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Generalized total angular momentum operator for the Dirac equation in curved space-time
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It is found that an operator of the form iysy~ff„'&, —(1/6)y'y f,. ] commutes with the Dirac operator

y +, whenever f„„is an antisymmetric tensor satisfying the Penrose-Floyd equation f„( p) 0. Such a tensor
exists notably in the Kerr solutions and in the flat-space limit wherein the operator can be interpreted as the
square root of the ordinary total squared angular momentum Casimir operator of the rotation group.

Recent progress in the detailed analysis of the
properties of the Kerr black-hole solutions has
been to a large extent based on the key discovery
by Teukolsky' of the possibility of.analytically
solving the Maxwell (spin 1) and perturbed Ein-
stein (spin 2) field equations therein. Teukolsky's
method proceeds by first obtaining a, decouPled
equation for one particular component of the field,
and subsequently sePaxating the variables in the
equation thus obtained. The latter step is a direct

.generalization of the separability procedure that
had previously been found to be successful in the
simpler case of the ordinary scalar (D'Alembertian
or Klein- Gordon) wave equation. ' The Teukolsky
procedure depended on specifying the field com-
ponents in terms of a certain very particular null
tetrad that was introduced by Kinnersley' in a
general study of vacuum Einstein solutions with a
type-D conformal curvature tensor. The pro-
cedure of successive decoupling and separation
was almost immediately extended to the Acyl
equation for zero-mass and spin —,

'
by Teukolsky4

and Unruh' independently. The latter work is
noteworthy for demonstrating that the method
works equally well using, instead of the Kinnersley
tetrad, the more fundamentally symmetric ca-
nonical tetrad that had been brought to light in the
original classical-particle-orbit separability
studies by one of us. ' However, progress on ex-
tending the procedure to the full Dirac equation
with nonzero mass was held up until a new break-
through was achieved by Chandrasekhar, ' who
succeeded in devising an ingenious method of
separation of variables without prior decoupling
of the equations.

Examination of Chandrasekhar's procedure
(which has been generalized by Page' and Toop'
to allow for electric charge as well as mass)
shows. that it can be interpreted as consisting of
two essential steps, of which the first involves

replacing the original wave equation

where A is the Dirac operator (which Chandrasek-
har expressed in terms of the Acyl representa-
tion using the Kinnersley tetrad) by a modified
but equivalent wave equation

Wg'=0,

where R' is obtained from B by the combined re-
sult of an appropriate four-spinor basis trans-
formation

(-g' =S '(
combined with the effect of a premultiplication by
an appropriate separation factor Y which, like-S,
is a (variable) nonsingular 4x 4 matrix, so that
one has

W=YS 'HS

If Y is adjusted so as to include certain further
sign modifications (beyond those explicitly intro-
duced by Chandrasekhar) then it turns out not only
that the resulting operator splits up directly as
a sum of the form

8' = 8'y + W8 (~)

where (apart from derivatives with respect to the
ignorable coordinates y and f) W& depends only
on y and 8/By, while W8 depends only on 8 and
8/88, but furNermore the matrix coefficients are
arranged in just such a way that the two operators
commute, i.e. ,

[w„,w, ]=o. (6)

Chandrasekhar's second step did not make any
explicit reference to the operatoxs Py and &p as
such, but implicitly depended on their very
specialized form, which made it possible to
factorize the components of g' into pairs of single-
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[Yy, T8] =0,

[Y, We]=0=[TO W,].
(8)

It can easily be checked that the preceding rela-
tions (4) to (9) automatically imply that we can
construct a new operator SY '(Y&W8 -YsW&)S '
that will commute with the original wave operator,

[A, SY '(YyW8 —YeWy)S '] =0. (10)

The occurrence of an operator such as the one
thus brought to light —as characterized by the
property that its commutation with the relevant
wave operator underlies the separability of the
corresponding wave equation, is not a feature
unique to the Dirac equation. A precisely analogous
operator had emerged previously in the simpler
context of the separation of the Klein-Gordon wave
equation' for which the necessary separating
factor Y was just the square root of the metric
determinant in the canonical coordinate system,
while the transformation S was the trivial unit
multiplication. In the scalar case the occurrence
of an operator commuting with the wave operator
has recently been shown" to be a feature that
arises automatically from the existence of an ap-
propriate Killing tensor field in a space-time

variable (y or 8) interdependent functions that obey
a system of ordinary differential equations in-
volving a seParation constant A. which we have found
to be interpretable as being in fact an eigenvalue
of. Wz or equivalently (after adjustment of sign)
of Ws. [It transpires at this stage that as in the
zero-mass case the use of Kinnersley's tetrad
at the outset was unnecessary. Indeed, . apart
from a complex two-spinor conformal factor,
Chandrasekhhr s transformation S can be inter-
preted in terms of the Geroch-Held-Penrose
(GHP) transformation needed to get back to the
canonical symmetric tetrad"' whose advantages
have recently been emphasized, in another con-
text, by Znajek. "]

Since they commute with each other, it is ob-
vious that the separate operators N'& and Wo also
commute with the total transformed wave op-
erator W. More remarkably it turns out that they
can be used to construct a neu operator that com-
mutes with the original wave operator A. The
construction depends on the fact that the pre-
multiplication factor Y decomposes in the form

T Y +Yg p

where the coefficients of the matrices Yz and 'F8

are single-variable functions, respectively, of

y and 6, which are arranged in such a way as to
satisfy the commutation relations

VA(B~Q D)

where the capital two-spinor indices run from 1
to 2, and where we introduce the use of round and
square brackets, respectively, to denote sym-
metrization or antisymmetrization over the in-
dices within. Any solution of (11) represents what
may appropriately be described as a confocal
Killing spinor, since (by double contraction with
the parallel propagated tangent two-spinor) it
evidently determines a constant of the motion
along any null geodesic. It has recently been
shown" that in all the Kinnersley type-D vacuum
solutions the corresponding constants can also be
derived from separability of the null-geodesic
Hamilton- Jacobi equation. In order to qualify as
a Killing spinoz in the strong (not merely con-
formal) sense, it is appropriate to demand that
the symmetric two-spinor should satisfy not just
(ll) but also the further condition that the con-
traction V~&w & be skew Hermitian, i.e.,

0

Vgg& ~+ V~~K ~ = 0 (12)

(where the bars denote complex conjugation). It
may be remarked that unlike (11) Eq. (12) is not
invariant under duality rotations by a constant
phase factor. The additional restriction (12) can
not be satisfied in the full set of Kinnersley type-D
solutions but only (with an adjustment of phase
by a factor i relative to the original Penrose-
Walker convention) in the previously discovered
subset' of solutions characterized by separability
of the Hamilton- Jacobi equation for massive (not.
just null) particle orbits. The appropriateness

under consideration. It has also been shown" that
for any appropriately self-adjoint wave equation,
such as the Klein-Gordon and Dirac equations, the
occurrence of an operator commuting with the
wave operator implies the existence of a corres-
ponding conserved current distribution associated
with each solution of the equation. Familiar
simple cases are the operators of energy or mo-
mentum, and the corresponding conserved cur-
rents, that arise from ordinary Killing vector
fields, i.e., the generators of ordinary space-time
symmetries. We shall now show that the occur-
rence of the more mysterious kind of operator
exemplified by the one underlying the Chandrasek-
har separability of the Dirac equation can be con-
sidered to arise in a corresponding way from the
presence of an appropriate Killing spAgor field
on the space-time under consideration.

The concept of a Killing spinor has its origin
in the work of Penrose and Walker, "who demon-
strated the existence in any type-D vacuum space-
time of a second-order symmetric two-spinor
satisfying the "twistor equation"
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of imposing such a subsidiary condition did not
become apparent until the more recent, work of
Penrose and Floyd" who made the key discovery
that in the latter subset of solutions (including that
of Kerr) the antisymmetric tensor defined by the
canonical correspondence

fpv ~A])KAB + ~ABKAB (13)

(again with a factor i relative to the original
Penrose-Walker convention for KAB) will satisfy
the strikingly simple equation

fj(v; p) (14)

where a semicolon precedes an index of covariant
differentiation. In viem of the algebraic anti-
symmetry property

f(p v) (15)

Eq. (14) is equivalent to the total antisymmetry
condition

(16)

It can be checked that in order for (14) to hold it
is necessary and sufficient that the symmetric
two-spinor specified by (13) should satisfy both
the original Penrose-Walker condition (ll). and
the subsidiary condition (12).

Equations (14) and (15), whose solutions may
appropriately be described as Ei/ling spin tsoo-
forms, can be considered'"" as belonging to a
class of systems extensively studied by Yano. "
It is easy to verify" that the square of a Killing-
spin two-form will give a symmetric tensor,

a„„=f„,f„',
atq, g

=0,

(17)

(18)

a(p v. p) (19)

It may also be remarked that a Stackel-Killing
tensor obtained in this way will necessarily have
the Segretype[(11)(ll)j property onwhich recent
work of Hauser and Malhiot" and Dietz" is based.
It can be shown furthermore that such a tensor
will always satisfy the restriction

aP(„R„-)p =0, (2o)

where R„„are the Hicci tensor components, which
implies" that a„, will necessarily be a Killing
tensor in the strong sense, meaning that the op-
erator V„a""V„will necessarily commute with the
D'Alembertian wave operator on scalar fields,
1.e. )

which will automatically satisfy the Stackel-Killing
equation

where V& denotes the ordinary covariant dif-
ferentiation operator. The condition (20) follows
directly from a corresponding condition

fP(„R„)p =0 (22)

(note that symmetrization rather than antisym-
metrization is involved this time) which is itself
obtained by contracting the integrability condition

~pv[a fp]7 ++ap[p fv]r (23)

on the R[emann tensor for any solution of (14). It
is to be remarked that in addition to this last
condition (23), any solution of (14) must satisfy
the further integrability condition

fpv;p;a 2fr[v" pp]a (24)

(llslllg 'tile slgll collvelltloIls of Misner ef al. fol'
the metric and curvature tensors) which is analo-
gous to the well-known

kgp p k7 Rppp (25)

satisfied by any solution of the ordinary Killing
equation

A(q. „) —0 . (26)

K (~f]| gx —0

Translated into tensor language this gives

f'[ ~ ]p
=0

(27)

(28)

which expresses the condition tha, t the Killing
spin two-form be a linear combination of the
Maxwell field and its dual. It evidently implies
that the Killing tensor wiQ satisfy the corres-
ponding requirement

aP(pE„) p
= 0, (29)

which is mell known" to be sufficient to ensure
that the scalar a„,u"u" be conserved not just along
geodesics but also along the charged-particle
orbits given by

uPV ~~ ——~~ u"=0
p p

p
l/ (30)

where u" are components of the unit tangent vec-
tor. It can in fact be seen that when conditions
(14) and (28) are satisfied, the vector

The foregoing conclusions may be extended to
take into account the presence of an electromag-
netic field. It has been shown by Hughston et al."
that when the principal null vectors of the electro-
magnetic field coincide with those of the type-D .

Weyl tensor the symmetric Maxwell two-spinor
with components p» will be related to the Killing
spinor by

[v pvP, v„av "v„]= 0, (21) L" =f"„u" (31)
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will satisfy a formally identical equation of motion

upg gp pp I -0
P V ~ V

and in particular, as pointed out by Penrose and
Floyd, " the vector L" will be parallel-pxoPagated
in the geodesic case, i.e., when the charge/mass
ratio ejp, is zero. (This result is a generalization
of the ordinary law of conservation of angular
momentum in flat space-time: In the particular
case where X" are ordinary 'Minkowski coordinates
and k" is the covariantly constant generator of
time translations, then the combination f„„

6p p
kPX can easily be seen to be a Killing spin

two-form, and in this case the L" will just be
the components of the ordinary angular momentum
vector. ) The condition (32) evidently implies con-
servation along the orbits of the squared scalar

I =iy,y" (f„"D. .' y'y-'f-„. p) (39)

adjointness —with the operator referred to by
Kosmann'4 and Unruh" as the covariant Lie de-
rivative: It coincides with the ordinary Lie de-
rivative on the spinor components treated as
scalars provided the spinor gauge is-chosen so
that the scalar components of the y matrices are
themselves invariant under the action generated
by k".] If (37) is replaced by the condition of
pu~e magneticity, i.e. , vanishing of the electric
part I"» kv of the field, then one may obtain a
gauge-invariant constant of the motion by replacing
V„by D„ in the definition (36) of K.

The main purpose of this work is to point out
the existence of a corresponding gauge-invariant
operator

L„L"=a„„u"u" (33)
which satisfies the commutation relation

(which in the flat-space case is just the total
squared angular momentum).

Let us consider the conservation laws for four-
spinor fields y satisfying the Dirac equation

(y" „D- m)g =0, (34)

where the y matrices are defined in accordance
with the conventions of Streater and Wightman, "
and where

D = 7' -ieA
p p p (35)

K= i(k" V„--,'y" y"k„.,),
which will satisfy the commutation relation

[y~D„K] = o

(36)

(37)

for arbitrary values of the electric charge e pro-
vided the electromagnetic four-potential itself
satisfies the condition

O'PA p. ~+ AP. qAp =0 (38)

of invariance under the action generated by A".
[The operator K as defined by (36) agrees —apart
from the factor i introduced for the sake of self-

is the operator of gauge-covariant partial dif-
ferentiation. In accordance with the pr inciples
described in the previously cited work, "whose
actual applications concerned only the scalar
wave equations, the analogs of the ordinary con-
stants of the classical particle motion will be the
appropriately self-adjoint operators that commute
with the Dirac wave operator y Dp. When there
is a manifest space-time symmetry with Killing
vector generator P, it is easy to check that an
appropriate operator is given by

will be satisfied whenever the invariance con-
dition

k"f„„p+2k~ i,f„)p.=0.

(41)

(42)

holds.
In the Coulombian flat-space limit the operator

L may be interpreted rather precisely as a square
root of the three-dimensional. rotation-group
Casimir operator that is given by the sum of the
squares of the ordinary angular momentum op-
erators with respect to mutually orthogonal axes,
and it may be remarked that within this rather
restricted context such an operator was originally
discovered by Dirac himself. " In the more
general context of the Kerr-Newman solutions we
have confirmed by an explicit calculation that the
Chandrasekhar separation constants are indeed
interpretable as eigenvalues of this operator L.

(40)

whenever the Killing two-form Eq. (14) and the
corresponding electromagnetic field condition (28)
are satisfied. As K, this operator satisfies the
self-adjointness condition that permits the con-
struction" of a corresponding conserved current.
The spinor operator L can be considered as a
square root of the scalar operator D„a"'D, [which
satisfies a corresponding commutation law when
conditions (19), (20), (29), and the source-free
Mwovell equations are satisfied] in the same loose
sense in which the Dirac operator y"D„may be
considered as a square root of the scalar wave
operator D"D„. One can check that the fur ther
commutation relation
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