PHYSICAL REVIEW D

VOLUME 19, NUMBER 4

15 FEBRUARY 1979

Conformal anomalies for interacting scalar fields in curved spacetime

I. T. Drummond and G. M. Shore
D.AM.T.P., University of Cambridge, Cambridge, England
(Received 1 December 1977)

The occurrence of anomalies in the trace of the energy-momentum tensor for scalar field theories in curved
space-time is discussed. For the special case of spherical space-time, an O(n + 1)-covariant formalism is used
to rederive the standard free-field anomaly in four dimensions, and to calculate the anomaly in six
dimensions. It is then shown that for an interacting scalar field theory there is a further contribution to the
trace anomaly proportional to the renormalization group B function. This assertion is then checked by
explicit calculations in ¢* theory in four dimensions and ¢° theory in six dimensions and values for the
anomaly found to fourth order in the renormalized coupling constants A and g. Finally, these results are
generalized to the case of an arbitrary background space-time, where it is shown that the introduction of a
position-dependent coupling constant A(x) enables the relation between the trace anomaly and the 8 function
to be expressed in the form T4, = —BMA)SW;/0A(x)|ry) = Where W; is the sum over vacuum bubble

diagrams with interactions.

I. INTRODUCTION

There has been a great deal of interest recent-
1y~ in the vacuum expectation value of the ener-
gy-momentum tensor for quantum field theories in
a curved space-time background. The result of
those investigations is the discovery that the curva-
ture induces anomalous contributions to the trace
of the energy-momentum tensor.

So far only noninteracting theories have been
considered. In this paper we extend the discussion
to the case of interacting fields,'**? namely ¢* the-
ory in four and ¢°® theory in six dimensions.

Briefly, our result is that in addition to the trace
anomaly previously encountered, there is a fur-
ther anomalous term due to the self-interaction of
the fields. This additional term is proportional to

B(\), the coefficient of 8 /8 in the renormalization-

group equation, wherea is the renormalized cou-
pling constant. Such a result is consistent with
previous investigations of the trace of the “im-
proved” version of the energy-momentum tensor
in a flat space-time background.'*~*® In particular
we note that the extra trace contribution vanishes
for values A which give rise to a scale-invariant
theory. The original anomaly remains, however.
If mass terms are added to the Lagrangian, then
the trace acquires further contributions of a more
conventional kind.

We believe our result to be perfectly general,
although our derivation of it is not. We proceed in
two steps. First, we analyze in detail the special
case of a background of constant curvature. Then
we show, on the basis of assumptions suggested by
this case, how the argument may be generalized.

Two artificial features of our work should be
mentioned. For technical conveience we work with
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a Riemannian rather than a Minkowskian manifold.
Furthermore, we assume that the manifold is com-
pact. For the special case of constant curvature,
then, our manifold is a sphere.”2:2° Neither of
these assumptions we feel is crucial for our final
result.

It is worth emphasizing that we work with a con-
JSormal massless theory. Previous investiga-
tions'!+12 of such a theory on a spherical manifold
suggest that the field and coupling-constant renor-
malizations are exactly the same as in flat space.
Moreover it seems that the curvature does not give
rise to an anomalous mass renormalization. In
other words, the conformal massless theory re-
mains massless after renormalization. This is
what we will assume for most of the discussion.
However, it has been verified only up to the three-
loop level in perturbation theory.

Collins®® has pointed out that his analysis of the
energy-momentum tensor (in flat space) implies
that this assumption ought to break down at the
four-loop level. The implication of his work is
that in ¢* theory a term proportional to (n - 4)*¢*R
(R is the curvature scalar) must be added to the
action density in order to complete the renormal-
ization process in a curved manifold. Because the
calculation is a difficult one, we have not been able
to check this directly on the sphere. For simplicity
of exposition we postpone a discussion of this com-
plication to the end of the paper. It does not change
our general conclusion.

II. EFFECTIVE ACTION AND TRACE ANOMALIES
FOR FREE FIELDS

Our renormalization procedure'!:!> makes use of
dimensional regularization,?"23 so it is convenient
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to regard the manifold as an n sphere embedded in
an (n+1)-dimensional Euclidean space. Points in
this space are denoted by (n +1)-vectors n
=gy ++ + 5 Nasy) and those on the sphere satisfy n?
=g2. The volume element on the sphere is do
= @', (7).

The operator which plays the role of the
d’Alembertian is

1 n (n
M= F[%LabLab— —2“(3 - 1)] y (2.1)
where
Lgp=1Me3p— M0, (2.2)

The presence of the “extra” term

-3 -

in M reflects the fact that we are dealing with a
conformal scalar field. Note however that our
method of dimensional regularization gives the
curvature scalar an explicit » dependence. This is
somewhat different from the regularization tech-
nique of Ref. 5 where such a dependence is absent.
' We feel that this difference is not important but the
point requires further investigation.
The free-field propagator is

Y — r(%n— 1) 1
D(ﬂ,ﬂ )" 47’"/? ]n_nlln-z (2'3)
and satisfies
MD(,n")==6m,n"). (2.4)

The generating functional W[J] for connected
Green’s functions is given by

W[J]=1n{ f:)kb exp[fdo(%«pMcb
- —}*’I— o4 +Jti>>] }

(2.5)

where ®(n) is the scalar field on the sphere. The
effective action which determines the back reaction
of the matter field on the metric is W =Ww[0]. More
precisely, the energy-momentum tensor in the
“vacuum” state is
piy_ 2 ow

0T .
where g,, is the metric for the coordinates {x}.
For the case of the sphere, T"” is determined en-
tirely by its trace, which is constant over the
sphere, so it is sufficient to calculate

f doT", =a

s (2.6)

oW
>a (2.7)

Now W can be computed as a sum over vacuum
bubbles, the first few of which, for ¢* theory, are
shown in Fig. 1. The free-field contribution from
Fig. 1(a),

Wo==%Trin(-M)=3 TrinD, (2.8)

is different in character from the rest of the ser-
ies, being indpendent of a for all » and having a
pole at n=4. In the Appendix we give a derivation
which conveniently combines our dimensional reg-
ularization procedure with the ¢-function method®
of the standard result! ! that for n~ 4 ‘

1

Wy = 90 71—'_1—'4— +Q((n— 4)0) , (2.9)

If we require that this infinity is removed by the
addition of a counterterm to the action which is
local in the metric field and conformally invariant
in four dimensions then on the sphere W will ac-
quire a further contribution

1 1 -
T (wa)™™*, (2.10)

where p is an arbitrary mass parameter introduced
to give the term the correct dimensional character.
When »n =4 the resultant free-field contribution be-
comes, up to an irrelevant constant,

W5== 95 Inua. (2.11)

In turn, this leads via Eq. (2.7) to the well-known
anomalous trace contribution

1 1

L=~ 30 a4—95'. (2.12)

TH
The method: explained in the Appendix allows us
to calculate W, near n=6, which is relevant to the

discussion of ¢° theory. We find

- 1 1 0
Wo== 755 =g *+O0(n-6Y). (2.13)
This infinity can be removed by adding to the action
a local gravitational counterterm which is con-
formally invariant in six dimensions. Whatever
the detailed form of this term, it must give rise to

a contribution in the present case of

1 1 V’l‘s
756 =6 (na)™®. (2.14)
(a) (b) (c)

FIG. 1. Low-order vacuum bubbles in &! theory which
do not vanish,
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The trace anomaly in six dimensions is then The third-order term from Fig. 1(c) does have a
1 1 singularity, a single pole at n=4. However, this
T, = 56 P (2.15) is not a primitive divergence and is due to the di-
7 vergence of a subintegration. As we shall check in
As we shall see, neither of these two free-field the next section, it is removed by the renormaliza-
anomalies has any obvious connection with the ad- tion procedure.
ditional anomalous terms due to the self-interac- The absence of a primitive divergence from any
tion of the field. of the interacting vacuum bubbles can be estab-
lished quite generally. The proof depends on a
III. TRACE ANOMALY FOR INTERACTING FIELDS representation of the Feynman integrals derived in

a previous paper'? in which the mechanism giving
rise to the primitive divergence can be clearly iso-
lated.

A general vacuum bubble in ¢* theory with p
vertices yields a contribution to the effective action
W of the form

The crucial difference between the vacuum bub-
bles with interaction and the free-field term W, is
that they are not primitively divergent. At first
sight this is a paradoxical result since the corres-
ponding Feynman integrals are certainly divergent.
The paradox is resolved by the method of dimen-
sional regularization, When continued in the di- (=2o)
mension variable », the interacting bubbles are es- W= S fdol o fdoplsgﬁ (D1, n )] e,
sentially finite at n=4 for ¢* theory or n=6 for ¢*

theory. Of course they do have primitive poles for (3.3)
other lower values of n. where the possible values of \;; are 0,1,2,3, and
This is well illustrated by the lowest-order term S is the appropriate symmetry factor. This may be
from Fig. 1(b) ' written!? as
A& : (=2g) T(3n=-1)2? .
Wa= gt [ do, [ dealotn, n))". 3.1 wy= kel LCn2 D) %o | e, (3.4)
Using Eq. (2.3) for D(n,,n,) we readily evaluate the where

right-hand side of Eq. (3.1) as

I(Bi/)sz;I'doig,ni—ml-ﬂ“- (3.5)

W, Al Quu(@®)P r(zn-1]'r4-3n) -

~ 48 (4ny"2r(4-n) In this equation, 8;,=x;,(n—2), n, has been scaled
(3.2) down onto the unit sphere, and the prime on the
’ product of integration measures indicates that one
Apart from singularities hidden in A,, W, is finite of them (any one) has been left out.
at n=4. The divergence of the original integral in The function I(B;,) was analyzed in Sec. III of
Eq. (3.1) corresponds to the fact that the lowest Ref. 12. It is shown there that I(B,,) can be given
pole in I'(4 - $#) occurs below n=4 at n=%, the representation
J
n+1
1(Byy) = f = L—i’f_lﬁ a"xy H [, ;P45 |z -2 |*® H |2 = x, [Pe72", (3.6)
ac |z-z]| 5 1< i
r
where the {x,} are n-dimensional vectors and z is Ref. 12. Also,
an (n+1)-dimensional vector. If z={y,z,,,}, then
z={y,-2,,,}. The integration range is restricted B=), Bi (3.8)
only by the condition z,,, = 0. 1< ~
The measure dC which is divided out of the inte- and
grand may be chosen to be
1 d"xo d"xpd" xy By = ,Z; Pus: (3.9)
ac= 55 | o = 28] ™| 205 = 2, || %, — 20|’ (3.7
n [ Fe T A 1A T Ayl 1Ay T Fa It is easy to see since the diagram has 2p lines and
and the three points x,, %3, x, may be set at any four lines enter each vertex that

convenient values. The necessity of dividing out
this conformally invariant measure is explained in B=2p(n-2) (3.10)



and
B;=4(n- 2).
We have then

1 -
I(B”)=f el IiId"x, Elx,—&l Bij

X fdnyzp(4 “m-n-1

(3.11)

s
4-m-n-1
Xf dznu(znu)p( mo
(]

X[ (21, 9, 2)]"%, (3.12)

where
f(zn+1’y7 x):H lz—xi,z
]

=H(zn+12+]y—x,|2). (3.13)

i

Now the primitive divergence of the integral in
Eq. (3.5) comes about in a region in which all the
points {n,} are coincident. A consideration of the
scaling properties of the integrand shows that this
divergence manifests itself as poles of I(B,,) in the
variable B. In the representation of 1(8,;) in Eq.
(3.6), these divergences arise at the end point of
the z,,, integration. From Eq. (3.12) we see that
these poles occur at points for which

pd-n)-n=-k, k=0,1,2 ... . (3.14)
That is

_ k+4p

"=y (3.15)

When £=4, n=4, so the ultraviolet pole of interest
is never the lowest one. The residue of the pole is
proportional to the coefficient of z,,,* in the Taylor
expansion of

[fzpers 9,072

This coefficient obviously has a factor (4 - n)
which cancels the primitive pole. Of course the
amplitude will still be singular at »=4 owing to
divergences associated with coincidences of sub-
sets of the {n,}, but the overall primitive singular-
ity is always removed. ,

It is worth remarking that this cancellation of the
primitive divergence is not an accident. It is due
to the vanishing of B, - 2n=2(n—- 4) at n=4. This in
turn reflects the fact that ¢* theory is formally
conformally invariant in four dimensions.

Given then that only subdivergences appear in the
vacuum bubbles, we expect that they will be can-
celed by counterterms generated by the renormal-
ization process.?* In the present case, since vacu-
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um bubbles have no external legs, these counter-
terms should arise simply from the replacement
of the bare coupling constant by its expansion in

powers of A, the renormalized coupling constant

That is,

SO =l

v=1

(3.16)

where a,()) is a power series in x. Here p is the
standard mass parameter which is introduced to
make A dimensionless. We verify this to O(A%) in
this next section.

If account is taken of Collins’s result,'® then ad-
ditional mass-type insertions will be required at
0(*) and beyond. However, these are proportional
to (n—4)® and so will not introduce new primitive
divergences.

The end result then is that when the sum over
interacting vacuum bubbles W, is reexpressed as
a power series in the renormalized coupling con-
stant, it is finite. It follows immediately that W,
satisfies the renormalization-group equation

2] ]
[u o= +B0) 5] W, =0, (3.17)
where (1) is the usual coefficient of ¢* theory.
Equation (3.17) is a consequence of the general re-
sult that in the renormalization process a change
in u can be compensated by a suitable change in A.
It can be regarded as a special case of the standard
renormalization-group equation®®2® for Green’s
functions in which the number of external legs is
zero.

The contribution of the interacting vacuum bub-
bles to the trace of the energy-momentum tensor is
[see Eq. (2.7)]

fdoT’;,, =a % W, . (3.18)
Now on dimensional grounds we know that W, de-
pends only on A and pa. Therefore,

]
W, . (3.19)

a -—
a —W,=u 'ﬁ

oa

From the renormalization-group equation [Eq.
(3.17)] we find then

. 9
[ aomh, =-80) 5w, - (3.20)
That is,
1 2
Th == gz BN 57 Wy - (3.21)
5

This is our main result for the spherical case. In
the next section we shall verify it explicitly to
O(2®) and use it to obtain T}, to O(x*).

Finally, we note that the same analysis applied
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to ¢® bubbles in six dimensions yields the same
conclusion, namely, that they too all lack primitive
divergences. In that case we expect to obtain the
result
1 d )
Thy == 79, B(g) EradE

where g is the renormalized coupling in ¢* theory.

(3.22)

IV. ¢* THEORY IN FOUR DIMENSIONS

Before passing on to the detailed treatment of the
interacting graphs of Fig. 1, it should be noted that
certain graphs have been ignored as giving zero
contribution to W,. Such a graph is the first-order
Feynman diagram in Fig. 2. Its contribution is
proportional to [D(n,71)]?, and in Ref. 11 it was
argued that the diagonal elements of the propagator
should be evaluated as zero in the method of di-
mensional regularization. We omit from consider-
ation then, all graphs which contain a line reenter-
ing the vertex from which it emerged.

We have already evaluated the two-vertex graph
in Fig. 1(b). If we use the standard result that

. 3 1
Ao =ut "x[l—(,l—;‘)g ——3 +o(x“)] , (4.1)

we find to O(A%) that
1 A2 1 a8 1

W, = 864 (4n)% ~ 144 (4nF n-4
1 A 2 2 Py
- 14 @y (=lndmp2a® +y -42)

+0(n-4). (4.2)

The three-vertex diagram in Fig. 1(c) yields a
term

. 3
Wo=m %78- f do,do,do,[D(n,,n,)]?

x[D(115,n3 I [D(ng, my) 2 - (4.3)
This is readily evaluated as
3 _ I‘(Ln— 1) 6
xI(2n—4,2n-4,2n-4), (4.4)

where the three-point integral I(B,,, B,3, B3, ) is
evaluated in Ref. 12. For the values of 8;; in Eq.
(4.4) we find

I2n-4,2n-4,2n-4)

=211-4n.”n/29"r.(6_ Zn)%]a . (4.5)

Clearly, I, and therefore W,, has the single pole
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FIG. 2. Vanishing vacuum bubble.

at n=4 referred to in the previous section. To
0(\®) we find

N S A
124 nf -4

+ L 2 (~Indrp2a® + v -2)
96 (47)° °

+0(n-4). (4.6)

Ws

On adding W, and W, we obtain W, to O(A®); thus,

R S S
864 (4m)*
1 N

+ —_— —_—

288 (4m)°

W,

(=Indnp2a®+y-3). (4.7)
Notice that, as expected, the pole terms have can-
celed in the sum. This confirms the idea that the
pole in W, is due entirely to a subdivergence, since
it is removed by the counterterm pole in W, which
appeared as the result of expanding A, according to
Eq. (4.1).

The contribution of the bubbles with interaction
to the trace anomaly is therefore [cf. Eq. (2.7)]

3 AS

1
T L S 4
Ty a®Q; ¢ 3a W1 24q*(4n)® +009. (4.8)

From Eq. (4.7) we have

Y174 by A3
o = T3eaEnT 96y Cmmwtatry=3)
+0(\%). (4.9)
Now,

3 17 A8
)= @mz~ 3 (@n)

so, on substituting these results into Eq. (3.21), we
find

- +0(\%), (4.10)

T, =- YN (~Indmp®a® + y —48)
w 24q%(4m)® ~ 164*(4m)° 1
+0(\%). (4.11)

It is immediately evident that Eq. (4.11) confirms
Eq. (4.8) to O(A®). Furthermore, our knowledge of
B(A) enabled us to calculate T4, to O(A*). It is in-
teresting to note that for weak coupling T}'“ has the
same sign as the free-field term in Eq. (2.2).
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Apart from this there is no obvious relationship
between the two contributions.

V. ¢> THEORY IN SIX DIMENSIONS

In Sec. II we computed the free-field anomaly in
six dimensions. The simplest diagram which pro-
vides a nonvanishing contribution to W, is the two-
point bubble in Fig. 3(a). It yields a term

2
W, = &% [ doydo, [D(ny,m,) P, (5.1)

where g, is the bare coupling constant. This is
easily computed to give

g2
sz_l% aG'nzG-Zn"n/29"+1(

L3n- 1))3 r'3-n)
4.”11/2

(5.2)

Once again we see that W, remains finite at the
relevant value of n, apart from the divergences
hidden in g,. If we substitute the standard expan-
sion for g, in terms of the renormalized coupling
constant g, namely

3 ¢z 1
—,3-n/2 A “ee
&=i g(1+4 s s ) (5.3)
'wefind
1 g 1 gt 1
Wa == 253 (47 ~ 2785 (4nF n-6 ' °
(5.4)

where we have omitted a finite term O(g*). On the
basis of the general analysis of Sec. III we expect
that the pole on the right-hand side of Eq. (5.4)
will be canceled by the pole singularity of the terms
of O(g*) which come from the diagrams in Figs.
3(b) and 3(¢). We have verified this cancellation
but omit the calculation for the sake of brevity.

Although we were unable to calculate the finite
part of the diagrams in Figs. 3(b) and 3(c) we can
still calculate the anomaly from Eq. (3.22). We
have

’ 3
B(g)=——z— (ffﬂTs +0(g% (5.5)

and

(a) (b) (c)

FIG. 3. Low-order vacuum bubbles for & theory.

r-in)"

Hence

) 1 g*

—_— e —— 2 5
og Wi 96a° (4rm)® +0(g%).

T, =-B(g)

(5.7)

It is interesting to note that in this case the ano-
maly has a sign opposite to that of the free-field
contribution. However, they do not cancel for
small values of g.

VI. EXTENSION TO GENERAL SPACE-TIMES

It seems reasonable to suppose that some of the
more basic properties of field theory on a sphere
can be extended to more general manifolds with
arbitrary metrics. We shall therefore make the
following assumptions:

(i) Conformal scalar field theory on an arbitrary
manifold can be renormalized by dimensional reg-
ularization, and the renormalization constants are
identical to those in flat space.

(ii) If the space-time is a compact Riemannian
manifold, then the vacuum bubbles with interaction
contain no primitive divergences in the sense dis-
cussed in Sec. III. It follows that the sum over
these amplitudes, when reexpressed as a power
series in the renormalized coupling constant, con-
tains only finite terms.

Our preference for a conformal scalar field is
based on our experience with the spherical case,
where the presence of the curvature term in the
d’Alembertian is of crucial importance. Our in-
sistence on a compact manifold is intended to allow
us to avoid trivial infinities associated with the
volume of space-time. The choice of a Riemannian
rather then a Minkowskian manifold is made simply
on the grounds that compactness seems more na-
tural in the former case. Several interesting non-
compact Minkowskian manifolds become compact
Riemannian ones after the Wick rotation of an ap-
propriate time variable.

The d’Alembertian for a conformal massless
scalar field in » dimensions is

K=D,D" - t()R, (6.1)

where D, is the covariant derivative, R is the
curvature, and

n—-2
£(n) = prm i (6.2)

On the sphere, R =n(n~ 1)/a?, in which case K
becomes identical with A7 in Eq. (2.1).
The free-field propagator A(x, x’) satisfies

KA(x, x")==6(x, x"), . (6.3)

where x and x’ represent the coordinates of points
on the manifold, and the & function is normalized
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so that
f '] g(x)]V26(x, x) =1. (6.4)

Here g(x) is the determinant of the metric tensor
at g, (x).

One of the most important properties of K is the
manner in which it transforms under Weyl scaling
of the metric. Introduce a new metric

Lomlx) = [R(0) P, (%), (6.5)
so that
gQ=ang ’ (6.6)

Sqglx, ) =27 "(x)6(x, x7) .

If now we denote the new conformal d’Alembertian
appropriate to the metric g, by K, then it is re-
lated to K by

Kt /2=t 2k (6.7)

The new propagator Ag(x, x’) satisfies
KoAqg(x, x')==08g(x, x) . (6.8)

It is easy then to verify from the last two equations
that

Ag(x, x/)z[Q(x)]l'n/ZA(x’x/)[ﬂ(xl)]l'n/z . (6.9)

The sum over vacuum bubbles with interaction
appropriate to the new metric we denote by W,[2].
It is a functional of 2(x) and is calculated using the
propagator Aq(x, x’). The contribution of a given
graph with p vertices to W,[Q] is [cf. Eq. (3.3)]

Wp[‘Q] = %’X fHd"xi[gQ(xi)]l/z

x H [AQ(x,', xj)]xij, (6.10)

1=i<j=p

where as before );; is the number of lines joining
x; to x; and S is the symmetry factor for the graph.
If we assume we are dealing with ¢* theory and
take account of the fact that four lines end on each
vertex, then we find, after using Eq. (6.9) for A,
that

wila)= S5F [T e gte)]¥2 ol 2001477}

x Z [A(xia xj)])‘”- (611)

1<i<j=<p
This is identical with the vacuum bubble amplitude
for the original metric apart from a factor Q* 7 at
each vertex.
Now we can use the renormalization group?® 23

to introduce a position-dependent coupling constant
in the following way. For convenience we write a,
=u*""3,(A). We can write then

T. DRUMMOND AND G. M. SHORE ’ 19

Al Q)] "= [u2(x)]* "2, (). (6.12)

The renormalization group tells usv that we can ab-
sorb the scaling parameter into a redefinition of
the coupling constant; thus,

(12(0) 2 ") = u* "R A(x)) =2(M(x)) , (6.13)
where A(x)=f( A,2(x)) with f(x,1)=2 and

w2 70, @) ==B(1 (1, @) . (6.14)
If we make the substitution indicated by Eq. (6.12)
and (6.13) into Eq. (6.11) for the vacuum bubbles,
we see that W, evaluated for the scaled metric
Loy Can be thought of as a functional of A(x) rather
than of Q(x).

The trace of the energy-momentum tensor due to
the interaction is

ow

T4, =Q(x) m

(6.15)

a1
Using the ideas indicated above we can rewrite this

as

ar(x) W,
dQ(x) ox(x)

But, from Eq. (6.14),

ax(x) _ :
Q(x) m ==f ( Ax)),

T}, =Q(x) (6.16)

INEIERN

(6.17)

so we obtain our main result in the form

T, ==B() v,

o (x) (6.18)

Ax)=N"*

We can say more than this, however. If we use
the notion of a position-dependent bare coupling
constant Ay(x), then an examination of the perturba-
tion series shows that

where we use the brackets ( ) to indicate vacuum
expectation value. The right-hand side of Eq.
(6.19) is computed by summing over all vacuum
bubbles with one vertex in a general position. The
symmetry factor must be adjusted accordingly.
Now if we set 2,(x) =2,(A(x)), then

oW,

g (x) (6.19)

oW oW, dr,
— L = X 6.20
ox(x) A(x)=A mtg(X) Ao(*) =X a ’ ( )

which leads to

ar, [ d*(x)
TR Lo
T ==B0) —33 < ar /-
This result is somewhat simpler than the corres-
ponding result in Ref. 13. However, we have so far
omitted the graphs corresponding to the insertion

(6.21)
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a«(n-4) R ¢?, which Collins suggests is required in
order to make the renormalization process work
properly in curved space. It is outside the scope
of this paper to discuss such contributions in de-
tail. However, we can reasonably assume that they
will not upset the basic idea, which is that w,[Q]
can be reinterpreted as a functional of the position-
dependent coupling A(x). In that case, Eq. (6.18)
will still hold. Equation (6.21), however, will be
modified by extra terms on the right-hand side.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper we have investigated the anomaly in
the trace of the vacuum energy-momentum tensor
for both free and interacting fields.  Much of our
discussion was concerned with spherical space-
time, and for this case we were able to confirm
the standard free-field anomaly in four dimensions
and calculate the corresponding anomaly in six. It
turns out that they have opposite signs.

The principal result of this paper is that the
trace anomaly due to the interaction is proportional
to the renormalization group B function. The de-
rivation of this result hinges on the assumption that
vacuum bubble diagrams contain no primitive di-
vergences at n=4 for ¢* theory and n=6 for ¢°.
This implies that all divergences will be removed
when the sum over vacuum bubbles with interaction
W, is expressed as a power series in the renor-
malized coupling constant, This assumption was
justified in detail in the spherical case. Itis a
consequence of the formal conformal invariance of
scalar field theory in the appropriate dimension.

The general arguments were checked in the
spherical case by explicit calculation in both ¢*
and ¢° theory and the additional trace anomalies
calculated to fourth order. In the case of ¢* theory
the anomaly due to the interaction has the same
sign as the free-field term, while in ¢° theory they
have opposite signs.

The assumption that W, is finite even in a mani-
fold with an arbitrary metric ledus to view it as a
functional of a position-dependent renormalized
coupling constant A(x). Obviously, 8W,/6x(x) is
then a finite quantity. Now, A(x) is related to a
Weyl scaling field Q(x) by the renormalization-
group equation, so

5 5 71

2(x) 1) ==B(x(x)) e (7.1)

This relation is the origin of the factor (1) in Eq.
(6.18) for T%,. )

The possibility and the usefulness of introducing
Ax) related to Q(x) as above depends on the simple
scaling properties of the conformal massless
scalar field theory we have investigated. Our ex-

perience indicates that this is the theory which re-
normalizes in a clean way in curved space. Col-
lins™® has-suggested in the case of ¢* theory that
for higher orders in perturbation theory than we
have yet checked, a modification of the » dimen-
sional action is necessary for the successful oper-
ation of the renormalization process. However,
since this term vanishes in four dimensions, we
feel that it does not lead to any divergences which
would contradict our hypothesis that W, is a finite
quantity. )

Of course it would be of great interest to check
these assumptions to higher order in spherical
space-time. Indeed it is of considerable impor-
tance to extend the analysis of the renormalization
process to more general space-time manifolds and
check our assumptions by calculation.

Finally we remark that the results of this paper
appear to require modification in the case of mass-
less quantum electrodynamics.?®2® A detailed ex-
amination of the trace anomaly for this case on a
spherical minifold will be the subject of a separate
paper.

ACKNOWLEDGMENT

One of us (G.M.S.) would like to thank the Car-
negie Trust for the Universities of Scotland for a
research scholarship.

APPENDIX

In this appendix we complete the discussion of
Sec. II by presenting the calculation of the pole
terms in the effective action W, for free scalar
fields in four and six dimensions. This derivation
conveniently combines the dimensional regulariza-
tion procedure used throughout the paper with a ¢-
function technique.'®

The effective action W, is given by

Wo=3%TrlnD, (2.8)

where the propagator may be written in terms of
transform space variables as
2

D(TI,U')= Z (l+%n)(‘;+§n— 1) ytm(n)ylm(n,)'

i,m

(A1)

The label 7 on the harmonics has a range of %(l, n)
values, where

(2l+n-1r{I+n-1) ’

= 2
ML) = e 1) (42)
It follows that
1 uZa?
Wo="5 Zh(l,rf)ln e L

where this u is a dimensional parameter arising
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from the functional integral over fields, and was dimension » is set equal to four.

suppressed in the symbolic equation (2.8). Now using the results
At this stage we introduce the ¢-function tech- 1 -
3 . Defini 'sz_[ s=1,-0y
nique. Defining Y ) J da o’ le (A6)
Ka °
(s,m)= Zh(l n [(l+2n)(l+2n 1)] (A4) and
it may be seen that Zh(l, nz'=1+z)(1-2)"", (A7)
1
1
W°=-§ % (s,n) =3:'(0,n). (A5) it is straightforward to show that
s=0
Notice that the limit s -0 is to be taken before the t(s,n)=¢,(s,m) +¢,(s,m), (A8)
J
where
_ (u2a2)s -1 s-1 2s-1,"Xxp" N(W/2-1)(1 A7
Z.(s,m)= () dxx* (1= x) drAZSTle Mg (1—-e™) (A9)
and
2 2)\s '
§2(S,n)= (#-(3)2) fdxxs-l(l_x)s-l fdxkzvle-}\xe-)\n/z (l—e')‘)"'. (A10)
Introducing coefficients a,(n) defined by
e A\"n =
(=) -y a1
r=0
and performing the integrations over X and x gives
(= 1)’1“ (s+p)T@s+p+r—-n) 1 c2gepe
2 S 1 n=2s-p-r
£1(s,n) = (u2a®) ,,Z;Zo TG Ea ) W Gn=1) (A12)
and
(=1) I‘(s+p) (2s+p+7r—-mn) n\"EsTeT ‘
2 S —_— . 1
Lals,m) = ) ;,}: T(p+1)I(sT(2s+p) “'(")(2) (A413)

Differentiating with respect to s gives

’ — s iy (—1)”I‘(s+p)I‘(Zs +p+y—n) n n-2s-p-r
¢i(s,n)=(u%a?) ;; T(p+ DI (50 @s+ ) a,(n)(2 - 1)

X [In(u2a?)=2In(3n-1)+ 2025 +p+7 —n) = 2P(2s + p) + (s +p) = ¥(s)] (A14)

a similar result holding for £;(s,n).
However, in the limit s -0, only the final three terms give nonzero contributions, leaving finally

£i0,m=2 3 a o)} - ) re-m 3 )3 ey @l (5 - ) P (a15)
=1 7=

r=0
and
, B ) ﬁ n-r oo o (_l)b ﬁ n-p-r
@0,m=2 3 a(3) To-me 23 Fea(3) | cerr-w. (a16)

o
The terms in these summations with p +7 <4 are divergent at n=4. These may be evaluated using the
following values for the coefficients a,(4):

a(4)=1, a,(4)=2, a,(4)=%, a,(4)=1, a,(4)=2%%. (A17)
The corresponding results for »=6 are
a4 (6)=1, a,(6)=3, a,(6)=3, ay(6)=2, q,(6)=48, a(6)=1, ag(6)=43 —23(L). (A18)

Evaluating these, we find for n=4



§'0,n)=5n- 4)+0(n-4)),
while for n=6

20, n)==55(n-6)+0((n-6)0).
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(A19)

(A20)

In fact, the entire contribution to the pole arises from the single summation (p =0) parts of (A15) and

(A16). The poles in the double summation add to zero.

Notice also that we do not require the series (A15) and (A16) to be convergent. All that is needed is that
the divergence at # =4 be correctly given by the sum of terms with p+» <4,
Finally, using Eq. (A5), we recover the results quoted in the text for the pole parts of the effective ac-

tion. That is, for n=4,
Wo=1(n=4)+0((n-4)\),

and for n=6

Wo == 725 (n=6)+ O((n—6)°) .

(2.9)
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