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One widely accepted model of classical electrodynamics assumes that a moving charged particle produces
both retarded and advanced fields. This formulation first appeared at least 75 years ago, -It was popularized
in the 1940's by work of Wheeler and Feynman. But the most fundamental question associated with the
model has remained unanswered: When (if ever) does the two-body problem have a unique solutions The
present paper gives an answer in one special case. Imagine two identical charged particles alone in the
universe moving symmetrically along the x axis. One is at x(t) and the other is at —x(t). Their motion is
then governed by a system of functional differential equations involving both retarded and advanced
arguments. This system together with the Newtonian "initial" data x(0) = x» 0 and x'(0) = 0 has a
unique solution for all time provided xo is sufficiently large. Perhaps the existence and uniqueness proof
given for this special case will pave the way for more general results on this curious two-body problem.

I. BACKGROUND

If one assumes that the basic laws of physics
must be symmetric with respect to time reversal,
then the existence of retarded interactions be-
tween charged particles implies the existence also
of advanced interactions.

This notion appeared as early as 1903 in a
paper by Schwarzschild. In this model, charged
particles influence each other via both retarded
and advanced actions at a distance. The sRme
model reappeared in the 1920's in the work of
Tetrode, Page, Fekker, and others; and it finally
became quite respectable after the famous papers
of Wheeler and Feynman in 1945 and 1949 (Ref.
1) discussed the associated questions of causality.

But until the 1960's no progress was made on
what may be considered the most fundamental
question for this model —the two-body problem.

In 1963, Schild' exhibited a special class of
solutions of the two-body problem in which two
particles of opposite sign move in concentric
circular orbits in a plane. And, more recently,
Andersen and von Baeyer' have numerically
computed solutions for the case of nearly circu-
lar plane orbits and fox a case of one-dimensional
motion.

The work of Schild showed that the two-body
problem does have at least some solutions. But
in the 15 years since Schiid's work (and the 75
years since Schwarzschiid's) the basic unique-
ness question for this curious two-body problem
has, to my knowledge, remained unanswered.

The question is: When does the two-body prob-
lem have a unique solutions In other words, what
type of supplementary conditions, if any, could
one impose in order that the two-body problem
make sense V' Would a unique solution be ensured

if one specified some type of boundary conditions,
or appropriate trajectory segments (as suggested
in Ref. 1), or initial values, or asymptotic condi-
tions, or what?

Note that as soon as one imposes supplementary
conditions in hopes of ensuring uniqueness, the
question of existence becomes unknown again. So
existence and uniqueness must be considered
together.

As a prelude to studying this problem mathe-
matically, a related but simpler problem was
examined. In the simpler problem two charged
particles are assumed to be influenced only by
their mutual retarded interactions. This leads
to a system of delay differential equations with
unknown variable delays determined by the un-
known trajectories. In general, for differential
equations with time delays, one expects a unique
solution to be determined for t ~0 if appropriate
past histories (trajectories) are specified on
some interval of the form (u, 0]. Such results
have been confirmed mathematically for the two-
body problem in one space dimension, both with-
out radiation reaction terms and with. ' Recently
these results have been extended to three-dimen-
sional motion without radiation reaction. ' It has
also been found (to a mathematician's surprise)
that, in one dimension, the trajectories are
sometimes uniquely determined for f &0 (and
hence for t ~0) by their positions and velocities
at t =0. See Driver, ' Zhdanov, ' and Hsing. '

Returning to the case of retarded and advanced
interactions, it has been asserted'0 that (even
for the n-body problem) the trajectories are
uniquely determined in case of distant collisions
by the positions and velocities of all particles at
t =0. Such a result would be surprising, for it
is easily shown that a simple equation such as
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II. THE PROBLEM

For simplicity we consider oddly the special case
of two identical charged particles moving sym-
metrically about the origin on the x axis. At
time t one particle is at x(t) & 0 and the other is
a,t -x(t).

The particle at x(t) feels the retarded influence
of the other particle, emitted at an instant t -r(t),
and the advanced influence (to be) emitted by the
other particle at t+q(t) (Fig. 1). The delay
r =r(t) and the advance q =q(t) are the times re-
quired for a "light signal" to reach x(t) from
-x{t-r(t)) and from -x(t+q(t)), respectively.
Thus they must satisfy the functional equations

cr(t) =x(t)+x(t —r(t))

cq(t) =x(t)+x(t+q(t}),

where c is the speed of light.
The equations of motion Ifor the particle at x(t)j

can now be expressed in terms of the interactions
computed from the half-retarded plus half-ad-
vanced Lidnard-Wiechert potentials together with
the Lorene force law. For economy of notation
let us write x, v, r, and q instead of x(t), v(t),
r(t}, and q(t). Then if

x =cv (where IvI&1),
v' k 1 v(t —r) k 1—+v(t+q)

(1'-v')~' r 1+v(t —r) q' 1-v(t+q) '.

-x(t-r(t)) -x(t) -x(t+q(t)) x(t)

&IG. &. Retarded, present, and advanced positions.

x'(t) =x(t —1}+x(t+1)

hasinfinitely many solutions on R satisfying in
fi'nitely many conditions at t =0, say,

x(0) =0, x'(0) =0, x"(0) =0, . . .

(see Ref. 7). And, more relevantly, Andersen and
von Baeyer's calculations suggest that solutions
of the electrodynamics two-body problem itself
may not be uniquely determined by Newtonian
data at t =0.

Nevertheless, this paper will show the follow-
ing. Consider the special case of two identical
(repelling) particles moving symmetrically in
one space dimension. Then unique trajectories
for all time are determined by the positions of
the particles at the instant when both come to
rest provided they are sufficiently far apart.

where

cr =x+x(t -r) and cq =x+x(t+q). (3)

Here k is a positive constant proportional to the
product of the charges divided by the rest mass
of one of them. (If the particles are electrons,
kc is half the classical electron radius. )

If the positions and velocities of the two parti-
cles are specified at t = 0 a "point-data problem"
can be described as follows.

Definition. Given xo&0 and voE(-1, 1), a solu-
tion on R of Eqs. (1), (2), and (3) satisfying the
"initial" conditions

x(0) =x, and v(0) =v,

is a function {x,v): 8—(0, ~) x (-1, 1) such that
(1), (2), and (3) are satisfied on Et while x(0}=xo
and v(0) =v,.

This paper will treat only the special type of
initial data

x(0) =xo& 0, v(0) =0. (4)

Note that since the two particles repel each other
(k& 0), any solution must satisfy v(t) =0 for some
instant t. We are simply calling that instant 0 and
assuming that x(0) is known.

Main theorem. If x, is sufficiently large, Eqs.
(1), (2), and (3) hale a unique solution on R sat-
isfying conditions (4).

The proof is given in Secs. IV and V below.

with initial condition (E)

x(0) =x, .
Let us assume that f is continuous and satisfies

t, 0, 0, 0 dt&

plus the very restrictive Lipschitz-type condition

I f(t, 5, n, 0) -f(t, (, n, &) I

-K(t)m~(14- (I, In- ni, lt ZO, -
where E is continuous and

Jl K(t}dt &o.&1.
0

III. A SIMPLE EXAMPLE

Since Eqs. (1), (2), (3), and (4) represent a
rather unprecedented mathematical problem, it
may be worthwhile to begin by discussing a much
simpler artificial illustrative example.

Consider the first-order differential equation
with a constant delay r & 0 and a constant advance
q&P,

x'=f(t, x, x(t-r), x(t+q) j,
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Then we can easily show that example (E) has a
unique solution on R zoithin the class of bounded

functions:
Let

8 =(g&C(R, R): g(t) is bounded on R).
Then S is a complete metric space with the
metric d defined by

d(g, g) =-pig(t) —g(t)I

for g, g™HS.
Now for g~S define Tg by

t

(Tg)(t) =x + f(s,g(s), g(s -r), g(s+q))ds
0

for t~A.

Clearly Tg is a continuous function on 8, and if
I g(t) I &&, then

l

t
l(Tg)(t)l-lx, l+ f(s, 0, 0, 0)ds + [f(s,g(s), g(s -r),g(s+q)) -f(s, o, o, o)]de

- I*,I +f It(~, o, 0, o) I a + ars &

So T maps S into S. Moreover, T is a contraction
mapping since, for any g, g~S,

l(Tg)(t) —(Tg)(t) I
- ff(s)d( g, g)d

0

- od(g, g),
which implies d(Tg, Tg)- nd(g, g).

It follows that T has a unique fixed point in S,
and this is equivalent to showing that example
(E) has a unique bounded solution.

(The above is a simple modification of results
found by Polossuchin, Fite, ' and others. For
further discussion and references see Ref. 7.)

But note that the assertion that example (E)
has a unique bounded solution does not mean that
it has a unique solution. For instance, the equa-
tion

x'(t) = -h(-t)x(t —1) + b(t)x(t + 1),
where

(iii) we seek to prove a complete uniqueness
theorem —not one which is restricted to a class
of "bounded" solutions.

Despite these difficulties, the essence of the
proof which follows will be the same as that used
for example (E).

IV. PROPERTIES OF SOLUTIONS OF EQS. (1)-(4)

H Eqs. (1)-(4) have a solution on R it must
satisfy certain conditions. %e will obtain several
of these conditions and then use some of them to
describe a metric space S in which solutions
must lie. This space S will be used in Sec. V as
the basis for a contraction mapping argument to
complete the proof of the main theorem.

Lemma 2. Let x be some differentiable func-
tion with Ix'(t)l &c on R, and let Eqs. (3) have
solutions r(t) and q(t) for all t. Then these solu-
tions are unique and, letting v =x'/c,

0 for t~0,
2te " ' for t~o,

v +v(t —r), v+v(t+q)
and q'=

1+v(t -r) 1 —v(t+q) ' (5)

I

satisfies the hypotheses assumed for example (E).
Thus it has a unique bounded solution satisfying
x(0) =x,. But,

'
if xo 40, there is also an unbounded

solution x(t) =xoe . (This is a minor modification
of an example of de Bruijn. ")

Our task for the electrodynamics equations
(1)-(4) is harder than the above because

(i) the electrodynamics equations are more
complicated and they involve an unknown delay
and an unknown advance,

(ii) the electrodynamics equations are autono-
mous, and so cannot satisfy such a convenient
Lipschitz condition as we assumed for f above,
and

[Note that in this lemma we do not assume that x
is in any way related to a solution of Eq. (2).]

Proof. If r =r(t) and r =r(t) satisfy the first of
Eqs. (3), then'if r Wr at some t

clr —rl = Ix(t —r) —x(t —r)l

&clr-rl,

a contradiction. Thus r =r (The uniq. ueness of q
is proved similarly. )

Equations (5) follow from the implicit function
theorem. (See, for example, Landau, " theorem
315.)

Lemma 2. If Eqs. (1)-(4) have a solution on R,
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then

-1&v(t) &0 for t &0,

0 & v(t) &1 for t ~0,

and, for all t,

x(t) o-x„r(t)- x„+x(t)

x„+x(t)
c

v(t r) &-v(t) &v(t+q).

Proof. These assertions all follow easily from
the fact that k & 0, and so v'(t) & 0 for all t.

The a priori upper bound for lv(t)l given in the
next lemma is a key estimate enabling us to re-
strict the class of functions to be considered as
possible solutions of Eqs. (1)-(4). Its proof de-
pends on the observation that Eqs. (5) are equi-
val. ent to

1-v
1+ v (t —r)

vv

(1 v2)v2
t

& —,[1—v(t —r) j(1+v)(1 —r')kv

)'2 v+v(t+q)
q2 1-v(t+q)

4kv, k(1-r')+ —q'
gl 2 g2

4kc, 4kv, k2X'-, r'+ —2q'.
(x, +x)' r' q'

Integration from 0 to t ~0 gives

4kc 'v s r's
2xo J, r 2(s) q(0)

'

Now, by the second mean value theorem for
integrals (e.g. , Landau, Ref. 13, theorem 405)

I 'v(s)r'(s) „'r'(s)
1 1.r(&) r(t)

and (5') for some g in (O, t). Thus

1+v
1 —v(t+q) '

the right-hand sides of which are very similar
to some parts of Eq. (2).

Lemma 3. ff Eqs. (1)-(4) have a solution on R,
then

lv(t)l &3(kc/x, )12 for all t.

Proof. Consider the case t ~0. Equation (2)
and the first of (5') give

vv' kv 1-v(t-r)
(1 v2)2e

-
2 1 „(— )

k v+vv(t+q)
q' 1-v(t+q) '

Now invoke the inequalities

1-r (t)&0, lv(t -r)l &1,

and

0«v(t) &v(t+q)&l

plus the second equation of (5) to obtain

u' a (1+u+;u')u, '.2 1+0 l 2 2 (6)

Remark. If xo»kc, one can take u just slightly
larger than Qo For example, if x0=100kc so
that u, =0.1, Lemma 4 gives lv(t)l «u =0.12—a
considerable improvement over the estimate
lv(t)l 0.3 given by Lemma 3.

Proof of Lemma 4. Let u, =sup1e„lv(t)l. Thus
u, «3u2& 2. Then from (3), cr a 2x - cu1r so that

2x
c(1+u1)

'

2kc 4k k 9kc
x, r(t) q(0) 2x,

'

This together with the similar inequality for t «0
completes the proof.

In the "nonrelativistic case" the exact bound for
l (t)l .

u, =(kc/xo) '.
The next result sharpens the estimate of lemma 3
to approximately that bound if x,»kc. This re-
finement would not be necessary in order to prove
the main theorem; but the improved estimate is
useful when one tries to determine what the con-
dition 'xo is sufficiently large" really means.

Lemma 4. Assume x,&36kc and that Eqs. (1)-
(4) have a solution on R. Then lv(t)l &u for all t,
where u is any solution in (0, ;] of the inequality
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Now for t ~0, (3) yields

x+x(t+q) 2x
C C

so from Eq. (2) one finds

VV

(1 v2)3/2

kc, (1+u,)' 1+u,
m

Thus, by integration from 0 to t,

(1+u,)(2+2u, +u, ') kc
for t~0.1-u

8 with (v(t)( &u&1. Then for all t

x((} cP(-t} -=c mm:(~, au(t(,I

bk
lv'(t)i-4 .(,),

where

1 u' 2(1+u)'
12 ' 1-u

(8)

This together with an analogous calculation for
t &0 shows that

u, ' ~ ' (1+u, + &u, ')—=f(u, )—,1+u, » kc kc

0

or f(u, )/u, ' ~x,/kc. Now

d f(u) -2+u+4u'+2u~
u2 u3(1 u)2

&0 for 0&u & .

So if 0 &u ~
& with f(u)/u' &xo/kc it follows that

8 +R) ~

In addition to the upper bounds for )v(t)(, we
will also need an upper bound for (v'(t)~.

Lemma 5. Let Eqs. (1)-(4) have a solution on

&r»f. To obtain a decreasing upper bound for
~v'(t)~. from Eq. (2), one must first find an in-
creasing lower bound for x(t), and hence for r(t)
and q(t). The argument will be similar to that
used by Zhdanov' for a probl. em involving only
retarded interactions.

From Eqs. (3), cq =2x+cv($)q for some
)E(t, t+ )q. So

2X 2x
c —cv($) c[1-v(t+q)] '

Similar ly

2xr
c[1+v(t -r)]'

Substitute these estimates into Eq. (2) to find

v' kc' kc' kc'(1 —u')
(1 —v')'" 4x ' [1-v'(t —r)]+ — —[I -v'(t+q)]

4x 2X2

Thus for t&0

l 'kc(1. -u') ' v(s)v'(s) 1 —(I —v')''
2x2(s) ~ [1 v2(s)]&2 (1 v2)&~2

So

kc(1 —u') 1 1) vn

2 x, x j (1-v')"+1-v' 2(1 —u') '

This becomes

kc(1 —u')' kc(1 -u')'
V +

x x
or

v +E -E
x

So (for t ~0) x' = cv ~c[E(1-xo/x)]', which yields

~act&, „,dz =xf(x,/x),„, 1 —x,/z '"
where

(I -y)'"+1
f(y) =- (1 —y) '+yln—
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for 0&y &1. We want to replace f(xo/x) by its maximum. Computing f '(y) and f"(y) one finds that f"(y)
&0 and that f'(0.305) &0 while f'{0.306) &0. So the maximum of f (y) must occur between 0.305 and 0.306,
and we find' f(y) & 1.2. Thus

QEct &1.2x for t ~0.
For t &0 similar caiculations give -CEct &1.2x, and these results together yield x(t}~(1/1.2) FEcltl

=au, cltl. So x(t) ~cp(t).
To prove the remaining inequality in (7), note from Eqs. (3) that cr~2x-cur and cq ~2x-cuq, or

2x 2xr~ and q~ for all t.c 1+u c 1+u

Apply these in Eq. (2) to find

lv (t)l- -, for alit.2kc' (1+u)' kk
4x' 1-u 4p' t

It now follows that if (x, v) is a solution of Eqs. (1)-(4}on It with lv(t) l
&u & 1, then v belongs to the space

S = g&CR, R: g 0 =0, gt -&, andwhenevert2 ti 0 gti gt2
bk(t, —t, )

4 min '(t, ,p t,

where p and k are defined in (7) and (8). Note that
S is a complete metric space with the metric d
defined by

d(g g) —sup lg(t) g(t) l for g g~S
and

2v —g+g(t —r)
1+g(t r)—

2v -g+g(t+q)
1-g(t+q)

(5a)

V. PROOF OF THE MAIN THEOREM

To prove the main theorem (stated in Sec. II)
we shall define a mapping T of S into S such that
Tv =v for vES if and only if (x, v) is a solution
of Eqs. (1)-(4)when

with initial conditions

x(0) =x„v(0)=0, r(0) =r„and q(0) =q„
whgre

r
cr = 2xo+ cg{s)ds ~ cqo = 2xo+ cg(s)ds

0 0

(4a)

t

x(t) = x, + cv (s ) ds .
0

Then we shall show that T is a contraction mapping
provided x0 is sufficiently large.

There are several ways in which one might
attempt to define a mapping T on S such that
Tv =v when (x, v) is a solution of Eqs. (1)-(4).
But the most obvious choices for T do not seem
to work, that is, they fail to map all of S into S.
The construction used below was essentially in-
vented by Hsing' for the case when only retarded
interactions are considered.
Definition of a MaPPing T. For g~S define

Tg =v where (x, v, r, q) is the unique solution of
the system of ordinary differential equations

Note that the functional equation for r, in (4a)
does have a unique solution since cp- g cg(s)ds
is a differentiable function of p with derivative
c+cg(-p) ~c(1-u) & 0. Similarly one shows that
the functional equation for q0 has a unique solu-
tion. It also follows easily that r0 and q0 are
positive.

The motivation for Eqs. (5a) is clarified by
the following lemma showing that Eqs. (5a) to-
gether with their initial conditions in (4a} are
equivalent to a pair of equations similar to (3).

Lemma 6 Let g be a continuous function with

lg(t) l
&u & 1 on 8 and let x be positive and contin-

uously differentiable with x'(t) =cv(t) on (o., P),
where n& 0& P. Then r and q satisfy Eqs. (5a) on

(n, P) with r(0) =ra and q(0) =q, as in (4a) if and
only if

X =CVq

v' k 1-g(t-r) k 1+g(t+q)
(1-v')'" r' 1+g(t -r) q' 1-g(t+q)'

(la)
'and

t"y
cr =2x+ J cg(s)ds

t+q

cq = 2x+ cg(s)ds

(3a}
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on (o., P). Moreover, each of the equations in
(3a) has a unique solution (r or q) and these
solutions are positive.

Proof. Assume that r and q satisfy Eqs. (5a)
on (o,, P) together with the initial conditions of
(4a). Then, from (5a),

cr' = 2cv —cg+ cg(t —r)(1 —r') '

and

cq' =2cv —cg+ cg(t+q}(1+q') .
Now integrate these from 0 to tG(o., P) and invoke
the appropriate equations from (4a) to obtain
(3a). Conversely, if Eqs. (3a) holdon(n, p), then
Eqs. (5a) follow from the implicit function theo-
rem.

The existence, uniqueness, and positivity of the
solution of the first of Eqs. (3a) follow from the

t-p
fact that cp —J, cg(s)ds is a differentiable func-
tion of p with derivative

c+ cg(t —p) )c —cu & 0.

for all t in (n, P). More specifically, for 0 &t&P
(3a) gives cq)2x, and so

VV

(I v 2)s/2

kc (1+u)' 1+u"
+ x'4x'. 1 u 1-u,

,

for 0&t&P. Integration from 0 to t yields

kc 1+u I 2v' &— (1+u+ 2u')
xp 1 —u

&u' for 0&t&P.

The same result is found for o. &t &0. Thus (u, P)
=R and Iv(t)I & u for all t.

If we can now show that Iv'(t)I &bki4P2(t} as in

(7), it will follow that vCS and, since v = Tg, T
maps S into S. The following argument is analo-
gous to the proof of Lemma 5.

From Eqs. (3a), cq =2x+cg(g)q for some
gH(t, t q+). So

The next lemma asserts that "fixed points" of
the mapping T yield solutions of Eqs. (1)-(4) and
vice versa.

Lemma 7. LetgES (with some u&1). Then
Tg =g on R if and only if (x,g) with

2x 2x
c —cg(g) c[1 -g(t+q)] '

and similarly
2x

c[1+g(t -r)] '

(12)

x(t) =—x, + cg(s)ds
4

Q

(10)

2x 2xp
c(l +u) c(1+u)

is a solution of Eqs. (1)-(4) on R.
Proof. Ifg=Tg(=v) onR, then (la), (2a), (3a),

and (4a) yield Eqs. (1)-(4) on R. Conversely, if
(x,g) is a solution of Eqs. (1)-(4) on R with x
defined by Eq. (10}, then x'=cg, so that Eqs. (3)
give (3a). Since r and q are uniquely determined
by (3a), Eqs. (2} and (2a) show that (1-v') ~2v'

= (1-g') ~2g' which, together with v(0) = 0 =g(0),
implies v(t) =g(t), that is, Tg =g.

Lemma 8. Let xp-36kc, l.et u be a solution of
inequality (6) with 0&u & 2, and let S be defined
by (9). Then T maps S into S.

Proof. Let g&S. Then Eqs. (la), (2a), (5a), and
(4a) will have a unique noncontinuable solution
(x, v, r, q) on some interval (o., P) where o.&0&P.
If we can show that x and q are bounded away
from 0 and IvI -u (or merely IvI &1) on (o.', P),
then it will follow that (o., P) =R.

Since v (t ) )0 for 0 & t & P and v (t) & 0 for o. & t &0,
x(t))x,&0 for o.&t&P. From (3a), cr)2x —cur
and cq )2x —. cup so that

2 2 ~

c(1+u) c(1+u)
and

Substitute these estimates into Eq. (2a) to find
v ' kc'(1 —u')

on R.
Now the proof proceeds word for word as in
Lemma 5 to the estimate

x(t))cp(t) for all t. (13)

(14)

0.8331 (a ~ and g (2.126.1

1.2
Assume this has been done, and let S be defined
by (9).

Let g, g~S and let (v, x, r, q) and (v, x, r, q) be
the solutions of Eqs. (la), (2a), (5a), and (4a)
using g and g, respectively.

We would like to show that d(Tg, Tg) & ad(g, g)
for some +&1. Let us estimate [writing r and q
in. place of r(s) and q(s)]

Using (11) and (13) in Eq. (2a), one then finds
I '(t) I-bk/4P'(t)

The following lemma is the final step in the
proof of the main theorem (stated in Sec. II).

Lemma 9. If x, is sufficiently large, there is
a solution u &0 of inequality (6) such that T is a
contraction mapping of S into S [where S is de-
fined by (9)].

Proof. As a preliminary restriction let
xp) 4500kc. Then u, ~0.01491, and one can choose
a solution u of inequality (6) such that

0(u (1.0232up (0 01526,
and hence
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V V

(1 v2)1&2 (1 vn)v2

V S V S

L[1-v'(s)]~ [1-v'(s)]"

1 1-g(s —r) 1 1-g(s -r) 1 1+g(s+q) 1 ].+g(s+q)r' 1+g(s -r) r' 1+g(s —r) q' 1-g(s+q) q2 1-g(s+q) '

1+u 1 1 1 2—.—=. + —. , Ig(s —r) -g(s —r) I1 —u r' r2 r' (1 —u)'

1+u 1 1 1 2+ —
2

——-2 + —
2 2 lg(s+q)-g(s+q)l1-u q' q' q' (1-u)'

To simplify this further, we will need suitable upper estimates for Ir(s) —r(s)l and lq(s) -4(s)I p«s
lower estimates for p{s —r(s)) and similar terms

From the first of Eqs. (Sa),
s s-r s-r"

lr(s) —r(s)l = 2 J [v(r) v(r))dr-+ g(r)dr- g(r)dr
0 s s

~2 v T -v 7 d7' +r'dg, g+urs -Vs
0

For definiteness, let s «0 and introduce

m(s) =- max Iv(r) -v(r)I.
0 &WAS

Then

I ( )-r( )I-1 „r( )d(g, g)+ 1 „() .1 2s

I

[The inequality also holds if one replaces r(s) by r(s) on the right-hand side. ] Since by (12) r(s)
~2(x, +cus)/c(1 -u), inequality (16) also yields

Ir(s) —r(s)I & —,
I
~+us d(g, g)+sso(s)

2 (x
(1-u)' & c

for s ~0. Analogous estimates hold for lq(s)-q(s)l.
To estimate s -r(s), note from (5a) that

(16)

1 —2v +g 1 —2u1-r'= --& . &0.
1+g(t —r) I+u

So if s+0

1 —2u 2x, 1 —2u
Is -r(s)l &s -r(s) -r, + -s -- ' +-1+u c(1 —u) 1+u

[When s &0 we get the stronger estimate Is —r(s) I
& Isl.] So, from (7),

2p{s -r(s))~ -s +auols —r(s)l

x 2au, . 1-2u
1 — ' + auolsl (for all s).c 1-u 1+u

The same inequality holds when s —r(s) is replaced by s -r(s), s +q(s), or s+q(s).

(18)
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As inequalities (16), (17), and (18) are applied to (15), the statements will be simplified further by use
of the numerical values in (14). Thus (18}yields

2p(& —r(s))~ —(0.97x, +0.79cuoIsI) for all s.1
C

(18')

Typical terms in the integrand on the right-hand side of (15}now reduce as follows. Since r(s) ~2p(s}/
(1+u) ~2au, Is I/(1+u}, (16) gives

1+u 1 1 1+u 1 Ir ri —1 Ir —ri)1-u r' r' 1-u r' r r' r
1+u (1+u)' w(s) & 1 1

((1-u}' g'g (1-u)' au, i,r'
1 1 11.047d(g, g) + 1.296—ui(s) —

2 + —,
L 0

while inequalities (17), (18'), and p(s -r) ~x,/c yield

,.(1 „).Ig( — )-g( — )I- 2(1 }2 I&
(g'g) 4 .napa(s r} p2(s

2kkc ( x, +1.03cu s m(s)
(1 —u) l 0 97x +0 79cu s ' 0 79u

& [2.064d(g, g) + 0.086m(s )] —,.1

Using these (and analogous inequalities), (15) yields for t &0

k k ik k
ce(t) ~ d(g, g) 3.111 —+ — + 1 047 —. + — ds2 q2 r 2 q2

+
I

' +0.086II —,+ —, I+
I =. +=, I ~(s}ds ~

it1296 l tk kl 1296(k k~
uo

'
& lr' q' j u, &r' q'i

This inequality can be solved by use of the Gron-
wall-Reid lemma together with the observation
from Eq. (2a) that for all t ~0,

r
'

& k k l
d

'1+u v'(s)
2 2 il 1 [1 3( )]3/2

1+u u
2, ~]2 «1.0551uo.1-u (1-u j

Thus,

u (~)- d(g, g) 4.39uo exp(2. 735 + 0.091uo}
~ 67.74u, d(g, g).

This together with a completely analogous calcula-
tion for t &0 shows that

d(Tg, Tg) ~67.74u, d(g, g).
So T is a contraction mapping if

x ~(67.74)'kc = 4589kc .
Remark . The proof of Lemma 9 provides a

stronger resul, t than was stated: Let the two
particles be electrons, so that kc is half the
classical electron radius. Then the above proof
shows that a unique solution exists for the two-

body problem represented by Eqs. (1}, (2), (3),
and (4) provided the separation of the particles
at t = 0—namely 2xo—is at least 4600 electron
radii, or 1.3 x 10 cm.

This does not mean that the problem is ill
posed for smaller separations. In fact one could
easily extract somewhat sharper estimates from
the calculations given here. However, anything
like an order-of-magnitude improvement, if
such is possible, would probably require more
basic changes in the proof.

The sufficient separation of 4600 electron
radii established here is a big improvement oveg
the values which sometimes come out of such
proofs —namely large multiples of the radius of
the universe.

VI. DISCUSSION

The question posed in the title of .this paper may
be impossible to answer since it may eventually
reduce to a matter of interpretation. If the day
ever comes when we are confident that we know
a law of electrodynamics which exactly predicts
the true behavior of interacting particles, per-
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haps that law will have several mathematically
equivalent forms —e.g. , action at a distance,
interaction via fields, and a minimum principle.
Then the choice will be a matter of convenience
or taste, and perhaps only one of the equivalent
forms will explicitly involve an "advanced inter-
action. "

However, one can (and should) always ask
whether a mathematical model makes sense.

The various mathematical models in use today
for electrodynamics (or other physical processes)
are presumably approximations at best to the
"true" laws. So knowledge or intuition about the
answers to certain questions in the real world
does not predict the answers to the correspond-
ing questions for the models. A model must be
tested independently to see that the questions
even have answers and that the answers are
acceptable.

The present paper has begun those tests for

one model. A more precise title for this paper
would have been: "An existence and uniqueness
theorem for the classical relativistic model of
two electrons in one-dimensional motion with
half-retarded-half-advanced interactions. " Clear-
ly much more remains to be done. I hope that
it will be possible to extend (or contradict) the
existence and uniqueness assertions of this
paper for the case of unsymmetric motion in one
dimension, and then for motion in two or three
dimensions.
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