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Geometrical mechanics for particles in dissipative systems
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The quantum-mechanical problem of motion of particles in dissipative systems is considered. Ray theory is
applied to cases where systems change slowly in space and time. Although complex momentum and energy are
necessary to describe the physical situation, real space-time paths and group. velocity are imposed. The
analogy to geometrical optics in absorbing systems is striking and a nonrelativistic as well as relativistic
treatment is possible.

INTRODUCTION

The formulation of geometrical mechanics by
Synge~ and his extended Fermat principle for loss-
less systems have inspired the study of real space-
time rays in absorbing media. " This approach
serves as an alternative to other real space-time
rays formalisms, especially Suchy's ' approach.
The latter has been criticized by Bennett to be
nonunique. ' ' But, even though this objection is
clarified, 9'0 Suchy's formalism for ray tracing is
very difficult to implement because a bundle of
rays must be traced simultaneously, ~' The pres-
ent formalism, on the other hand, facilitates the
tracing of individual real rays. The feasibility of
the model for machine computations of ray tracing
in an absorbing ionosphere has been demonstrated
recently. ' There exist also formalisms which use
complex space and time concepts; for further
references see the above-cited studies.

The above-. mentioned studies have been motiva-
ted by problems in the realm of electromagnetic
wave propagation, especially for ionospheric ap-
plications. The initial analogy of geometrical
mechanics and geometrical optics is now revisited,
with the aim of understanding the motion of parti-
cles in a general class of dissipative systems.
This is done here by using the theory of real rays
in dissipative systems. "

The formulation of classical mechanics in a
general way which includes dissipation is an old
problem whose difficulties are notorious. Some
linkage to the literature is provided by mentioning
the works of Denman, ~ van der Vaart, "Gossick, '
Denman and Kupferman, "and Denman and Buch, "
who essentially strive to define a Lagrangian or
Hamiltonian formalism for nonconservative sys-
tems. Quite naturally this led researchers to con-
sider quantum-mechanical problems in dissipative
systems. See Kostin, "Buch and Denman, "and
Hasse. " However, as the latter mentions, the
general problem of quantal dissipative systems is

still open. In any case, the above-mentioned
studies do not elaborate on the problem of ray
tracing in the broad class of media considered
here.

Without analyzing specific microscopic models,
dissipation is admitted into the present formalism
by allowing complex momentum-and energy-de-
pendent functions, slowly varying in space and
time. The introduction of complex potentials into
quantum-mechanical problems is well known, es-
pecially in nucleon-nucleon interactions where
energy-dependent potentials ar e mandatory. This
optical potential or optical model, as it is called,
can be found in any general survey on nuclear
physics„see for example Lock and Measday, "
who cite recent specialized studies Qy Hodgson"
and Austern. "In the present case, although mo-
mentum and energy are complex, the group velocity
of the particles is real. , hence complex space-
time coordinates are avoided. Similarly to the
results in nuclear physics2'~2 and unlike Buch and
Denman, ' the present analysis reveals how the
probability of the particles is dissipated as they
move along the real trajectories.

Finally some simple examples are considered
to demonstrate the theory. An appendix gives a
simplified derivation of the rigorous ray formal. -
ism, derived elsewhere. 3

HOMOGENEOUS TIME-INVARIANT SPACE

First we consider the problem of a particle
moving in a homogeneous time-invariant isotropic
space. The appropriate wave-mechanical equation
must be given. For the nonrelativistic case Schro-
dinger 's equation

is chosen, where V cannot be a function of either
space or time; otherwise the above assumptions
are violated.
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On the other hand, V can depend on momentum
and energy without introducing inhomogeneity or
anisotropy into the equation. This implies in (I),
V(s/Bx, &/at), i.e. , a differential operator. The
possibility of including differential operators pro-
vides the loss terms in the equations governing
the motion of the particle. It is interesting to note,
in this context, that Rayleigh's dissipation func-
tion (see Goldstein, "for example) describes vis-
cous (i.e. , velocity-dependent) frictional forces
can be used to extend the Lagrangian, equations be-
cause of its velocity dependence, similar to the
present momentum and energy dependence.

Now let-4 be represented as a superposition of
plane waves, which will be interpreted subse-
quently as a wave packet

e)x, l)=f ~'))»l»»e()», »»)»»» -*-».». (a)

It must be emphasized that (2) is not a Fourier
integral, since %, &u are not necessarily real;
therefore an inverse transformation is not avail-
able. However, in the present case it is not
needed.

By combining (I) and (2) and exploiting s/sx= tk,
8/st ==ter we derive the dispersion relation be-
tween % and &u,

and, by identifying the momentum and energy by
P=h%, K=8'~, respectively, we get the corres-
ponding classical expression for the energy balance.
The function V(k, &u) need not be real; therefore in

general, F and also R, ~ are complex.
The concepts of complex momentum and energy

are not new in physics (e.g. , complex power in
oscillatory electrical networks, or complex po-
tentials in nuclear physics, as mentioned above);
however, it needs physical interpretation before
it can be accepted here. This is done below, after
clarifying the concept of a wave packet.

The choice of %, m satisfying (3) is not unique
even for real V. It is the stipulation that the group
velocity must be real which determines the allowed
values of %, &o satisfying (8). Writing F =0 in the
form &u =Q(R) and expanding Q as a Taylor series
about a central value %, retaining only the first
derivative, yields

(u =II(k,)+ ~ (%-%,).
8

where f is the integral after the complex plane
wave is pulled out. This is a description of a
wave packet with a carrier wave e'"o'" ' ()' and
an envelope f which. is constant on x =vt H.owever,
in the present case ko, coo are in general complex.
Since real x, I; are stipulated, we must choose
those values %, &u, satisfying Imv = 0.

We can now return to the concepts of complex
momentum and energy. According to (5), the
probability density is defined as

&-2 I mk ' x +2 Im)»ltff »)» (6)

The fact that R, &u are allowed to be complex leads
to a function (6) which is dependent on x, t. If we
move in space with the group velocity prescribed
by (5), then ff* is a constant and the exponential
becomes

-2(I mk ' v —Im~ ) te

If in addition Imk v& Im~, then we have, as we
move in space, a time-dependent exponentially de-
caying function which describes the absorption of
the stream of particles. The opposite situation
Imk ~ v& lmv describes a situation where owing to
the stream of particles the medium is stimulated
to generate more particles. In some respects this
brings to mind the avalanche effects in electrical
discharge and stimulated emission of radiation in
lasers. However, the present linear theory is more
adequate for description of stable systems, and
therefore limiting the discussion to dissipative
systems leads us on firmer ground.

INHOMOGENEOUS TIME-VARYING SPACE

In inhomogeneous time-varying space we allow
V to change slowly in space and time. (The pre-
cise meaning of "slowly changing" functions is
not further elaborated here. It suffices to say
that over a distance 4 ' and time ~ ', V is ap-
proximately constant. ) The particle is described
by means of the eikonal approximation

f(x t)8$ tel(X, t)

(8)P~
y(x, t) = (R dx-(ddt),

Pl

where f(x, t) is the amplitude and ))))(x, t) is the
phase of the de Broglie wave packet. The phase is
described as a line integral in four-space between
events P, and P,. For (8) to be a unique represen-
tation we prescribe'~

Substituting (4) in (2) yields

)I(x, t) =e'ko " '"b'f(%„x-vt),

v =, (u, =n(%,),
(5)

V xi=0,
e(u el—+—=0
Bx Bf

Synge' considers P as the extended action (this

(9)
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As a simple representative of this class we may
take

V = nh'k'/(2m), (12)

where a is a complex constant. Hence (3) becomes

corresponds to Fermat's principle in its extended
form for optics), hence we prescribe 5$=0, where
5 denotes the variation. However, this variation
vanishes subject to the constraints that E(k, &u, x, t)
=0 [similar to (3), but includes the slow variation
in x, t]; furthermore, all along the trajectory
Imv =0. It has been shown ' that the equation of
motion are given by

dx Fk--
) Imv=0 )dt I'~ '

d(d ~E +zv ~ p,dt F~
(10)

Xx +zp
dt I'~

P=- Re~ '+—'vl(Bv Bv

(B Bco

Bv E~z Bv Fz Bv Bvi
gk p~ B(d. g~ Bx Bg )

where F =BF/B~, F-„=WE, etc. and Bv/Bk is a
matrix Bv, /B k&, i, j= 1, 2, 3, etc. See the appendix.
The new term p, which vanishes in conservative
systems, is necessary to keep x, f real, i.e. ,
Imv =0, not only at the boundary, where Imv =0
is aboundary condition, but all along the trajectory.

The above given theory is not limited to the wave
equation (1). In fact, any function F(R, w, x, f) =0
can be used, provided it leads to group velocities
not larger than c, otherwise special relativity
theory is violated. Thus for example Schrodinger's
zero-spin relativistic equation or Dirac's relativ-
istic equation (see Schiff,"for example) may be
used. The latter leads for a free particle to a
determinant E' —c'P' —m'c' =0 which is identical
to the dispersion relation of Schrodinger's rela-
tivistic equation, therefore for a free particle
the equations of motion are independent of spin.
This is not the case if electromagnetic potentials
are added.

SIMPLE EXAMPLES

Homogeneous time-invariant media

For simple examples we choose the nonrelativ-
istic equation (3) and a homogeneous time-invari-
ant and isotropic system. Thus we take V
= V(h'km, izco). It follows that in (10) p=d&u/dt
=d%/dt =0 and the group velocity is a constant
given by

BV I' BV&
v =25k +»

~
1 —— I, Imv =0. (11)2m 5 Bk ( AB(a) j

h'k
y -he =0, y =1+ca

2m

and (11) yields

v =by%/m, Im(yk) = 0.

(13)

(14)

v =—(k+n), Imk=-1mB.
m

(17)

The condition for dissipation becomes (h/m)Im%.
~ (Rek+Ren) & 1m&v but the imaginary part of (16)
leads to (h/m)lm% ~ Reh =1m'. Combining these
relations, the inequality becomes

Impy ~ Rek& 1,
and therefore Ima ~ Re%& 1 means amplification.

(18)

Space and time slowly varying media

In order to avoid complicated problems requir-
ing machine computations, we again consider very
simple problems. Let V be independent of k, &u,

but a slowly varying function of space and time.

Since k„ i=1, 2, 3 andy are phasors in the com-
plex plane, we have argy =-argk„and conse-
quently from (13}we have

argk; =arg~ =-argy.

Since there is only one direction of interest in
space, we may drop the vector notation in (14).
According to the argument following (7}, dissipa-
tion exists for (Imk)kyh/m & 1m&a, but the imaginary
part of (13) prescribes (Imk)kyh/(2m) =1m+; hence,
provided Imkc0, y+0, the inequality is identically
satisfied. This is a very interesting result, show-
ing that the present system cannot give rise to
amplification (as opposed to dissipation). Another
interesting result is the fact that the group velocity
(14) is a constant of space and time, but (7) still
prescribes an exponential decay. This implies
that individual particles are not slowed down by
dissipation, as one would expect from classical
mechanics consideration (see also Buch and Den-
man"), but are simply "disappearing" from the
stream of particles, i.e. , their energy is either
finite or zero.

If we take V=o.~, with n a complex constant,
then (13) can be written again, with y =(1—a) ',
hence we arrive at the same results. Classically,
in both cases V is proportional to the square of
the velocity, hence this result is not surprising.

Anisotropy can be introduced by making V a,

function of % instead of k'. Although the problem
of spin is not considered now, Dirac's approach
inspires one to try V=(h'/m)o, ~ R, where here o.

is taken as a constant complex vector. Now (3)
becomes

hzk ~ (k + 28)
(16)

2m
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From (10},

v =hk/m, Im%. =0. (19)

ray mechanics). This seems to be an open problem
at present.

But if V is allowed to be complex, then ~ must be
complex although % is real. The condition Imk. v
&Im~ implies Imco&0, Im~&0 for dissipation and
amplification, respectively. From (19}we have
Bv/8% =7@/m, where I is the idemfactor dyadic,
therefore (10) prescribes

APPENDIX

A simplified. derivation of (10) is given. Since
E(k, &u, x, t) =0 must be satisfied always and every-
where, we must have dF =0, hence for BF/8&v x0

1 dF BF/Bk; dk; du)

BF/8~ dt BF/Bur dt df

9VP= —Im-
Qx

dk 1 BV—=- —Re —,
dt A Bx ' (20)

DISCUSSION

d(d 1 BV $%. BV
et teal Qx

Consider first V(t) depending on time only. Then

p =dk/df =0, hence only &u can change according to
~ = V(t). This is less interesting than a space-de-
pendent function V(x). Here (20) prescribes that
k will change as a function of ReVV, while Re(d&u/

df) = 0 and Imd+/dt =(k/m) ~ ImVV, Hence Re&a is a
constant and Im~, connected with the time depen-
dence according to (I), depends on ImVV in the
direction tangent to the trajectory.

BE/Bx; dx, BF/Bf
BF/8&@ dt BF/B~

The real part of (Al) is satisfied by

dk( BE/8 x,
df BF/8(d

y(u BE/Bt
dt BZ/8(d

subject to

dx, BF/Bk,
dt BF/Bv

Postulating

Im ' =Im '+p, , Imp,.=0dk,. BE/8 x,
eF ceo

dry 8F/8 t
Im —= —Im +~, Imn =0

df BF/8td

(Al)

(A2)

(A4)

The question of dissipative systems has been dis-
cussed within the realm of ray mechanics, and
simple examples were given. Synge' in his book
proceeds by a method he calls "primitive quantiza-
tion" to discuss notorious physical phenomena,
e.g. , the hydrogen atom. His approach is admitted-
ly a somewhat more precise version of the Bohr-
Sommerfeld quantum theory. A similar transition
for dissipative systems, if suggested, could per-
haps indicate the way in which dissipation can be
incorporated into wave mechanics (as opposed to

and substituting in the imaginary part of (Al) yields

cv =
pgvg . (A5}

Therefore only P& are undetermined yet. But in order
that v, remains real along the ray path we have to
add the constraint (d/dt)Imv, =0, yielding.

~r'Bv, dk, Bv,. d(u Bv,. dx, Bv,
'

Imkea dt +8M dt +ex dt +Bt 0 A6

Substitution of (A2)-(A5) in (A6) yields P, and com-
pletes the derivation of (10).
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