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There is considerable uncertainty in the literature concerning whether or not transverse traceless
gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove
with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase
speeds less than that of light. We approach the question of Landau damping in various ways. We consider
first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker uriiverse
of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We
show that a freely moving particle interacting only with the collective fields cannot comove with such waves if
it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for
fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we
conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible.

I. INTRODUCTION

The.re has been considerable recent interest in
the generation and propagation of gravitational
waves, which extends to the interaction of gravi-
tational waves with material media —elastic, fluid,
or kinetic. This paper is concerned with the prop-
agation of transverse-traceless gravitational waves
in a collisionless kinetic gas of point masses and
ultimately, whether such waves can Landau damp,
as plasma waves do. Resolution of this issue of
principle actually has a general interest, because
if Landau damping exists, experience with plasma
physics then suggests that nonthermal velocity dis-
tributions could lead to resonant instabilities of
gravitational waves.

Whether or not resonant Landau damping can
occur reduces ultimately to the question of whether
gravitational waves have a phase velocity greater
or less than the "speed of light" —a concept which
has precise meaning only in a local Lorentz frame.
If the phase velocity is 1ess than that of light, a
particle can remain in a time-stationary frame
with respect to the wave, and absorb energy from
it. While there is a consensus in the literature
concerning the propagation of gravitational waves
in a vacuum, ~ ' the literature offers inconsistent
answers concerning the speed of wave propagation
in kinetic media and whether particles may reso-
nate with the wave. We will Show that some of the
differences in results can be ascribed to the dif-
ferences in the various authors' assumptions con- .

cerning the background geometry. For example,
Chesters' considered the gravitational wave equa-
tion derived from linearized general relativity.

Using the flat-space Vlasov equation with acceler-
ation terms calculated from the coefficients of the
affine connection of a transverse traceless (TT)
metric perturbation, Chesters found a dispersion
relation for sinusoidal small-amplitude waves,
with a pressure correction to the vacuum solution.
His phase speed was subluminous (numerical value
&c in appropriate units), and consequently wave-
particle interaction was deemed possible. When
particle beams were present, the waves could be-
come superluminous. Polnarev' also used a flat-
space background metric, but added a phenomeno-
logical collision term, which does not conserve
proper number density, : to the Vlasov equation. In
the collisionless limit, Polnarev found a super-
luminous phase velocity. As the collision frequen-
cy approached infinity, the phase velocity ap-
proached the speed of light, in presumable agree-
ment with fluid theory. While still retaining a flat
isotroPi c background geometry, Polnarev argued
that anisotropic distributions could produce either
subluminous or superluminous waves. Ignatev'
noted that the group velocity derivable from Ches-
ters' dispersion relation exceeded the speed of
light, which is unphysical. Ignatev derived a dis-
persion relation by perturbing around a solution
of the full field equation, with background curv-
ature due to the medium; the full Vlasov equation
was perturbed in the curved space-time as well.
His dispersion relation for small-amplitude sinus-
oidal waves has both density and pressure-correc-
tions leading to a superluminous phase velocity.
Even if the temperature were zero, his solution
would indicate a superluminous phase velocity.
In the treatment closest to the one we will pursue
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here, Asseo et al. ' perturb around the specific
Robertson-Walker (RW) background geometry, but
allow the amplitude fz„„andvector k to vary slowly
in space-time. Their derived phase velocity is
superbxminous, the group velocity subluminous,
and their dispersion relation has only a pressure
correction.

We may characterize the literature dealing with
transverse-traceless gravitational waves (TTGW's)
in kinetic theory by a few statements. First, the
cited authors considered only sma11-amplitude
waves. Secondly, the fact that all authors obtain
algebraic dispersion relations indicates that a
short-wavelength local approximation has been
made implicitly or explicitly, and that the waves
have been assumed sinusoidal. Thirdly, although
some papers consider a curved background, none
found completely self-consistent modes. "Com-
pletely self-consistent" means not only using a
background geometry consistent with the unper-
turbed matter distribution, but correctly ordering
the magnitudes of all terms in the analysis. As a
result of this, there have been papers reporting
both subluminous and superluminous phase and

group velocities, and resonant and nonresonant
behavior. Finally, whatever their sign and proven-
ance, the "corrections" to the dispersion relation
have Ql been, exceedingly small, a fact which will
play an important role in our physical arguments
to come.

Our strategy will be to approach the question of
Landau damping from a variety of routes. After
defining terms and notation in Sec. II, we turn in
Secs. III and IV to the simpler problem of TTGW's
in a perfect Quid medium, since the Quid analysis
will shed light on the kinetic analysis to come. We
also consider the simplest possible geometry, a
RW background with zero spatial curvature, as
this is the closest analog in general relativity to
the classical infinite homogeneous analyses car-
ried out in plasma physics. We will comment on
the generalization to other geometries later in Sec.
IX.

In the derivation of the wave equation, there is
an explicit cancellation of some "matter" and
"curvature" terms which lead to a wave equation
in the fluid identical to that for a TTGW in a vacu-
um background space with curvature due to dis-
tant sources. This equation has previously been
derived for the vacuum by Isaacson. 4

We develop a WEB solution for short-wavelength
solutions to this differential equation. While it is
tempting to identify the instantaneous time deriv-
ative of the phase as the frequency, we will argue
in Sec. V that the deviations from lightlike propa-
gation suggested by the time derivative of the phase
are not measurable according to the principle of

equivalence. Since in the absence of a material
medium, one would expect QW's to propagate in a
lightlike manner, the fact that TTQW's in an-ideal
fluid are described by the same equation as
TTGW's in a vacuum suggests that TTGW's prop-
agate at the "speed of light. " We derive the full
differential equation for electromagnetic waves in
the same BW geometry; while electromagnetic
waves and GW's have different nonlocal equations,
we show that they have the same geometric optics
limit, as they must according to the principle of
equivalence.

In Sec. V we check for the possibility of Landau
resonance when the matter propagates waves like
a fluid. Weinberg' has produced exact solutions to
the full differential wave equation in the limits of
a cold and relativistically hot RW Quid-filled uni-
verse. We consider a freely streaming massive
particle which interacts only with the self-consis-
tent gravitational fields. We compute the relative
phase between the wave field, given by the exact
solution, and the freely streaming particle to show
that the relative phase cannot be time stationary.
Thus there can be no resonant wave-particle inter-
action in the Landau sense.

The kinetic response to a TTQW perturbation dif-
fers from that of an ideal fluid whose pressure al-
ways remains isotropic in the proper frame. The
cagcellationof terms in the derivation of the Quid
wave equation indicates that moments different
from pressure are the only possible ones which
can affect the propagation of the wave. In Sec. VI,
we derive an integrodifferential equation, for prop-
agation of small-amplitude nonlocal TTGW's in a
flat RW universe, making no approximations other
than linearization. While we do not solve it in gen-
eral, we can derive from it an ordered geometric-
optics solution. The "kinetic corrections" to the
dispersion relation are again small, and by the
arguments of Sec. V are not measurable by a local
inertial observer. - This leaves open the question of
the Landau damping of nonlocal modes with wave-
length or order c&& (Hubble period) and periods of
order the age of the universe. According to the
classical plasma analysis of Landau, one must
wait several wave periods after the initial pertur-
bation for a nearly monochromatic wave to organ-
ize itself and for the conditions for Landau wave-
particle resonance to be set up. Thus the question
of Landau damping seems to have no precise mean-
ing for nonlocal modes.

Since we have used the RW geometry as the
simplest one to illustrate our arguments, the ques-
tion naturally-arises as to how general our con-
clusions can be. Our calculation of Sec. IX indi-
cates that in the geometric-optics limit, the choice
of a mode that can be represented by a purely TT
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metric perturbation has already built in the re-
quirement that it be lightlike. This argument,
which illustrates the claim in Misner, Thorne,
and Wheeler' (MTW) that only radiative modes can
be put into the TT gauge, requires no assumptions
about the background geometry or the model of the
medium. Thus these results must apply as well to
interior Schwarzchild geometry, viscous fluids,
and collisional gases. It appears that transverse
traceless gravitational modes can have no Landau
interactions, and we must turn to vector and scalar
modes' to search for them.

II. GENERAL APPROACH: CONVENTIONS AND

NOTATION

Tp„=OTp +67.'», T=—T ",
0 CXg» g»+ ~pv r

(2)

(~)

The infinitesimal perturbations 5T&„andh» rep-
resent wave quantities; products of infinitesimals
are ignored.

It is well known that (3) generates a 6R„„given
by

..I."+& ~[."+& .I

") (4

If we contract (4) with Og„„,change to variables
h»=h„,—2 'g„,k, permute the indices of differen-
tiation, and choose a Lorentz gauge (h„„"=0),we
obtain from (4)

The following examination of the linearized equa-
tion for a small perturbation in the metric in the
presence of a material background will be done
with the choice of the homogeneous, isotropic
fluid-filled Robertson-Walker universe with spa-
tial curvature parameter g set equal to zero. Thus
the background metric will be d s' = -d t '+R'(t )dX'
and the values of the density of mass-energy, p,
and pressure, p, for the background are related to
derivatives of the metric coefficient R'(t). To ob-
tain dispersion relations, we shall assume short
wavelengths and use the geometric-optics approxi-
mation.

A subscript comma denotes an ordinary partial
derivative with respect to x~, a semicolon denotes
the covariant derivative with respect to the full
metric g», and a vertical bar denotes a covariant
derivative using only the background metric. A

superscript zero as a prefix denotes unperturbed
quantities, and h» is the perturbation of the met-
ric.

III. LINEARIZED FIELD EQUATION IN GENERAL
RELATIVITY

The Einstein field equation is conveniently writ-
ten as

R&„=87T(Tpu &gpvTn

where 8„„is the Ricci tensor, g» is the exact
space-time metric tensor, and 7.'„„is the stress-
energy tensor. The field equation itself presumes

'no form for T», but the Bianchi identities imp1y
7.'„,'."=0. Since we will deal with both kinetic and
fluid pictures for T„„wederive a general linear-
ized equation for the field first, and specialize to
T„„ofa fluid or kinetic nature afterwards.

We ask for the field equation which is a conse-
quence of perturbing the metric of space-time
about a pre-existing consistent solution of the field
equation. That is, we let

=16~6(T„„-2g„„T)-
-~ gq, 16m g" b(Tct8 gg„8T-). (5)

Noting that 6T=6(g"BT„s)= h"BT z+—Og~s6T„B and
that according to Eq. (1), OR = -8m OT, we may re-
write Eq. (5) as

-h~,
)

"+ Rp, h~p+DBpp~„h,„~+

Ralph~„

Equation (6) is our wave equation for the variable
h.„„goodfor an arbitrary background geometry
and its consistent matter distribution, in the Lor-
entz gauge.

IV. GRAVITATIONAL WAVES IN THE FLUID THEORY

Here we consider gravitational radiation in a
universe uniformly and isotropically filled with

a perfect Quid whose stress tensor is given by

Tpv=(p+ P) ~p~v+PA'pv ~

Here p is the mass-energy density, p the isotropic
Quid pressure, and u„the fluid's four-velocity.
'&he coefficients for the metric ds' =-dt'+R (t)dX'
are related to the density and pressure of the flu.-
id. ' In units where G' =e =1, the background field
equation yields

R'/R'= ', np, -(8)
R/R = -, -', ~(p+sp) . (8)

Thus, with these relations, we may either choose
to express the wave equation in terms of R
and A, or p and p. The important point is that the
Quid pressure and density are of the same order
of magnitude as the expansion parameters (R/R)'

'and R/R.
Evaluating 5T&„for the perfect fluid we have

5T~p = (p +p)(6zc~Q~+Q~'5Q ~)

+5(p +p) Mp~„+5p g~„+pfg~ . (10)
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From the unperturbed field equation we find

Rpy=87f [(p+p)u~up —2 g~y(p —p)j q

'R =8w(p —3p) .
For a mode with 5p =5p =6u; =0, we find 5T„„=ph„„.
Furthermore, in RW coordinates u" =(uo, 0) and Eq.
(6) for off-diagonal components reduces to

To obtain a similar equation for other components
of the metric perturbation requires further gauge
constraint to a TT condition. Generally, the im-
position of TT constraints is not globally consis-
tent with a Lorentz condition, since the nonvan-
ishing Riemann tensor prevents one from choosing
a covariantly constant vector u" throughout space-
time. However, as we show in Appendix A, for
HW geometry with zero spatial curvature, one can
impose the Lorentz and TT constraints simultan-
eously and globally. This allows us to arrive at
the equation

I „(t)=I „(q'/R'+6xp) "'
I'

&& exp~ +i (q'/R'+ 6 xp)"'d t

8~p 3 1/2dt (14)

where h„.is an appropriate matrix with unit com-
ponents.

It is tempting to identify the integrand in the
phase as the instantaneous wave frequency. How-
ever, the WKB assumptions require that
f=(q'/R'+6') vary slowly (f /f «1). The pres-
sure contribution off is the order of the inverse
Hubble time (R/R), and is small in WEB theory.
Thus the (q'/R') term must dominate. It still
seems appealing to say we have a pressure "cor-
rection" to the frequency, but that it is small.
We will see that we must give up this interpreta-
tion which seems to tell us that the phase speed
is slightly faster than the speed of light (the dis-
persion relation for which is &o' = q'/R').

@pij~ct + Bpp pk(y + Rijp pkof 0 (12)
V. PRINCIPLE OF EQUIVALENCE —GEOMETRIC OPTICS

Note that in Eq. (12), all terms in R&, which rep-
resent the local curvature effect of matter have
been cancelled by 5T„„leaving the equation found
for the vacuum by Isa'.cson. 4 This shows that a11
deviation from Qat-space vacuum propagation in
the Quid-filled BW universe comes only from
curvature of the background space-time geometry.
Further, we learn that if there are to be deviations
from vacuum propagation in a kinetic medium, they
must come from nonfluid moments of the distribu-
tion function.

Expanding the covariant derivatives in Eq. (12)
and evaluating the Riemann curvature components
gives for space-space components:

dt' R' dx' R dt R&
(13)

where both i and j are directions perpendicular to
the direction of propagation. Weinberg' has found
exact solutions to (13), for the special cases of
cold and radiation-dominated hot universes which
are not cast in dispersion-relation form, thus
shedding no light on the phase or group velocities.

A. WKB analysis of fluid wave equation

First we transform Eq. (13) to a form amenable
to the WKB approximation, by replacing d'h, &/'dx'

by -q'5;;, following Weinberg in Fourier analyzing
in the infinite uniform spatial dimensions. The
first-order WXB solution is then

According to the principle of equivalence, phys-
ics is locally described by the special theory of
relativity. In special relativity, the value c is the
speed in a vacuum of propagating null field
(Z ~ B=0 =E' -B') solutions to Maxwell's equations
of arbitrary wavelength and frequency. But gen-
eral relativity introduces scales of space-time
curvature so that waves can no longer be con-
sidered as objects with a local nature unless their
period and/or wavelength are small compared to
space-time scales. Indeed, the equivalence prin-
ciple says that Maxwell's waves travel at the value
c only in the limit that the wave 4-vector k„
and when measured over local intervals.

For comparison, let us cast Maxwell's equa-
tions in a form analogous to Eq. (13) for a GW
in a perfect Quid. From Maxwell's equations we
may derive a source-free equation' for the vec-
tor potential A in the Lorentz gauge which is
analogous to Eq. (12) for a GW in a perfect fluid:

;8 8
~n 8+gn ~8 0

Expanding the covariant derivatives and using the
additional gauge condition A' =0, we find that the
electromagnetic potential in a RW universe satis-
fies an equation similar in form to Eq. (13):

As pAs ~~+2(B/R +2R2/R ) A~ + 5(R/B)P) =0 ~

(16)

Equations (16) and (13) present the identical prob-
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~typical value of R„B&~~"'. (17)

It happens that the (R/R) ~ period is just ~R,;» ~

Thus smallness of e implies that many "periods"
are contained in a local Lorentz frame of an ob-
server. If many periods fits into a local Lorentz
frame, it follows that the period varies slowly
compared to wave quantities.

The foregoing physical requirements achieve
mathematical representation by discussing solu-
tions with the (asymptotic) form

/Pe'&~'
n=0

(18)

lem of interpretation except that now Eq. (16) de-
scribes light a@aves. From this we see that light
may have the universal speed c only in the local
sense of the equivalence principle, . but we need a
rigorous ordering scheme to justify dropping those
terms which seem to change the propagation speed
of the waves despite our physical requirements.

Consider a wave which is as nearly plane, mono-
chromatic, and sinusoidal in space and lime as
possible. More complicated wave structures may
be constructed later by superposition since the
equations are linear. In a problem which is in-
finite and homogeneous, a purely sinusoidal de-
composition of the wave is possible, so that the
spatial behavior of our wave in RW space-time
may be represented as a constant times e"'". The
RW universe is not infinite and homogeneous in
time however. We thus must allow our solutions
to be modulated-wave trains. Since our solution
is not perfectly periodic, there is a limit to how

precisely a period can be defined in the wave train.
For a wave whose amplitude is a function of time,
we can find some average frequency over many

periods coo Then the wave has the. form
g(t) e '~o'. Since more than a single frequency is
present in this wave, it is not strictly monochrom-
atic, but can be expanded in a Fourier integral of
monochromatic waves. On this basis, a well-
known argument is Fourier analysis gives an un-
certainty relation for modulated wave trains, 6+ht
-1. Here hco is the uncertainty in frequency, and
ht is the time interval during which the amplitude
changes significantly. If we now define a small
dimensionless parameter c —= (wave period) + (space-
time scale period) =(R/R)/(wave frequency), we
can conclude that the frequency of the modulated
wave is measurable (and definable) to within order

It certainly is not reasonable to discuss the
wave as having a meaningful frequency unless e is
small. The size of a frame which can be con-
sidered to be Lorentzian is given by distances
small compared to

We define k„=Q~„.Since the RW universe evolves
in time, the Hubble time 0-(R/R) depends on the
age of the universe. Thus in different epochs, the
range of wave periods that may be accurately dis-
cussed according to the 6&ht-1 criterion increas-
es with the age of the universe. For the purposes
of this paper, we pick an epoch by setting approxi-
mately R/R. We then insert the expression (18)
into the wave equation, and the Vlasov equation in
kinetic theory. Coefficients of like powers of c
are then summed to zero. The leading order ex-
pression for k„sofound is called the dispersion
relation. "

To see how this gives the-results required by the
principle of equivalence, apply Eq. (18) to Eq. (15)
with A" replacing P. The 1/e' terms are leading
order and yield k„k &»Aj'=0. This implies k~k
=0 which must be interpreted as showing that light
travels on null ray paths. Since k„=Q~„, we may
show these paths are geodesic by computing
(k„k")(.=0.

We expand Eq. (12) for gravitational waves in a
manner consistent with the above treatment of the
electromagnetic wave equation. The results for
the first two orders are

/

(I/e'): k"k, k =0, (19)

(1/~): 2«&k»~„k~+«&k»k„1~=0 (20)

Equation (20) gives the area intensity law. For a
more elaborate interpretation see Isaacson. 4 Equa-
tion (19) for GW must be interpreted just as we
previously interpreted the electromagnetic case.
For a consistent solution with e ranging over some
interval, the coefficients of each order of e must
be made to vanish separately. Thus it is not valid
to add a higher-order term to k„k"=0and call that
the dispersion relation. The «) A,„„arereferred to
as the geometric-optics field. Thus geometric op-
tics sets forward the condition that no terms of the
order b, +-1/ht (or smaller) may consistently ap-
pear in the dispersion relation. Indeed, for a wave
train whose modulation is governed by the expan-
sion of the universe, ht is the order of the Hubble
time (-p "') and on this scale, the pressure and
density p and p cannot even be said to be constant;
the geometric optics approximation has put into
the analysis at the outset, that terms like p and p
may not appear in an expression for the instan-
taneous frequency of the gravitational wave in a
perfect fluid. Since the matter terms (in the fluid
case, these are actually the background curvature
terms) are e smaller than the terms from the de-
rivatives of h&„they do not affect the phase vel-
ocity of the wave.
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VI. DIRECT COMPUTATION OF THE RELATIVE
PHASE OF PARTICLE AND WAVE

In addition to mathematical treatments of the
Landau damping of plasma oscillations (Landau,
1946), there have been discussions of the physics
responsible for Landau damping (Dawson, 1962).
These have shown that Landau damping is due to
those particles which comove with wave phase sur-
faces. In linear approximation, these resonant
particles exchange energy with the wave in a sec-
ular fashion, rather than periodically as do the
remaining nonresonant particles. It is therefore
interesting to know whether a free-streaming par-
ticle can, for a time long compared to a wave peri-
od, have stationary phase relative to transverse
gravitational waves.

We calculate the position as a function of time of
a test particle moving without collisions or drag
along a free streaming orbit which is a geodesic
of the RW background geometry. We then use ex-
act solutions (Weinberg, 1972) to Eq. (13) for
TTGW's in a fluid RW universe to specify the
wave-particle phase. Requiring the relative phase
to be time-independent gives the criterion for reso-
nance. Our use of Quid theory to specify wave

d~ m (21)

where v is the proper time along the particle's
path. For the space components of momentum we
have

But

so

dp' dt 1 R
dt dT m'R p p.

p =mu =mdt/d7,

(22)

(23)

p =-2—p (24)

which leads to p/(t) =p'(t, )R'(t, )/R'(t), where t,
is some initial time. We may thus write

dx/ P/(t~) R'(t, )
dt p' R'(t) '

Upon integration Eq. (25) yields

(25)

phase is motivated by collisionless plasma kinetic
calculations in which nonresonant particles have a
fluidlike overall behavior and determine the phase
velocity, while the small subset of resonant parti-
cles contributes Landau damping. A free-streaming
particle obeys the geodesic equation

1 R'(t, )„,,
' [R'(t,)/R'(t')]dt'

p ( 1 0 R2(t I) p ( 1) t [(( 0)2 (t ) m'2) R2(t )/R2(t t) + m2] 1/2
1 1

(26)

(t. —t,)'
V(t 2

—tg) —g V (27)

The particle covers a distance slightly smaller
than a Newton'ian calculation would indicate.

For R(t) =R, t", Weinberg (1972) presents ex-
act solutions to Eq. (13) assuming h, ,
=exp(iq x)k, ,(t):

where Z,„denotes an ordinary Bessel function [we
note that a printing error in Weinberg (1972) re-
sulted in the power of t in- the secular factor being
writtenas1/2(n+ 1)].The casesn =—, and —,

' corre-
spond to hot and cold universes, respectively. For
brevity, we treat the hot case here; the treatment

A readily understandable limit is a slow test parti-
cle in a hot universe traveling for a short time.
In this case

p/(t, ) '2 dt'
m 1

t, )=vt, ln

of the cold universe parallels that for the hot.
Setting n =2, expressing half-integer Bessel func-
tions in terms of trigonometric functions, and
superposing solutions to obtain a propagating wave,
we obtain

cJ(hot) ~q ] 0

1

Equation (29) describes a manifestly nonlocal rep-
resentation of the wave since the phase advances
as t~'. The geometric-optics limit emerges upon
neglecting the secular time factor of (29), and de-
fining the local frequency co as the partial time de-
rivative of the phase, whereupon &o =q/R, the con-
dition for lightlike propagation.

Equation (26) in a hot universe gives

(30)

Combining Eq. (29) and Eq. (30) for a particle
traveling with a wave in the x' direction, we ob-
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(31a)

(31b)

tain for the relative wave-particle phase

(t,/t')d t'
p ( 1 [((po)2 (t ) 2) t /ti + 2] 1/2

+ (t') ~~'dt'+const .
Ro

The condition of stationary phase, dQ/dt=0,

P3(t ) tj./t (t ) 0' [((p')'(t, ) m')t,—/t'+ m' j"'

where I»(t) is the 1, 2 component of the Isaacson
operator in RW space-time. I» and 6T» are to
be computed at the same time t in Eq. (36). Our
requirement of TT gauge makes 5T„,also subject
to the same conditions 5T„o=5T&" 0(——see Ap-
pendix A). According to Ehlers, "the Robertson-
Walker parameter R is related to the density mo-
ment of the unperturbed distribution function by

pf o&-~Ed p
R' 8m

can be satisfied for a finite interval of time only
if m =0. Thus, no massive particle may comove
with this wave. The condition m =0 leaves p'/po
=1/B(t), a lightlike condition for propagation of
the particle.

With the insight from the Quid analysis, let us
turn to the kinetic description.

4g po 2 po 2 ~2 dpo

8m
--p . (3V)

VII. COLLISIONLESS KINETIC THEORY OF
TRANSVERSE TRACELESS GRAVITATIONAL WAVES

Equation (37), together with the unperturbed equa-
tion of motion, T„„~"=0,determines A(t). These
equations yield

The kinetic description replaces the Quid stress
tensor Eq. (7) by (pft') = -3pa', (38)

Tpv=

Pappy

o ~-gd P ~ (32)

where the distribution function P obeys the Vlasov
equation"

p~y -r~ p~p8 0 (33)

By letting E =fo+5f, we arrive at the linearized
Vlasov equation:

pn6f 6pi pnp8 fo oui pnp8 fgf Q5f
, e na dPy 0'.8

dpi'
(-'4)

Variation of Eq. (32) (se'e Appendix B) yields

8 f 8
I' 3 fo 'P

~Tpfj pppvR o o dP ~ P&pvR 2
& o o 2

p (p
3fo n 8 P

PppvR 2 ~esp P ~o o~3.(P' J
(35)

Since Ehlers'3 showed that T„,for the unperturbed
BW universe has the same form as in a perfect
fluid, we may rewrite the linearized field equation
so that its left-hand side contains the same oper-
ator as in the fluid and vacuum cases. To do this
we must subtract from both sides of Eq. (6) a term
which is an integral over momentum space of the
unperturbed distribution. A space-space compon-
ent of the field equation will then read

I„(t)(h„)-lz»~n+2R„»h

=16m
i 6T» —", (p,)' ,'d'p i, (36)

where the pressure p equals (4p/3) f f,[(po)'
x-m ] dp

Equation (38) gives an expression for p(R) in the
cold- and hot-gas limits which allows Eq. (3V) to
be integrated to yield R O-I,"' for cold matter and
R ~ I,

"' for hot matter. Ehlers" shows that solu-
tions to the unperturbed Vlasov equation in BW
geometry are of the form fo(Po). The time depen-
dence of R(t) is not sensitive to the precise form
of f,(p'), but rather to whether the pressure is
negligible or relativistic.

Approximate solutions in the high-frequency
limit of the system (34), (35), (36) have been pub-
lished by Asseo et al. ' and Ignatev. ' Flat-space
solutions substantially similar to curved-space
solutions in the WKB limit have been obtained by
Chesters' and Polnarev.

We will formulate the exact linearized problem
which, in principle, also describes low-frequency
solutions. We then obtain the WKB limit to leading
order. The equations contain a potentially reso-
nant term which we approach by seeing whether the
real part of the frequency, when solved self-con-
sistently, leads to a phase speed which permits
resonance. This turns out not to be the case.

We rewrite Eq. (34) in Lagrangian form:

1
6Z~ 8 sfo

unPer1ufbW ~ 8P P
gpssorbit

Using dt/d7 =p'/m, we may integrate along un-
perturbed orbits to give
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(40)

5f (t, p') = dt', 5l"~ (t') p'"(t') p'8(t') ' '
+5f (t'), , (39)

p t

where we choose t~ to be late enough in cosmological history for a collisionless assumption to be reason-
able and the geometry isotropic at zeroth order. The term 5f(t)f, (where the subscript fs means free-
stream) is an arbitrary function whose time derivative along particle orbits is zero. For a TT wave char-
acterized by k~2, Eq. (39) becomes

For free-streaming particles, p" may be obtained using the argument leading to Eq. (25):

) X/2

(41)

d, 2 bf 1 1 d k, ']

BP' P'(t') R'(t') dt' R' )

Substituting the expressions (41) into (40) gives

+p'(t)p'(t) p'(t)R'(t) dt' "', , ",' +5f~,(t).
p

Inserting this into Eq. (35), we obtain

5T =R'(t)R (t) d'p12 p'(t)

+„(,)~.(, ) fd, (,
(P'(&)]'(P*())]'('()) 'd, , af )», ,p'(t), , &p' [p'(t)]' R'(t')

+))'( ) "')'
), ) ))fi ( )- )( )»)), f)(p'( )]*(0)'(&)]'

=Iq+I2+I3+I4 . (42a)

We note that the second term in Eq. (35) vanishes
for TT waves. Substituting Eq. (42a) into Eq. (35)
leads to an integrodifferential equation for TT
waves in collisionless kinetic theory which we
abbreviate

I/2(t) k$p 15' IJ +I2 +I3 +I4 2 p1 fp p
P )

(42b)

Although we will not present a general solution
of (42b) we will consider its short-wavelength
"WEB" limit, for we know from our analysis in
Sec. V of the Quid case that the equation I»h»=0
gives waves which propagate on null geodesi:cs. .

That experience motivates us to ask whether the
terms on the right-hand side of Eq. (42b) can be
of sufficiently high order in the expansion param-
eter e to modify the propagation of the waves.
Thus, we must evaluate the size of the terms in
the right-hand side of (42b). To do so, we must
choose a particular unperturbed distribution func-
tion, which, for illustrative purposes, we take to

be the relativistic Boltzmann distribution.

n exp[- pp/(kT) j
4wm'kTZ, (m/kT) ' (43)

where kT is the particle thermal energy, m the
rest mass, and n the average proper number den-
sity, and K,(m/kT) is a modified Bessel's func-
tion. We will then take the appropriate moments
of f, to construct 5T». We will evaluate these in
the limits of small and relativistic gas pressures.
Since moments appear, we do not expect the size
of the integrals to depend sensitively upon details
of the unperturbed distribution functions, and so
the relativistic Boltzmann distribution is a choice
which leads to representative answers.

We will look for the leading order contributions
to the right-hand side of (42b); thus we ignore the
variation of background quantities and substitute
8» fzy2) e"~" into the integrands, where 0» is a
constant. Let us first consider the sum I~+I2. In
evaluating the integrals, we use the fact that owing
to the invariance of the scalar Product, kpPP in the
particle frame equals k p~ in any Lorentz frame.
Ij +I2 thus reduces to
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f 1. 'impx o)o s k o )
I 2 po» spo k pa~

-IxA+Iu .
The integral I» is nonresonant and I~ is poten-
tially resonant. I» and I~ are calculated in Ref.
11, and their real (principal) parts are displayed
in Table I together with those of I, .

Reference 11 shows that the resonant denomin-
ator of Eq. (43) may be written as

p &uR/k

~("-((p) -- ~" ).
Since the integration is over the range -1&x&1,
this term may vanish only if po» m and &uR/k ~1.
Since the integrand is not singular when o)R/k =1,
wave-particle resonance is strictly possible only
if vR/k&1, which corresponds to the expected
condition that the phase speed be less than that of
light, which obeys &oR/k =1 in the geometrical-
optics limit.

To decide whether or not &oR/k can be less than

1, we Inust check the magnitude of the terms ap-
pearing in Table I, all of which are proportional
to the pressure

)t=(4wo*/)) f Ip'p'l(f, l),)d'p F7kT. =

The pressure is strictly less than the mass energy
of the gas

p =4'' P', d'P,

which in turn is of order (R/R)'-2 according to
the unperturbed field equation (3V). Only entries
I~ in the hot approximation and I, in the cold ap-
proximation require further comment. At first
sight, I» couldbe large if vR/k were large; how-
ever, this does not lead to a consistent solution of
the WKH dispersion relation. Thus &oR/k must be
-1 and &uR/k must therefore f)e unity according to
the dispersion relation. Since I4 for a cold gas is
proportional to (kT)', it is even smaller than the

I,A and I~ in the limit T-O.
We now turn to the integral of the free-steaming

term I, . As it appeared in the solution by inte-
gration over unperturbed orbits, 5f &, was an arbi-
trary function whose time derivative along the or-
bits vanished. But ~6T»~ must be small compared
to

~ T»~ for consistency with our choice of back-
ground and perturbed field equations. The pertur-
bation equation is essentially the linear term in an
expansion in terms of the small parameters
( k» /g»( and [ ff)/f o(, where we assume that these
two parameters are comparable. We then perform
a high-frequency expansion of the perturbation
equation. The task at hand is to compare the order
of magnitudes I» and 67» in this latter expansion
of the field equation. The magnitude of 5f &, is not
completely arbitrary; rather it must be consistent
with the assumption of the first expansion.

We note that for a wide class of Sf', , the inte-
gral I, vanishes. For 5f f, a function of initial
position only, or any even function of p p', I, is
trivially zero. This suggests that for 5f&, in t.his
class, no TT wave will result from the initial per-
turbation if an external wave source is also ex-
cluded.

We must ask about the class of 6f &, for which I,
is not trivially zero. For perturbations which
have a spatial dependence of the form e"", the in-
itial perturbation will be carried forward in time
by the freely streaming particles, so that 5f f, will
have the spatial dependence exp(~iq f, ' vdf'~),
where v is the free-streaming velocity. This term
may be multiplied by any consistently normalized
function of initial momenta. As t increases, 5f &,

becomes highly oscillatory in momentum space.
The decay of I, in time that results is known in
plasma physics as phase mixing. Such arguments
are characteristic of the Landau problem. Landau
damping only emerges in the limit of long-elapsed
time after the initial perturbation. In the interven-
ing period, the initial free-streaming "transients"
die down by phase mixing, and the collective re-
sponse of the gas sorts itself out into a single

'fABLE I. Kinetic integrals in hot and cold limits for solutions of the Vlasov equation in the
geometric-optics limit.

Hot {m/kT «1) Cold (nz/kT»1)

I&A nkT(, )I „(—,)

I4

&'& 4(k) ~k k' 3

y+ cuA/k

nkT(0)h (2(-. 5)

(
++kT(o)ku I-21

E~&

( (P'i&&2 kT l
"+Tgo)"u ]

-2,
1 i
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propagating wave. Thus the problem of Landau
damping of GW's is we11 posed only in the WEB
limit since many wave periods are required to
span the time between the initial time and the time
when the damping is to be measured.

We would know how to handle I, i.f we knew how

large the term could be at the initial time. At a
late time compared to the initial time, I, would
then be even smaller. By the requirement that
6f be of similar order of magnitude as h», the
largest 6f could be is something roughly of order
h» f, . Thus, for a reasonably smooth initial per-
turbation which satisfies TT constraints, the mo-
ment I, will have at most the same general mag-
nitude as I, , I„andI4.

If the relativistic Boltzmann distribution yields
reasonable estimates of the integrals I, , I, ,I„I„
the kinetic medium makes contributions to the
propagation equation (42b) no larger than the back-
ground terms for the fluid medium, despite the
different responses of the two media to TTGW per-
turbations. The fluid response must always be
isotropic, whereas the kinetic medium can have a
"tensor" response. In the special case of zero
temperature, the two models are equivalent. For
finite temperature the sign and magnitude of the
5T„„candiffer in the two models; however, in
order of magnitude, the matter inouence in either
model is of relative order c' and being this small,
must be dropped from the dispersion relation. W' e
thus conclude that TTGW travel with the speed of
light in either medium and tha, t TTGW can have no
Landau damping.

VIII. COMPARISON WI fH PREVIOUS VfORK

Let us compare our argument and results with
those of previous authors on the subject. The
authors cited who dealt with curvature at all ap-
proached the problem by noting that 'F,'~ =RB6;~
and 0~0~ = (R/R) 6~, and all other connections van-
ish.

From this observation, it is argued that the last
term of Eq. (34) is to be ignored. This, however,
has been shown" to assume away the resonance
being investigated because this term contains a
resonant denominator. Although this assumption
is formally inconsistent, with the choice of sinu-
soidal perturbations it leads to the same answer
for the part of 6T„„dueto 6f as we have obtained
at leading order. This result occurs because both
arguments employ D6f/dr = 6I"~(p p~/m)ef, lsp'.
The full calculation shows that the dropped term,
in the limit of high frequency, is truly small so
that the agreement is explained. We note also that
our calculation uses a different expression, Eq.
(35), for 6T„„than any previous paper. Although

TABLE H. Some dispersion relations found for G%' s
with a kinetic matter model.

Author(s)

Cheaters (1973)

Asseo et al. (1976)

Polnarev (1972)

Ignatev (1974)

Dispersive term

-28.8'

8'
~~(p+ 3p)

each of our terms has appeared separately in
previously published calculations, this is the only
case where all the terms were included. None of
these details is responsible for our general re-
sult, however, because their contributions are too
small.

At this point, let us compare the results of the
current work with that of previous authors. Pre-
vious work has consistently led to dispersion re-
lations of the form aP =0'+(dispersive term). Ex-
pressing the dispersive term in terms of the pres-
sure p we summarize the results in Table II. The
present paper has also found a term=517tp. It is
our contention, however, that terms of this order
of magnitude do not modify the measurable propa-
gation speed of the waves.

IX. TT %AVES NECESSARILY HAVE PHASE
SPEED EQUAL TO c

The fact that in the WEB limit we obtained reso-
nance for neither Quid nor kinetic model can be
shown to result from the transverse traceless
property of the waves. Our argument follows these
lines. If an observer sees a TT wave, then we
can show (Appendix C) that the observer will still
see a TT wave after a Lorentz boost entirely in the
direction of the wave. This assures us that poten-
tially resonant particles moving relative to the
frame of the medium still see a TT wave, although
the TT property was only established in the proper
frame of the medium. We then must show that TT
and time-independent h&, are incompatible condi-
tions for GW in the WEB limit. Since a comoving
observer would see the wave as time independent,
this would show that- no particles subject to Lorentz
transformations (i.e. , massive particles) may co-
move with the wave.

Let us look at the advancing phase of the wave
in the local Lorentz frame of a potentially reso-
nant test particle. If the phase advances slower
than the speed of light, there is a frame in which
the wave can be made time independent. Similarly
if the phase advances faster than the speed of light,
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there is a frame in which the wave can be made
spatially independent. We shall show that the
frames which make the wave temporally or spati-
ally independent move on the light cone. We shall
use the terms of R„sy~-0A„ey~ that are linear in

h» denoting them by
I

5R„aug=2(k„g~sy+k81,~„3-k80[„)
knx IS~+ Rnpv& k s + Ransack

Isaacson' showed that in the geometric-optics
limit, the corrections in a gauge transformation
to ~Bnsyp are e' smaller than Iz „8y$ Thus to a
high degree of accuracy we may say that &B„ay&
is gauge invariant in the WEB limit. For a mode
characterized by the amplitude h„propagating
in the x direction we have, using Eq. (18) with

k12 replacing g, the nonvanishing leading order
(in e) terms of 5R„&&~

TT
1020 2 (0)812, 00 )

L ~
+1323 ~ (0)~~12, 33 &

TT
~1023 2 (0)~12, 03 ~1203

& (k12, 00) 4 (k12, 33) 2 (k12, 03) 4 (k12, 33) (50)

The Lorentz transformation that makes h12 0 van-
ish is determined. by

m--- =. 0=A -A'-Ay-A'-M
1020 . I 0 2 0 n8y6

cosh Q &81020 + 2 cosh@ sinh e M», 0

+ sinh'z 6B»» . (5l)

Substitution of Eq. (50) into Eq. (51) yields tanho'
=-k, /k, . This is the expected result that to see
the wave as time independent one must move at the
phase velocity -k, /k, . In addition to the condition
tanho! = -k,/k„tanho! =k,/k, will also make hp»,
=0. The general expression for h12 33 in terms of
values in the proper frame is

For a local Lorentz observer 5R "By~58
eyz is an

invariant since the perturbation of the curvature
is a tensor in the background geometry. We then
have

R„=(-—'k T )'+ (=1k )2 —2(—'k )2

=C,
1

where we suppress the prefix (0) on k1T2T. We now

assume all fs„„components to be those of TT gauge.
We further use "p" to indicate the proper frame of
the medium, and "m" to indicate the moving frame
attached to the test particle. From Eq. (49) it fol-
lows that if there exists a frame in which hI2 0 0
then

m-gh12 3
—6R--

2 3 1323

=A"-A'-A y-A'- M3 2 3 nays

= sinh Q 581020 + 2 cosh' sinho 58,320

+ cosh'z 5B»» .
Equation (50) thhn becomes

+k' —2k 'k '

h2 h2 l(tanhnk, '+2k, k, + tcosh~ a sinh'o. tanhn

(52)

Using tanhn =-k0/k3, manipulation of Eq. (52)
shows that no solutions for waves exist unless
p0 Q3 Thus the only moving frame which giv es
kI2 0 0 must mov e at the speed of light in the
proper frame of the medium. Further, the wave
itself must have k0'=03' in all Lorentz frames. If
we pose the analog of Eq. (49) for the condition that
a frame exists in which 512 3=0, we obtain the
same conditions because of the symmetry of Eq.
(49). Thus, TTGW's travel on the light cone in
the geometric-optics limit.

X. SUMMARY AND DISCUSSION

Our re-examination of linear gravitational waves
in ideal fluid and collisionless kinetic media has
allowed us to learn several lessons. First, the
importance of using a self-consistent background
geometry corresponding to the unperturbed matter
distribution is subtle. By virtue of the unperturbed
field equation, the terms from the background
curvature are the same order of magnitude as the
matter influence. In the ideal-fluid case, there is
a complete cancellation of the matter terms by
some curvature terms, leading to a wave propa-
gation equation equivalent to that for vacuum gravi-
tational waves. We argued by explicit comparison
with the propagation equation of electromagnetic
waves, that the terms of order e' smaller than the
leading terms [where e = (R/R)/&00 in RW geometry
and &u0 is the wave frequency] cannot be consistent-
ly included in the dispersion relation according to
the equivalence principle. As is well known, any
local observer cari only measure a phase and group
speed equal to that of light in flat space for elec-
tromagnetic waves in curved space-time, when the
wavelength is small compared to the radius of
curvature. In the case of kinetic media, new terms
not given by the ideal fluid do appear in the formal
propagation equation. However, for frequencies
which exceed the Hubble frequency, the new kine-
tic terms are also of order e2. Since the disper-
sion relation ignores terms of order (b, &0/&0)2 which
are also O(e'), to be consistent, the new kinetic
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contributions cannot modify the vacuum dispersion
relation.

For the RW case, these results can be further
illuminated by a form of an "uncertainty principle. "
The formal deviations from lightlike propagation
implied by our propagation equation, or for that
matter by any of the results in the literature here-
tofore, yield "corrections" of order (R/R)'/&o, ' to
the basic dispersion relation. To measure the
frequency with sufficient precision to resolve the
pressure corrections, an observer would have to
accumulate his measurements fM a time compar-
able with the Hubble time. During such an inte-
gration time, the pressure will have varied and so
is not unambiguously defined. In this sense, the
pressure is not comeasurable with the frequency
to O(e). They should not appear in the same dis-
persion relation.

Our conclusion is that TTGW's do not Landau
damp, albeit for a reason different from those
other authors who have reached this negative con-
clusion. Since the phase velocity equals that of
light, particles with nonzero rest mass cannot co-
move with the wave. We have generalized this ar-
gument from RW geometry to any in which TT po-
larization and geometrical optics apply. For logi-
cal completeness, it was necessary to establish
the validity of the global gauge constraint for the
particle-phase calculation of Sec. V using the non-
local equation for the Quid case. Our general ar-
gument, however, is local in nature and does not
depend on globally applied gauge constraints.

The above arguments leave open the question of
long-period modes for which e is not small. In the
standard Landau problem, several wave periods
must elapse before initial transients phase mix
away and before a nearly monochromatic wave
emerges. Thus the admissible range of frequen-
cies for which the concept of Landau damping is
most clearly defined is limited to those exceeding
several times the Hubble frequency, which are
then amenable to the above geometrical-optics
arguments. A geometrical reason to consider
the Landau interaction only in the short-wavelength
limit is that, according to the 6+6.t-1 limitation,
long-wave nonlocal modes may have a single
"phase surface" fill an entire local Lorentz frame
of a test particle. Thus the particle wi1I not have
a unique interaction with the wave since there is
no invariant way to separate wave effects from
background effects when the wave amplitude is in-
finitesimal and has the same space-time scale as
the background.

One further comment may be relevant to future
searches for instabilities. Considerable care must
be devoted to the questions of self-consistency be-
tween matter and geometry terms. For example,

if one seeks instabilities due to an anisotropic dis-
tribution, one should also choose an anisotropic-
background metric consistent with it. Moreover,
one must be careful to ensure that any matter dis-
persion terms are sufficiently large to affect the
propagation in a measurable way.
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APPENDIX A: 3USTIFICATION OF SIMULTANEOUS
GLOBAL LORENTZ AND TT GAUGE CONSTRAINTS

where $„is the generator of the transformation and
has small covariant derivative. This equation for
barred quantities (those of our wave equation) is

(Al)

where 'g„„is the background metric. We put all
variat;ion into 0„,so 'g» is the same in both co-
ordinates.

First we assume a solution in an arbitrary gauge
(no constraints yet applied). We now impose the
Lorentz condition. If h»t~ 40, find h'„,such that
h.'„,~' =0. We must require

The rule for commutation of covariant derivatives
yields

Thus Eq. (AS) becomes

I r )v 0»
)l/ (] )Il +OR U] ) ] I/+g ~v

{AS)

0 =h~„"—$~~„-R~)v

Equation (AS) is a differential. equation for $„,so
that the resulting h&, satisfies h'„,~~=0.

Now assume we have already imposed Lorentz
gauge constraints, so that h&„~"=0. Then Eq. (AS)
becomes

0 =gq~„"+R„"$p. (A4)

For a general infinitesimal coordinate trans-
formation of the form

x'"=x"+ $",
the perturbations of the metric are transformed as
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Equation (A4) gives a condition that further gauge
changes preserve the Lorentz gauge.

First we note that contracting Eq. (Al) yields a
condition that h, &"=0, which is

[„~"=-.'5„~.
We may establish the consistency of h, &t"=0 with
the Lorentz gauge and the wave equation (this es-
tablishes globality) by contracting the Lorentz
gauge wave equation.

—227 h +8 h' +RP i f)f P Q PV PV

-h " R+4h"8 B =16m6T ".n8 P

For a wave with no fluid quantities perturbed 5T„I'
is proportional to A„".Then

-K„"(„-h, "('R + 16') + 4h "8 'R „~=0. (A5)

For RW geometry, '8
~ is diagonal and 8» =R,,

833 Then

—ho "(„'—h "( R+16wP)+4hooRoo+4K';R~~ =0.
Thus the traceless condition ean be enforced pro-
v;ded boo=0. We would like to enforce h„o=0, so
this condition is no problem, if h„o 0 can also be
required with no further assumptions than h„"=0.

Turn attention now to the gauge condition that

= 16w6Tqo. (A9)

This condition cannot in general be satisfied be-
cause it ties h» to the background curvature. For
diagonal metrics, we observe that (A9) becomes

2Ro, 'phd'+R;oho'+og~oh"R), =16m5Tpo. (A10)

For RW geometry with zero spatial curvature, the
first term in Eq. (A10) is proportional to 5»h, ',
the second vanishes, the third is proportional to
'5

j1p Pj', and the right -hand s ide is arbitrary. Thus
for a traceless mode with jg&p =0 we have with this
special choice of background

0 =16mBT~p.

For 5T»~A», as in the case where no fluid per-
turbations exist, this condition is consistent.
Thus, the desired gauge constraints may be ap-
plied both consistently and globally for the fluid
mode discussed in this paper. For TT polariza-
tions in kinetic theory we need conditions such
that 5 Tp p is also zero.

APPENDIX B: THE PERTURBED STRESS TENSOR

hoo 0 @go ~olp. ~o[o+ goo ~ ~
tn (A6)

The divergence of the left-hand side of (A6) is

(Av)

By condition (A6) we then have that ho„'=h' (-R/R).
Thus we may take ho', ~v= 0 simultaneously with hp'„
=0 only if 4&' =0. Taking this latter condition the
divergence of (A6) then gives

The definition of T„„in kinetic theory is~'

p„p„—V-gd'p, g—= detllg„„llo po

so that with F =f, +5f

~~ov=~ po p. o ~-g d'p

(B1)

"I o "="uo &olo &l Io"+ gpo &

Then since k„p~"=0from the Lorentz condition,
we have

$o~„"= 'R,"&„,-
which is in agreement with (A4), showing that the
conditions ho&

= 0, hp~~" = 0, 5,"= 0 may be consis-
tent. Final proof of the consistency of these equa-
tions with the wave equation in a Robertson-Walker
background is obtained by examination of the Lor-
entz gauge version of the perturbed fie$d equation.
Focus on the p, arbitrary, v =0 equations:

hept +2 ~op phm + RpohpP+ Hah, o

h„ooR+og„oh"8-oR„p=16~5T„o. (A8)

The condition h„p=0 then implies

~P o—

PoP. ~f o o +fo~ . )I
&'P (B2)

We note that a perturbation in the metric perturbs
the invariant volume element as well as the mo-
mentum normalization and the distribution func-
tion. The first term in the square brackets of (B2)
is just 5fR'(m' p+'R') ~". The second term is

fo I.6(~-g)/po —&-'g&(p')( p')'] -=x.

We evaluate

g .(-g) ~ 6(-g) -=---.R'a„".
The variation in p due to a variation of the metric
with p' held fixed is found by using

-m'=g pap8

or

o =h.»"p'+'g. ,(p "6p'+p'6p").

Using the RW metric, we find 5po =oh„8p"p~/po.
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Thus we obtain

( 1 g3

where we emphasize the unperturbed energy with
the notation p'. It then follows that

3~f 3 ~' hn" 3&pe= Pppvff 0 0 d P- Pppvfo 2; o2d P
(p )

g3
PP P& (opo)3 f 0 p hm~~p

"p'd'p ~

APPENDIX C: LORENTZ TRANSFORMATION OF WAVE
. COMPONENTS

The transformation to a local Lorentz frame is
given by

x'"=b" xl'+-'b~ r'x~x'
p 2 g pp ~

For our needs, x'" represent local Lorentz co-
ordinates and x& and 1 „„aregiven by RW geome-
try. From (Cl) we see that at the origin of the
local frame

ex" 1 ex"
Bx R

and = 1.
Bx

All other transformation coefficients vanish. Thus
the h» of the local frame are merely those of the
RW frame rescaled by the factor 1/R'. The com-
ponents in a local Lorentz frame moving with re-
spect to the first local frame are given by the Lor-
entz transformation Aa so th~&

~»(particle frame) '"p ~~fj'~ass(TT fluid-frame components) '

Thus
A A A A A A A A

h p
=A1PA10I 1-+A2PAlh'1+AlPA20hl-+A2PA2I-

For a particle moving parallel to a TT wave prop-
agating in the x' direction we have

cosho. 0 0 -sinhz

0 o
,A~o =

0 0 1 0

-sinhz 0 0 cosh'

0

Thus k&0, h», and the trace h&" are still zero in
the frame of the moving particle. The transform'ed
wave is transverse traceless.
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