-I')}),

where we have used the abbreviation

Cq~ ——e;(A„+a„)+g)(B„+b„).
A convenient representation for the expression in the second exponent in (5.8) is

(5 8)

(5.9)

Tr 1nj[(P —C)' —m ]/(P' —m')]. = — — ddx(xge ' '[[ c} " ' —e ' "~ " '].~x) .
0 7

Use of the path-integral representation (4.8) now yields
00 T

Tr in([(P —C)' —m']/(P' —m')} = — —e ' ' ' dl'(T}f(I'(7)) exp
~

i — dv'z ~ C
~

—1
0 7 p

where the integration dl'(r) is over all closed paths I'(r) [z(o) =z(v')], and
1'

f (I') = exp ——,
' dr'z'(r')

0

We can thus cast (5.8) into the form

ta( b) aBf dAdda""exp=Pf —e ~ "~ "fdr(r))'(r) -(+exp (-r)f dr'd ~ C, .

0 0

(5.10)

(5.11)

(5.12)

(5.13)

We finally expand exp(Q&) in a power series to obtain

W„(a, b)=g W'„"(a, l),
k=p

with

(5.14)

W„' = —
t

dAdB e' "dI'„v„ I"„
r=l

x P C, exp( —g I; 'r
) exp[-(J d x[d, (A+a)+B, (B+b)]},

P

(5.15)

where p represents a particular assignment of the
indices i„=j, , k, for x = 1, . . . , k, C is a com-
binatoria1. factor, and J, and Ep are the corre-
sponding classical currents associated with the
charges e; and g; and (closed) trajectories I'„(r„):

JB(x)=Q e; )~ dz"6'(x —z),
F„

KB"(x)= Qg; IIt dz'5'(x-z).
r

(5.16)

We see that, apart from the r integrations and
f(1') factors, each W['} is just a sum of generating
functionals for classical currents, i.e., of func-
tional integrals over classical fields A and B and
(closed) trajectories I' weighted by a classical
action S„(A,B)—J (J A +E B). One way of verify-
ing the n independence of W„, given (1.3), is to
exploit the invariance, mod e;&, of this classical
action under a combined string rotation and gauge
transformation, and the gauge invariance of the
functional measure. To see this explicitly, it is
most simple to transform back from the

(A, B, I') variables to the (A, E, I') variables to
obtain an action of the form of I„' in (2.6). Then
all of the n dependence in each term of the p
sum in (5.15) resides in the K, B term, and the
transformation n- An is equivalent to the gauge
transformation [cf. E[I. (2.16)]

(5.17)

with

8 ~8~, =([(An S)-'An (n ~ 8) 'n]-Z, )'.
(5.18)

Since Ep is a singular classical current, ~p is
well defined and has discontinuities +g, /2 for
some j's. As discussed below E[I. (2.17), this
gauge transformation changes 1JB A by
Q;&@[if(l[& with integers fi;& and so, since dA =dA',
(5.15) is invariant to n An if (1.3-) is satisfied.
This shows that Wi"}(a,b) = W d~}}(a,b) = W„~}(ad),bA, ),
the last equality following from the Lorentz in-
variance of the measures dA. , dl, dI'. Thus each
term in (5.14) is Lorentz invariant, and so will
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be the sum if it exists in any sense.
A more direct way to verify the n independence of (5.15) is to explicitly perform the Gaussian functional

integrations over A and 8 T. he(threatened) n dependence of (5.15) occurs in

'I

dI' dA. d8 expiS„A. ,B exp -i J A +E h ~ dI'exp -i 2 (JD„„J+J'D'„sE+EDs„J

+EDssE) (5.19)

where the propagators have been given in momentum space in Eqs. (3.15) and (3.16). By current conserva-
tion, only the mixed propagators in (5.19) contribute to the possible n dependence. Using (3.16), the n-
dependent part of the exponent in (5.19) is seen to have the form

(22)'et. fdxefdxt (ex It)„,(x It) [(x; —xt) —te]'. (5.20)

Here the closed loop line integrals correspond to the trajectories I'; and I'f. We apply Stokes's theorem
to the first loop integral so that (5.20) becomes

(2e)'e;; J dy;"" fdx, [2 [(x, —„x,)„' -t'e] '+ (2e)*t'x.(x It)'2'(x; —x,)],
Cg

(5.21)

where Z~ is a two-surface bounded by the first-loop I';. The first term in (5.21) is n independent. Using
(2.10), the second term is

I,.f =- i&;f dS;"» dxf„n„dq 5' x& -xf -ng —54 x; —xf+~q
C& rf

(5.22)

Because of the definition of the 5' functions, the
integrations in (5.22) simply count the number of
times the loop I'f intersects the oriented three-
surface Z& &&any (0- [I&~). This is an integer
1(][& (positive, negative, or zero) for aimost all
paths. It is only ill defined (e.g. , if I

&
is locally

tangent to Z;) on a set of measure zero in the
space of paths which contribute to (5.19), so that
these configurations may be safely ignored. "
Thus

(5.23)

so that the n-dependent factors in (5.15) have
the form exp(ie, ,N, ,). This shows again that if
the quantization condition (1.3) is satisfied,
(5.15) will be independent of n. [Integration of
s"& = 1 over the remaining 7' and I'(r) variables
obviously maintains the n independence. j

It is interesting to note the geometric aspects
of the integrations in (5.22). This integral defines
a topological integer, analogous to a linking
number L&f which counts the number of times the
tube I"f &n links the surface Z. It is clear from
the definition in (5.22) that 4, ~ is an integer in
four dimensions, but because of the limitations
of -our three-dimensional intuition, the geometri-
cal significance of this number is not too trans-
parent. It may help to consider the three-dimen-
sional analog. The passage from (5.20} to (5.22)

has a three-dimensional analog in the identity

y. =-(ee)'f dyed dx ~ Vlx —y]'
r1 r2

d& ~ dx5' x-y .
s& r2

(5.24)

Q f de„(et et'+g;dt,"), (5.25)

where

ef DAA ~f +DAB +f s

(5.26)

apart from the divergent but n-independent i =j

Here I', and I', are one-dimensional closed loops
and 8, is any surface bounded by loop one, with
surface el.ement d v. It is clear that L is the
linking number that counts the number of times
loops 1 and 2 link around each other. The above
I;f is simply a four-dimensional generalization
of L.

The above evaluation of (5.19}can perhaps be
rendered more physical by noting that the expo-
nential is
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where the expression

r, = D[(& ~ J ),. —(& ~ z)', ], (5.28)

terms. Using Stokes's theorem, (5.25) becomes

g f da.. (e;S,""+d;ee,"")

1
+&;g

r,.

(5.27}

with D the Feynman propagator is explicitly
seen to be independent of n and to satisfy

8 ~ 5) =J), & ~ 8') =E) . (5.29)

The second term in (5.27) is, mod e(~, also
independent of n by our previous discussion.

%e proceed now to establish the j orentz invari-
ance of the spin-& theory. The generating func-
tional (5.1) becomes

PV(a, d)=S jdddS lidddTP)exp[([S„(S, S)+S '(Sea +SPS„.. . , P ))), (5.30)

where the action is given in Eqs. (3.8), (3.9}, and
(3.11). The explicit Gaussian spinor integrations
now give

W„(a, 5)

=N dAdB e' &

sentation (4.15) gives

Tr in[(P —f. —m)/(P —~)]

~~ itlt1 dp 7I
0 7

T

x 1 —exp —i d7'i ~ C, (5.33)
0

where

g(1') = trE(1"), (5.34)
xexp Tr1n i -m& —C; i -rn;

(5.3 1)

instead of (5.8), where we again use the abbre-
viation (5.9).

For a purely formal argument, we may use
the representation analogous to (5.10),

Tr in[(P —f/' —m)/(P —m)]

(5.32)

where the trace "tr" is only over the spinor
indices. Substitution of the path-integral repre-

with E(I') given by (4.16). This is analogous to
(5.11) and (5.12), and substitution into (5.31) gives
expressions which differ from (5.13)-(5.16) only
by the substitutions m; —,m and f(I')-g(1').
The proof of Lorentz invariance of (5.30) there-
fore proceeds exactly as in the spin-0 case.
This proof is, however, formal because of the
purely forinal existence of E(1") as discussed in
Sec. IV. A rigorous proof would have to include
a discussion of the existence of this functi:onal
on the domain relevant in (5.33). We will instead
use a different approach to the spin- theory
which avoids this difficult question.

Instead of using (5.32) we will rationalize the
Dirac operator. Note that

1Tr in(p- lf' —m+i e) —Tr ln(p —m+ie) = Tr dp.
m

— — +(()[& i—I &+ i

1
da ( - Sp))S& &), „.„,-(Pe p)&. ,„,)

~ ~

1
(d'- S)' - a'+(e

» the last expression we have used the fact that the trace of an odd number of Dirac matrices vanishes.
The last expression gives &Tr in[(p'- g)' —I'+ie] —~ Tr ln(i()' - m'+ie). We now proceed as in the scalar
case and find



19 LORKNTZ INVARIANCE FROM CLASSICAL PARTICLE PATHS. . . 1165

CO

—Tr in(p —g-m+ie)+ Trln(p —m+ie) = sTr —exp —[(di('- g')'-m'] -exp —(p'- m')
T [ 2 2

"dv I'iv.
= '; Tr —exp( —[(P —C)' —-'iy" y"(e e C)„„—m ))&2

—exp~ —(P'-m')
~

(i7
( 2 j,

The exponential here is of the form (4.32), and so we can use the representation (4.34) to obtain

—Tr Ie()S- g —m)+ Trre(P —m) = -' f —exp(- '-im'r') f dr(r)T(P(r)) f dz(r)s;(r)P (P)
0

(5.35)

T (

x exp -i dr' k ~ C+ —(&& C)„„o"" 1-1
0

where f(I') is given in (5.12), and

Ws cfs
dZ(r) = gJ[ . exp s, (o)s-, (o) — d7's;(v')s, (7')2ri

as in (4.35), and

(5.36)

(5.37)

~""(r)=s(7)
2

[r",y"]s(7),

as in (4.36).
The generating functional (5.31) now reads

Ip(a, p) =Ir f dAAA s's expI p -' f —exp(- -'m
&r) fdp(r)f(p) f dX(rls (r)ss(a)

0

(5.38)

—exp -i dr' i ~ C j+ 4 8 + C»„a"" +1
0

(5.39)

which only differs from the spin-0 expression (5.13) by the o"" contribution to the exponential. We now

have in the power series (5.14), (5.15)
I

Iyi I(a, p) = —f dddp s s'
7 [ 'dp (r, )f(1' )
r=l L

where the currents are

x PC, expI- —pm, 'r, -if dx[d (A+a)+ii, (A +P)]I,
P

(5.40)

Tr

J, (x) = g e; dr„'[i~(g„')+ v„""(r,')s„]54(x-g„),
0

Tr
Ep(x) = Qg; d7„'[k„"(r„')+ o„""(7„')s„]5'(x-s„).

0

(5.41)

The new feature here, as compared to the scalar
case (5.15) and (5.16), is the existence of first-
moment contributions to the classical currents.
According to our discussion in Sec. II, following
E(ls. (2.18) and (2.19) the presence of these mo-
ment contributions does not affect the n indepen-
dence (mod e(&) of the classical action. We may
thus conclude, just as for the spin-0 theory, that
(5.40) is indeed Lorentz invariant when the [luan-
tization conditions (1.3) are satisfied.

We can again be more direct and explicitly

perform the integrations over A and B in (5.40).
The result (5.19) is as before, but with the
currents (5.41). Write

J=J +J, E=E,+E, (5.42)

with J„E,the charge con'tributions (5.16) and

J„E,the moment contributions. The charge-
charge contributions J, D E, etc. as before give
rise to no n dependence, given (1.3). The remain-
ing contributions are explicitly n independent, for.
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any charges. For example, (3.16) and (5.41) give

d xd gJ~ x D~g x —g g

=-,' Q fdfv'"(7)( —(N ~ 8)'[nA z(z;)]„„
t

+(2w)' 8A f d'y(z, —))'

xlC()) „„) (5 4$)

The second term is n independent and the first
term vanishes except when a magnetically charged
particle intersects a string. Such a collision
corresponds to a set of measure zero in the path
integral in (5.40) and so can be ignored. Thus
(5.40) and therefore (5.39) are Lorentz invariant.

Although we have explicitly established only
the Lorentz invariance of the generating functional
(5.1) in the scalar and spinor theories, it should
be clear that our analysis can be extended to the
Green's functions of arbitrary local gauge-invari-
ant operators in arbitrary field theories.

VI. CONCLUDING REMARKS

The quantum field theories of electric and mag-
netic charge whose Lorentz invariance we have
established were defined in Sec. III by string-
dependent actions such as the local action (3.8)
or the nonlocal one (3.5). Such string-dependent
formalisms for the classical and first-quantized
theories were reviewed in See. II. For the first-
quantized theories, the alternative formalism of
Wu and Yang' is available. This approach avoids
the use of strings and uses instead a topological
section formalism. A distinct advantage of this
framework is that the absence of unphysical.
strings makes such properties as Lorentz invari-
ance more manifest. Unfortunately, it appears
to be extremely difficult to extend the Wu-Yang
program to the full quantum field theory. In fact,
the topological formalism even for the classical
theory is incomplete at present.

Our proof shows that the quantum field theory
of electric and magnetic charge is Lorentz i.n-
variant even though the corresponding classical
theory of smooth minimally coupled charged
fields is not. To aceoniplish this it was necessary
to express the generating functional of the gauge-
invariant Green's functions as a path integral over
the trajectories of charged classical point parti-
cles. Let us review critically some of the assump-
tions that go into the proof:

(1) It is assumed that the generating functional

W may be expressed as a sum (5.14) W=g,"„Wi~~

over the number of charged-particle loops. This
is a weaker assumption than a perturbative ex-
pansion, because each term S'~ ~ contains all
orders in the coupling constant and furthermore
each term is gauge invariant.

(2) It is assumed that renormalization will not
invalidate the conclusion. This is presumably a
weakness of present-day renormalization theory
rather than our argument, for renormalization
theory is inherently perturbative whereas the
consistency of monopole theory rests on the
Dirac quantization condition e;g& -g;e, = 4& x in-
teger, which is inherently nonperturbative. Our re-
sult should (we hope) encourage renormalization
theorists to extends their methods beyond individual
graphs to W represented as a functional integral
over classical particle paths.

(3) The Feynman measure is of course not
really a measure and so we are not really justified
in claiming that certain configurations —such as
intersection of a string and a trajectory —are of
measure zero. To be rigorous our argument
should be effected in the Euclidean region where
the volume in path space is, in fact, a measure.

Our formulation of quantum field theory in
terms of integrals over classical particle paths
has dynamical aspects that have not been con-
sidered here. On the one hand, it suggests new
semiclassical approximations around the classical
particle solutions which may be thought of as dual
to the familiar semiclassical approximation
around classical field solutions. Work in this di-
rection has in fact been initiated by Halpern, Sen-
janovic, and Jevicki, "and our results allow sys-
tematic inclusion of closed charged-particle loops.

Finally it should be kept in mind that the point
nature of electric and magnetic charge, on which
we insist, may qualitatively alter the dynamics.
This appears particularly relevant for the unob-
served magnetic monopole with point Coulombic
field of strengthg'/4m-137, and correspondingly
strong pole-antipole attraction. The instability
of an external point Coulomb field of strength
Ze'/4v& 1 to pair production is well known. ""
The problem is modified for a nucleus of finite
extent. " But unlike the atomic nucleus, the
magnetic monopole is absolutely pointlike. Fur-
thermore there is every reason to believe that
the instability of the external Coulomb field
belonging to a particle of infinite mass, persists
if the mass is finite. This suggests that an iso-
lated magnetic monopole would destabilize the
vacuum, and if so, would never be produced even
though its occurrence in closed loops made it
an essential. participant in elementary particle
dynamics.
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