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Zero-mass limit and induced interactions in a two-dimensional derivative-coupling model
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We discuss a two-dimensional model of a massive spinor field interacting via a derivative coupling with a
massive pseudoscalar field. This model is exactly soluble in the zero-fermion-mass limit. We show that it is
possible to treat the massive case in perturbation theory in such a way that no other couplings are induced
and that the exactly soluble case is recovered smoothly upon turning off the fermion mass. This means in
particular that the four-point function has a better ultraviolet behavior than that of its graphs individually.

I. INTRODUCTION

This is the first of two papers dedicated to the
study of a two-dimensional model described by
the Lagrangian density

L = —g4'84' -M44+ —B pB cp ——~ cp

In an interesting paper' Rothe and Stamatescu
have shown that the model with M =0 is exactly
soluble. Since in this case q is a free field, prod-
ucts of fields at the same point can be defined
such that

4(x) =:exp[igy'y(x)JA '0'(x)

is well defined and solves model (1.1) with M =0,
if 4' '(x) is a free massless Dirac field. The
authors of Ref. 1 have also verified that, up to
second order, the fermion self-energy and the
three-point vertex function calculated from per-
turbation theory agree with the exact solution.

Although our interest in the model (1.1) is pri-
marily connected with the possibility of making
perturbations around models not exactly free (a
subject that will be treated in the second paper,
where. we study perturbations in the fermion mass
M about the exact M =0 solution), we think that
there is still an interesting aspect of the usual
perturbation in the coupling constant g which de-
serves mentioning. Specifically, if the Feynman
graph expansion for the Green's functions of the
model (1.1) is considered, one sees that graphs
with four external fermion lines are logarithmic-
ally divergent.

Following the usual procedure we would sub-
tract such divergences, but this process can in
general generate a Thirring-type interaction
(4y"4) (4y~4), so that the limit would not corre-
spond exactly to the mode1. considered by the

authors of Ref. 1. In this communication we want
to show that a subtraction scheme can be con-
structed in such a way that the M-0 limit is
smooth, and corresponds to the model of Rothe
and Stamatescu. This scheme is very similar to
the one considered by the authors of Ref. 2, in
their study of massive quantum electrodynamics,
and the infrared and ultraviolet finiteness of our
scheme can be proved straightforwardly by an
adaptation of their arguments to the present situ-
ation. Using normal-product methods3 we are able
to derive Ward identities and equations of motion,
which in the zero-fermion-mass limit will lead
us to the desired model. The absence of radiative
corrections to the anomaly of the axial-vector
current is a trivial consequence of our subtrac-
tion procedure.

The problem of deriving normal products in
perturbation theory, which allows one to recon-
struct exactly known solutions, also arises in
other situations like the Federbush model. Our
methods can also be applied to that case, and we
hope to treat it in a future publication. The paper
is organized as follows. Section II introduces the
Feynman rules, the subtraction prescription, and
associated normalization conditions. In Sec. III
properties of the Green's functions such as %lard
identities and equations of motion are stated.
Section IV, finally, contains a discussion of the
zero-fermion-~ass limit. There, we show that,
in every order of perturbation, the perturbative
solution agrees with the exact one. This is done
explicitly for the two- and four-point Green's
functions, but the result can be extended for an
arbitrary N-point function.

II. FEYNMAN RULES AND SUBTRACTION SCHEME

We consider the model described by the effec-
tive Lagrangian density
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The Green's functions of the theory are defined via the modified Gell-Mann-Low formula
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where q and 4" are the free fields as speci-
fied by Zo ~

After expanding the exponential and applying
%ick's theorem, we obtain the usual sum over
Feynman amplitudes of the type

lim JG(P, m, M, e) = lim d~kIG(P, k, m, M, e),
)"0 6"0

(2 3)

where

d'k =,.„d'&g,
g=i

p=0'i p~j

=basis for external momenta,

k=(k„.. . , k,)
= basis for internal momenta,

and the integrand IG(P, k, m, M, e) can be obtained
from a graph G through the following correspond-
ence:

g™fermion line: i~2 -I +ip($ +M

Zscalar line: —m +16($ +m

vertex: -gg, y',

where the propagators and vertices are shown in
Fig. 1.

The integral (2.3} is in general divergent, the
degree of divergence for a proper subgraph y be-
ing given by

d(y) =2--.'"„, (2.4)

~G SG i.~i ~y y G
U~S'G AU

where PG is the set of all G forests, and &,'"' is
the (i) Taylor operator of order d(y) in the ex-
ternal momenta P' and in the mass M' of the in-
ternal fe rm ion lines of the graph y, at P ' =M' =O,

if y is not the graph of Fig. 2, and (ii) Taylor
operator of order d(y) in p" and M" at p" = 0 and
M" = p, , if y is the graph of Fig. 2 (hereafter to

(2.5)

where Ny is the number of external fermion lines
of y. In computing d(y) the momentum factor at
the vertex has contributed with + 1. However,
momentum factors at vertices to which an extern-
al scalar line is attached are independent of the
loop momentum variables, so that we can define
an effective degree of superficial divergence as

d(y} = 2 —pN„—By,

where 8, is the number of external pseudoscalar
lines of y. The graph y will be superficially di-
vergent if

d(r)~ o ~

The process of removing these divergences to
be adopted here consists in the application of
Zimmermann's forest formula3: if G is a proper
graph, IG must be replaced by

k+P

(la) (l c)

FIG. 1. Graphical representation for Feynman rules:
(a) fermion propagator @) scalar propagator, and (c)
vertex. FIG. 2. Boson self-energy graph yo.
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be called yo). S„is a substitution operator shift-
ing from the variables of X E U to those of y e U,
if y &X; SG in addition sets the mass p, equal to M.

We remark that the possibility of making sub-
tractions at zero fermion mass, without getting
infrared divergences, stems from the fact that
the mass m is not modified by the action of the
Taylor operators. In fact, both ultraviolet and
infrared convergence can be proved by a straight-
forward adaptation of the reasoning given in Ref.
2. The subtraction scheme above furnishes im-
mediately the following normalization conditions
for the vertex functions:

where I' ' denotes the contribution for the cor-
responding vertex function, resulting from graphs
not containing the graph yp of Fig. 2 as a sub-
graph. (As will become clear from the next sec-
tion, the same normalization conditions also hold
for l"' ' ', 1"' '", and I' ' ' in spite of the appar-
ent logarithmic divergence of yo. ) As we shall see,
when M- 0, the above equations become the
normalization conditions for the zero-fermion-
mass theory. It is clear that m and M are not the
physical scalar and fermion masses; however,
the latter one tends to zero as M-O.

I (2, 0) 0
gI (2, 0)

BM A&0

III. WARD IDENTITIES AND EQUATIONS OF MOTION

I (4, P) 0p)-0 )

mp

(2.6)
Ward identities for the vector and axial-vector

currents can be derived in the standard way. ' We
will find that the anomaly of the axial-vector cur-
rent is mild enough so as to permit the solubility
of the M-0 limit. We have

6'(TN, [4 y 4](x)X)= i(T(N2[4'(- ig -M)4](x) N2[i(i-p -M)4](x)jX)=+[6(x -y, ) -5(x -x&)](TX), (3.1)

8".(TN, [ey, y'+](x)X) = i(T(N, [@(-i$ —M)y'@](x) + N~[+y'(i8 —M)+](x) + 2N~[M~y'~ j(x6»

p z —z& y +Q z-y& y„TX +2i TN2'tI'yC' xX (3.2)

We now use Zimmermann's identity

2iN&[M@y'4 j(x) =2iMN&[4y'4](x) + a &'p(x), a =-g/&,

where the last term in the right-hand side of (3.3) comes from the subtraction for the graph of Fig. 3.
Using (3.3) we can rewrite (3.2) as

E

6 "(TN, [+y,y'4](x)X) = 2iM(TN&[@y'0 ](x)X) + a(T 6 cp(x)X) —+[6(x—x&)y' + 5(x —y&)y'„' ](TX) .
i=i

Equations of motion can be derived analogously. In particular,

(3 ' 3)

(3.4)

(&,'+ m')(Ty(x)X) =- i+5(x —z,)(TX ) —g~;(TN, [+y„y'+](x)X),
&=i

so that, using (3.4) we get

(8 '+m")(Ty(x)X) =- (TN, [@y'"4](x)X)— +6(x-z„)(TX~ )
~ +ag 1 +ag
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where m' =m /(1+kg). Equation (3.5) shows that in the zero-fermion-mass limit p is a free field of
mass m'. Similarly, the equation of motion for the 4 field is given by

({P. -M)»(»l):"»'(» ). 7'()l)fIP(». ) = »(&&-8/3(»"»'»'. P{(»)&)+(2(-()"&(»-»I)(»;).
g=i &=1

(3.6)

IV. ZERO-MASS LIMIT

In order to simplify the discussion of the M-0
limit, we consider separately the contribution
coming from the graph yp of Fig. 2, and proceed
as follows:

(1) We apply the axial-vector current Ward
identity to one of the vertices of yp obtaining the
graphs shown in Fig. 4. We note that the first two
of these graphs cancel after integration in the
loop momentum variable of yp.

(2) We take the limit M, -0 of the resulting ex-
pressions, where M, denotes the mass of the in-

yp

ternal fermion lines of yp. Calculating the contri-
bution of the third graph of Fig. 4, one sees that
it goes to zero in this limit. - Thus, after these
steps the only surviving contribution from yp is
the term of the anomaly (the fourth graph of Fig.
4), where g =g'/m is M independent and thus fi-
nite as M-0. As shown in Appendix A we arrive
at the same result even if y, is a subgraph of a
larger graph. In this case only the masses of the
lines belonging to yp are set to zero, whereas the
masses of all other lines remain finite.

(3) The contribution from yo to the scalar prop-
agator is summed over. The effect of this is to
replace b„(x, m ) by [1/(1 -a)]&~(x, m /(1 -c)).
After this step we obtain new graphs with yp
omitted, which are made finite by application of
the forest formula, using Taylor operators in the
external momenta and in the mass of the fermion
lines around P =0 and M =0. The vertex functions
defined by these new graphs clearly satisfy the
normalization conditions (3.6). For these new
Green's functions it is easily verified that

given formally by

6p ———i

7,({,m', ») fd =R){g'», k, m', »l, (4.2)

and R(;(P, k, m', a) denotes the subtracted inte-
grand of the zero-mass theory. For a proper
graph

R, (P, k, m', ~) = P [(-t,","))I,( f, k, m', ~),
UeF& yeU

where I~(p, k, m', e) is constructed using the
following Feynman rules:

fermion propagator:

(4.3)

In the limit M 0 and for nonexceptional momen-
ta, 40G

"N' ' can develop logarithmic infrared di-
vergences, but G'2"' stays finite. [Observe that
owing to our subtraction scheme, reduced verti-
ces with two fermion lines (Fig. 5) will have a
momentum factor which improves the infrared
behavior of the integral in the loop momentum of
these lines. ] It is therefore apparent that in the
zero-fermion-mass limit the Green's functions
of the theory above will approach the Green's
functions of the zero-fermion-mass theory, i.e.,
in this limit M can be put equal to zero directly
in the integrands of the Feynman amplitudes con-
tributing to the Green's functions, assuming that
the M —0 and g -0 limits may be interchanged:

lim lim Jo(P, M, m', e) = lim 7(;(P, m', e),
gwp 6wp swp

where

G(2N&L) ~~ g&2N&L)
BM 0 (4.1)

Z

)2+ jft2

where ~p is the soft differentiaI vertex operation

k'p
k+p

+,~
k

Q p2

FIG 3. Graph giving rise to the axial-vector anomaly.

PIG. 4. Graphs resulting from the application of the
axial-vector current Ward identity to yp. These graphs
are minimally subtracted.
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FIG. 5. Reduced vertex with bvo fermion lines con-
nected to an arbitrary graph.

boson propagator:

i(1-g/~) '

l +m +is(T +m )
'

ve rtex: —gg, y',

but omitting the graph yo. t~'P' is the Taylor oper-
ator in the external momentum variables of y. In
the following we expand perturbatively in powers
of g and at the very end set g=g. This means
that we will obtain 4he Green's functions of Rothe
and Stamatescu with coupling constant g„a ' =g'/(1
—g /n') and boson mass mes =m /(1 —g'/m). For
completeness the proof of the infrared convergence
of this last scheme is sketched in Appendix B.

We shall now prove that, order by order in g,
the Green's functions of the zero-mass theory are
equal to the ones of Rothe and Stamatescu's mod-
el. This will be done explicitly for the two- and
four-point Green's functions.

A. Two-point function

The fermion two-point function satisfies the equa-
tion of motion

FIG. 7. Applying the axial-vector current Ward identi-
ty to the graph of Fig. 6.

obtains

(TN», [B„yy'y'4]{x)4(y})

=-igN[pr ~(x -y)(T4(x)4(y)}], (4.5}

where the symbol N is to indicate that the expres-
sion in parentheses is to be subtracted-according
to the scheme (4.3). Here and in the following
nz(x) stands for the modified boson propagator,
whose Fourier transform is given by

(1-g'/v) '
l'+ m" + k(l '+ m") '

The importance of having used the scheme (4.3)
becomes clear at this point for it avoids inducing
Thirring-type contributions to the right-hand side
of Eq. (4.5). Had we used for example the sub-
traction scheme of Ref. 5, which involves a sub-
traction point, a Thirring-type interaction would
have resulted. It arises from subtractions for the
graph shown in Fig. 8.

Substituting (4.5) into (4.4} we get

g(TN3i, [9,y-'yy4](x)4(y))

+ i6{x-y) . (4.4)

gG""{x,y) =g'N[Pa {x-y)(T+(x)4(y))]

+ 6(x -y), {4.6)

The graphs contributing to

(TN, (,[8,yy' y'4](x) %(y))

have in momentum space the structure shown in
Fig. 6. Applying the axial-vector-current Ward
identity iri the way shown in Fig. 7, one therefore

which can be solved iteratively. The solution of

k+p

F1G. 6. Graph contributing to(TN&&&(e~py"pg}~" g(y)).
FIG. 8. Graphs whose subtraction couM induce Thir-

ring-type interactions.



19 ZERO-MASS LIMIT AND INDUCED INTERACTIONS IN A. . ~

this equation to order g " is given by

ps

G""(x,y) =, bs (x -y)S(x —y),

where Sg) is the free fermion propagator.

(4.7)

Proof: (i) zero order: !7,G' '(x -y) =6(x -y) im-
plies that G' '(x, y) =S(x -y). (ii) Suppose that the
contribution of order g2" is given as above. Then,
the term of order g " ' satisfies

g,G " (x, y) =g N[P b~(x —y)G'"(x, y)]

=g'"'N —,jib„(x-y)ag(x -y)S(x-y)
n 0

I.gN~7
"'( —y) S(„)

I, (n+ 1)! J
n+f

y}S(x-y) -g'" 'N ' ( a(x -y)
I, (n+1)! " y (n+1)t

P+

=g "'
P cg'(x -y)S(x-y)(n+ 1)!

since N[A~"(0)/(n+ 1)!]= 0 owing to the subtractions and N/E(x- y}= $E(x —y) because of the property
fp[Pf(P)] =pt; '[f(p)] of the Taylor operator. Thus

gn+$(
G'"'(x, y) =g'"' ' ' S(x -y),(n+ 1)!

or equivalently

G(x, y) =e' """S(x—y),
which is the solution of Rothe and Stamatescu.

(4.8)

B. Four-point function

In this case the equation of motion reads

&f4 G (x1~ x2i yt~ y~) =-g&»si~b'~'~8. V](xi)~(x2)~(yi)~(y2)&

+H(xi -y&)G ' (x2, y2)+N(x& -y2)G""'(x» y, ).
Similarly to the calculation for the two-point function we have

&»3&2[8.W&'&'+1(x()+(x2)+(y()@(y2))-=-&ZkN[P nz(x& -y2)~.', + 0'&r(x) -y()r„',

+ 8+ (x} y2}~,',}G""(xi,x2 y1 y2)1

so that using (4.10), Eq. (4.9}becomes

p~G""(x(, x2, y(, y2) =g'N[g&„(x, —x2)x,', + P&p(x( -y()X„', + P&s(x) -y2)r„', }G""(x(,x2, y), y2)1

—5(x, -y, )G""(x„y,) + 6(x, —y, )G"'"(x„y,),

(4.9)

(4.10)

(4.11)

which can be solved iteratively, since the two-point functions are already known. We claim that the solu-
tion of (4.11) is given by

2n

G"'"(x„x,; y„y2)=, [&&(x, x2)Z,',r,', +-&&(x& y&)r,', W„', + &-&(x& -y2)x', r„', + &r(x2 yt}~.',~„',
n

+ z~(x, -y, )l,' &„', + any, -y, )&„' p„' ]"G'"(x„x,; y„y,), (4.12)

where G (x„x,; y&, y2) is the free four-point
function.

This can be easily verified applying P, to Eq.
(4.12) and using

~x G ( hi 2i yi~ y2) ~(x1 y1) (x2 y2)

+ 5(x) —y2)S(x2 —y)}

and the y' invariance of the zero-mass theory.
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One obtains Eq. (4.11}so that the iterative solu-
tion is given by (4.12).

The same procedure can be applied to all higher-
point Green's functions, showing that the perturba-
tive solution agrees order by order with the exact
one.
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APPENDIX A

In this appendix we want to show that as M-0
the only surviving contribution from the graph yp
of Fig. 2 is the term of the anomaly (the fourth
graph in Fig. 4},

Proof (sketch): I et G be a proper Feynman
graph. The G forests can be classified as follows:

APPENDIX B

We will show that the Feynman amplitudes of
the zero-fermion-mass theory are, for nonexcep-
tional momenta, infrared finite (ultraviolet con-
vergence is obvious as can be seen by the applica-
tion of the theorem of Ref. 7). We will do this by
following the same method and the notation of Ref.
5, to which the reader is referred for details.

Let u&, ... , u, ; ~„... , v, be an arbitrary basis
of Z(1'), the space of linear forms in P and k of a
connected graph I", with 8(u, v)/Rk t 0. Further-
more, let C be a I" forest, which is complete with
respect to S, the subspace of $(I') spanned by
u~, . .. , u, . Then, we have to show that

6'& ——(Ul UE F&~ there is a graph y c U

so that y and yo are overlapping),

P2 ——(Ul y e U~yA yo ——g),
F&

—(Ul y c U~y and yo are nonoverlapping

and there is at least one

graph y' c U with y' & yo).

deg„Rr(C)+2g &0,

where deg„f(u, v) =k, if for almost all v

limX f(&u, v)w0, ~
p

and

R,(C) =(1-t,)Y,(C),

(B1)

(B2)

We consider the contribution from G forests of
P3. We consider two possibilities:

(i) yoc U, but there is no other graph y e U with
the property y &yp. For each forest U& of this type
there is a forest U2 of 5» where U2 differs from
U& only by the fact that yo g U2. The mechanism of
cancellation (up to the anomaly) for this pair of
forests is exactly as in the text.

(ii) yoc U and there is at least one graphy c U
with the property y &yp, Let T be the smallest
graph with the property 7 & yp. There are two sub-
cases to be considered:

(a) r is not a fermion self-energy part. For
each forest of this type there is another forest U
c F3, which differs from U only by the fact that,

yo g U. The combination of these two forests will
give in the M —0 limit only the anomaly term.

(b) 7 is a. fermion self-energy part. Because of
the fact that t,' ' contains the operation M&/~M,
the combination of forests is a little bit more com-
plicated than in the previous case. To get cancel-
lation (up to the anomaly), we have to combine
each forest of this type with forests of the follow-
ing type:

with Y„(C) defined recursively by

Y„(C)=f~,&S„]If„Y„{C),

'-: r(c)=r/r&. "r . (B3)

1 -Iy
f„= if, y.(c)fs, r(c)lls

othe rwise.
(B4)

In proving (Bl) the following lemmas (1, 2, and
3) are important:
I.emma l.

(a) If t„' Y„c0, then

degas„" Y„~ deg„~r Y„-d(y) if ylJS,

deg„t„" Y„~ deg„Y„ if yfS,

deg„pity Yy deg„p&Y y .

(B6)

(B6)

(BV)

if yfs . (B8)

(y~, . . . ,y„)=set of maximal elements of C con-
tained in y and
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deg„Y'„&-M(y) if yfS,
where

(810)

M(y) =2K [No. of independent loops of X(C)j

X«y

& if right-hand side + 0,
& means = if right-hand side = 0.

Lemma 3.
Let ~ be a maximal element of C properly con-

tained in y( 1. Then the following inequalities
hold:

(a} If t,'"'Y„WO, then

deg„SQ~' Y„&-M(&), (811)
deg~„S+i'" Y„&d(X) + 1 -M(X) if A. IIS . (812)

(b)

deg„~„S„(1—t„'"')Y~ & max{d(X) + 1,0}—M(A)

i.f A.JS, yllS. (813)

The proof of the above lemmas is essentially
the same as in Ref. 5. We only have to note that

The proof of this lemma is the same as in Ref. 5.
Lemma 2.

deg„,vY, - d(y) + 1 M—(y)

if yllS and t„"YESO, (89)

Case I: I'fS. From (810) and (86) we have

deg~(1-tr )Yr &-M(l ) ~

Case II: I'IIS. We have

deg„Sr(l -tr' ')Yr & min{deg„Y„, deg„tr Yrj.

From (85) and (89}it follows that

deg„tr' Yr &-M(I') .
Besides that, we have

deg„Yr =deg„fr-+ P degSrf„Y„,
I y~C

=r(A) -M(A)+ g deg„S,f„Y„,
y~C C

(817)
where A is the graph obtained from I'(C ) by reduc-
ing all constant lines of I' [i.e. , with momentum of
the form /r =P Q&) + U (u) with P (P) e 0] to a point.
Let Vp be the special vertex of A resulting from
such a contraction (here the nonexceptionality of
the external momenta of I' is important, since this
implies the existence of only one such vertex).
Now, from (810), (Bll), (812), and (818) we get

deg„Srf„Y„&-M(y ) if V(y ) g v(A), (818)

deg„s„f„Y, ~-M(y. )+m~{d(y.)+ i, oj

if V(y ) e v(A. ) and V(y )IV0, (819)

where V(y ) is the reduced vertex obtained by con-
tracting y to a point, and v(A) is the set of verti-
ces of A. Using (818) and (819) we obtain

' r(y) -d(y) = Rn~ & 0, (814) deg„l'r & -M(I') +x(A)
where r(y) is the infrared degree of superficial
divergence and n~y is the number of internal scalar
lines in y. Furthermore,

n~ &0 if t",'"'Y„c0.

%e now apply the above inequalities to the graph

+ Z max{d(y ) + 1,0j. (820)
V~

V~ » V(y~QVp

V(y )6o(h)

Now by a straightforward calculation we can veri-
fy that

r(A) +
V~

V = V(y +Vp

V(y )6O(h)

max{d(y ) + 1,Oj = -,
'

v~(VO) + v~(VO)

+ Z [2i v~(V&) + vs(V, ) —1]
V~eo(h)

v& =v(y ), v xv

4(y )+ f «Q

[& vz(V&) + vs(V&) 2] y
V =V(y) V WP

4(y )+f &p

[1 + vs(V))] & 0, (821)

(822)

where vi;(V&) =No. of fermion lines ending at Vi i

vs(V, ) =No. of scalar lines ending at V, . We thus
obtain

deg„Yr &-M(I') .if I'IIS.

Using (815), (816), (822), and the result

2 & M(r),

we obtain (81).
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