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Cosmological model with gravitational and scalar waves
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Gowdy's vacuum three-torus universe, which was recently the subject of a detailed investigation by Berger
and Misner, is generalized by incorporating a minimally coupled massless scalar field. We c'onstruct the
general solution and consider some particular cases, one of which reduces to the Taub-Tabenski solution.
The asymptotic behavior is found (i) in -the vicinity of the initial singularity (ii) in the high-frequency limit. It
is shown that in both asymptotic cases the behavior of the present solution is significantly different from that
of the vacuum solution. The high-frequency limit is shown to be a new exact solution of Einstein's equations
with the energy-momentum tensor corresponding to a spatially homogeneous massless scalar field plus a null
fluid. Finally, the full model is used to generate a new solution of coupled gravitational-conformal scalar field
equations.

I. INTRODUCTION

Present-day cosmology is based on Friedmann's
solutions of the Einstein equations, which describe
a completely uniform and isotropic universe. As
stated by Lifshitz, Khalatnikov, and Belinskii, ' it
is now safe to assume that the present state of the
evolution of the universe is adequately described
by homogeneous isotropic cosmological models.
There is, however, no reason to assume that such
regular expansion is also suitable for description
of the early stages of the development of the uni-
verse. On the contrary, it would be more natural
to assume that the early universe was character-
ized by irregular expansion, and only in the pro-
cess of evolution were the initial inhomogeneities
and anisotropies damped. These arguments have
led to rapidly increasing interest in studies of the
so-called "irregular" cosmological models, ' ' that
is, models which are (i) anisotropic and homo-
geneous and (ii) anisotropic and inhomogeneous.

Lifshitz, Khalatnikov, and Belinksii have con-
sidered in a series of papers' the approach to the
big-band singularity by a very general class of
cosmological models having a perfect fluid as a
source. In the homogeneous models of the Bian-
chi types I-VII the initial stages of evolution were
found to behave like the Kasner vacuum solution. '

For the models of types VIII and IX the initial re-
gime is much more complicated. It can be decom-
posed into "eras"; during each era there exist os-
cillations of expansion along two spatial axes and
monotonic expansion along the third one. These
results were generalized to the case of the inhomo-
geneous models, in which the metric has a non-
trivial dependence on the - space coordinates. Lif-
shitz et al. have shown that each era in these mod-
els can be approximately described by a general-
ized wave solution of the Einstein-Rosen type, with
the spatial singularity replaced by the initial sin-

gularity at the time t = 0. These studies indicate
the important role played by the gravitational
waves in the early universe. Particular exact sol-
utions representing universes with gravitational-
waves were later on considered by Gowdy, "Berg-
er, ' '3 and Misner. ' They thoroughly investi-
gated the three-torus vacuum model, which is the
simplest example of the closed universe filled with
linearly polarized gravitational waves. The quan-
tum version of this solution was also studied. '3'
It was found that, at least in this case, quantum
effects cannot prevent the initial singularity.

In a more recent paper, Belinskii and Khalatni-
kov'5 presented a general discussion of the influ-
ence of the scalar and vector fields on the early
stages of the evolution of the universe. In the
case of a massless scalar field, minimally coupled
to gravity, a significant phenomenon was found.
Instead of a Kasner-type behavior, one obtains a
more general regime, which admits the expansion
along all of the spatial axes. Another interesting
solution with conformally invariant massless seal
ar field wss constructed by Bekenstein' for the
homogeneous and isotropic case. It is a Robert-
son-Walker cosmology, which, unlike the Fried-
mann models, is free of singularity. Some other
solutions of the coupled Einstein-massless-scalar
field equations have been recently discussed. ""

Such specific features, found in the cosmological
models with massless scalar field, naturally re-
quire further research in this area. Of special
interest is a problem of constructing cosmological
models filled with both gravitational and scalar
waves. Such solutions should provide exactly solv-
able models for the study of the interactions be-
tween the scalar particles and the gravitational
field in the early universe.

In the present paper we construct a new spatially
inhomogeneous exact cosmological solution of Ein-
stein's equations with minimally coupled massless
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scalar field source. This solution can be consid-
ered as a generalization of

Berger�'s
work' to the

case of coupled gravitational and massless scalar
fields. It also generalizes the results of Belinskii
and Khalatnikov to the spatially inhomogeneous

'case with inhomogeneities caused by standing scal-
ar and linearly polarized gravitational waves. The
present model includes the Taub- Tabenski metric

. as a particular case. The whole dynamics of this
solution is completely defined by two decoupled
variables representing the scalar field and the
transverse part of the gravitational field. The in-
teraction between the scalar and the gravitational
fields is thus reduced to the interaction of the
scalar waves with the longitudinal part of gravity
only. It is shown that the presence of the scalar
field leads to a significant change in the behavior
of the metric in the neighborhood of the big-bang
singularity. Furthermore, it is shown that in
the high-frequency limit the present model asymp-
Iotically evolves into an anisotropic, but spatially
homogeneous universe filled with the spatially
homogeneous scalar field and the null fluid. This
fluid consists of gravitons and scalar particles
with zero rest mass. Further expansion of the
model is dominated by the energy-momentum ten-
sor of the null fluid and, hence, finally the model
asymptotically goes into the Doroshkevich, Zeld-
ovich, and Novikov universe. 3'

It is shown that the high-frequency limit of the
present solution is by itself an exact solution of
the Einstein equations with the energy-momentum
tensor corresponding to a spatially homogeneous
massless scalar field plus null fluid. Under some
special conditions, imposed on the scalar field,
the behavior of such a universe is similar to that
of the Doroshkevich et al. solution during the whole
process of the cosmological expansion. Hence,
like the latter solution, it can be used in order to
describe some particular stages of the "mixmast-
er" universe.

As indicated in the last section, an application
of Bekenstein's transformation ' to the present
model leads to an inhomogeneous cosmological
solution of Einstein's equations with conformal
scalar field source. This model will be the sub-
ject of a subsequent paper.

II. FIELD EQUATIONS

less scalar field can be written as

Here the Latin indices a, b denote the spatial co-
ordinates x and y, and L is a constant length,
which is set equal to unity. Both f and y, b are sup-
posed to be functions of $ and z only.

Introducing the notations

Ir b I
=r, ar.b/6( = ~„, ar.b/ae = ~„,

along with

ab ab
K —y Kab~ ~ y ~ab

the field equations (1}can be written as

(4)

(5)

(6)

—(vy wb) ———(RyXb) =167je~(Tb' ——,'6; T), ('I)
ag '

&y ae

+ + 2Kb'~ = 1617e Tg,
I& Bf X Bf Bg

6f af a~ 6~—~6e —~6(+6( +6e +b ~b~b+2~~~b

= 16~e'(T,'T;), (9—)

+ —'+-' ' b -'X X'b-
b a 2 a

Further simplification occurs by setting the two-
dimensional metric y, b equal to

y.,= diag(&e ', &e '),
where the metric variable p is taken to be a func-
tion of both $ and e. Then the field equa, tions can
be reduced to the following form:

(12}

where the energy-momentum tensor T„„is given by

(2)

The generic metric is taken in the form

L
~ds'=e~(de' —d$'}+y„dx'dx' .

The following conventions are used in this paper:
The metric signature is + 2, the Greek indices
range from 0 to 3, and the comma and the semi-
colon denote partial and covariant differentiation,
respectively. The Riemann tensor is defined by

f~,.„,.„—f~,.„,.„=P, R),„„,where f), is an arbitrary
covariant tensor, R„„=R„„,and the constants e
md G are set equal to unity. The system of Ein-
stein's equations for a minimally coupled mass-

6f aq 6q aP 6P
a~=~ 'ag 6e +ay ae

(14)
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Equations (12}-(15)have some interesting fea-
tures. First of all, the scalar field y and the
transverse part P of the gravitational field are
completely decoupled and satisfy the same wave
equation. Second, both radiation fields create the
"background" (longitudinal) part f of the geometry
exactly in the same manner (up to the factor 16m).
Finally, the back reaction of the longitudinal part
of the gravitational field leads to the decrease of
the radiation amplitudes.

bothP and p:
p =pp+o.'p In)

+ eos nz-z„A Jpn +8 Npn
n=f

y = pp + Pp In)

+g cos fn(z —z„)][C„Jp(ng) +D„Np(n))].
n=i

(16)

III. THE GENERAL SOLUTION

Following Gowdy and Berger"" the three-torus
topology is imposed by closing the spatial vari-
ables 0 &z & 2w, g dxdy =16w, and requiring that
the metric variables f and P, as well as the scalar
field p, be periodic in z. Then integration of Eqs.
(12) and (13) along with the boundary condition,
stated above, leads to the standing-wave form of

f=fp- ~ »&+fow+fs, (18)

where fp is an integration constant and the ex'plicit
form of few is given by

Here Pp, yp, np Pp are constants of integration, and
J„(x),N„(x) denote the Bessel and Neumann func-
tions of order n. Integration of Eqs. (14)-(15)
gives, .af ter some straightforward calculations,
the function f:

Qp
OO

fow — In)—+ n p g cos[n(z —z„)J[A„Jp(ng) + B„Np(nf) J

2

+
4 g n QA„Jp(n))+B„Np(n))] +[A„J,(n))+B„N,(n))J]

n=1

——g n cos [n(z —z„)]{A„Jp(n))Jg(ng) +A„B„[Np(n))J',(n$) +Jp(n&)N, (n() J+B„Np(ng)N&(ng))
tl= $

+—Q Q — Isin[n(z —z„)]sin[m(z —z„)][nU,„'(])—mU„"'(f)]

+ cos[n(z —z„)J cos[m(z —z„)][mU„'"(&)—nU„'"(&)J], (19a)

and the functions U„', U„" are defined by

U„'P'($) =A„A J,(n() Jp(m))+B„B„Np(m$)N&(n))+2A„B„J&(n))Np(m)), (19b)

U„"($)=A„A Jp(n() J&(m)) +B& Np(n))Nt(m()+2A„B Jp(n))N((m)). (19c)

The function fz is obtained from Eq. (19) by re-
placing np —

Pp and multiplying all the terms by
factor 16m.

The function f given by Eq. (18) represents the
longitudinal part of the gravitational field, and in-
cludes all the nonlinearities of the model. The
first two terms are generated by the spatially
homogeneous source-free gravitational field,
which, as shown in the next section, corresponds
to the Kasner solution. The function few includes
all the nonlinear effects, caused by the transverse
part of the gravitational field, whereas the mass-
less scalar field contribution is given by the func-
tion fz. As can be seen from Eq. (19) both fo„and
fz can be further decomposed into the spatially

r

homogeneous and inhomogeneous parts. The In)
term in Eqs. (16) and (17) is responsible for the
homogeneous part, and the wave-type terms con-
tribute to both the homogeneous and inhomogeneous
parts.

IV. PARTICULAR SOLUTIONS

f= ,'I ], n-- (20)

which is easily recognized as the Kasner (-3 p 3)
metric.

(A) When both the scalar field y and the trans-
verse part of the gravitational field P are excluded,
one obtains
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(B) Taking only the spatially homogeneous solu-
tions of Eqs. (16) and (17)

P =o.o Ing+~o

y = Po In)+ yo

(21)

(22}

leads to the following expression for the function

f= (-—,
' + —,

'
o, o2 + 8vpoo) in) +fo. (23)

Transforming to the synchronous frame, one ob-
tains the Belinskii-Khalatnikov solution

dS2 dt2+. t2P(dg2 + t2P2d~2 + t2g 3' 2

along with

cp =q lnt + cpa,

(24)

(25}

p( +p2+p3 —1,

p& +p2 +p3 =1 —8mq .
(26)

The last expression leads to a possibility of expan-
sion along all the spatial axes in contrast with the
vacuum Kasner case. This solution includes also
the isotropic Robertson-Walker-type cosmology as
a particular case corresponding to p&

—
p2 ——p3 3.

(C) and (D) In the case of pure scalar radiation
/ =0), Eqs. (16)-(19)correspond to the Taub-
Tabensky solution, whereas in the vacuum case
(y =0) they represent the Gowdy-Berger model.

V. ASYMPTOTIC BEHAVIOR OF THE SOLUTION

where p&, p» p» and q are constant parameters
which can be expressed in terms of o.'o, Po, po, and

fo. It is important to note that the exponents P„
p» and p3 are related by

2
n(z) =no+ —g B„cos[n(z—z„)],

n=i
2

P(z) =Po+— D„cos[n(z —z„)].
7l n=f

(32)

Comparing Eqs. (29}-(31)with Eqs. (21)-(23) one
finds that at each value of z the present model be-
haves like a particular Belinskii-Khalatnikov solu-
tion.

The high-frequency limit of the solution will be
considered now. Such a regime corresponds to
coordinate time $ large compared with the period
of the lowest mode in Eqs. (16) and (17), namely
n$» 1 for each value of n. Using the large argu-
ment expansions of the Bessel and Neumann func-
tions, one can find the asymptotic expressions for
the functions P, y, and f:

OO

+
2
—Q (A.„'+B„')n+8$Q n(C„+D„2).

f7= 1 8=1

2 ~/2

P —no In)+ cos n z —z„
wng

1T m'Ix. A cos n( ——+B sin n$ ——
~n 4 4)

(34)
)1/2

p —Po in) + —
I

cns[n(z —z n)len'
&

w't
Cocos n$ —

4 I +D„si nn$-—

(35)
and

n() —12

f = ' —+ BwP, ') ln(
2

(27)

(28)

p = o.'(z}lnt,

V = P(z) In(,
(29}

(30)

whereas the longitudinal part of the gravitational
field f is given (up to the unimportant time-inde-
pendent term) by

f — —o + +8mP (z) In),
o. '(z)

2

along with

First, the asymptotic behavior of the solution
will be studied in the vicinity of the initial singu-
larity, i. e. , in the region where n $ is so small
that the Neumann functions can be represented ap-
proximately as

2
No(n)) = —in),

2
Nq(n)) =-

an)
'

This leads to the following asymptotic form of ra-
diation fields:

q„„=diag(-e~, e~, g o', $ o'},
Iz„„=d' ga( , 00$ o"P, —g o"P),

P =P —no in).

I

(38)

(39)

(40)

We will now prove that the background geometry
is created partly by the gravitational waves and
partly by the scalar field. Since, however, the
Isaacson procedure22 is not valid for a matter-
filled universe, a different approach, based strict-
ly upon the Einstein equations, will be used.

Substitution of the background metric g„„into
Eqs, (7}-(10)gives

(41)

(42)

Then the metric tensor g~„can. be decomposed into
the "background" part q„„and the wave part h„„as

8 p. v g p. v +hu v ~

where
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2 Rf 2 I +o'o2
16ve (T -T') =-———~+— (43) massless particles and "gravitons. "

Next we give the physical interpretation of the
energy-momentum tensor T~„'. Rewritten with
the help of the metric q„„, the scalar field equa-
tion (6) is reduced to

From Eq. (41) it follows then that

T( Tg ~

8ubstituting Eqs. (36) and (45) into Eqs. (43) and
(44}, one obtains

P 2$ 2e s

cf p 1 Gp
dF

Integrating Eq. (56) one obtains

y = y&+ Pz lng.

(56)

(57)

where T ""„is a traceless tensor given by
-f

T' "~ = + K diag(-1, 1, 0, 0)8v

and

T 2'" = ,' T diag(-1, 1—,1, 1). (50)

Here we defined the parameter K by

OO

Z = n —(A„2 + B„2)+ 4(C„+D„2)
~4m

(51)

'She traceless tensor T„'„' can be further decom-
posed into

(g& sw GwTpv=Tpv+Tyv (52)

where the energy-momentum tensor of the gravi-
tational waves T~w, is given by

«f e

(47)

It is convenient to decompose the energy-momen-
tum tensor, which is given by Eqs. (41), (42), and

(45)-(47), as

T~ T«» + T~»~ (48)

Calculation of the energy-momentum tensor of
this field yields T '"„exactly. Therefore, we con-
clude that the exact solution, which is defined by
Eqs. (16)-(19), asymptotically evolves into a spa-
tially homogeneous anisotropic universe, given by
Eqs. (36), (38), and (56). This universe is by it-
self an exact solution of Einstein equations with
the energy-momentum tensor defined by Eqs. (46),
and (48)—(55). In the vicinity of the initial singu-
larity the metric g„„behaves like the Belinskii-
Khalatnikov solution, discussed in Sec. IV. In the
special case Po

——0 (no spatially homogeneous scal-
ar field) Eqs. (36) and (38) define a cosmological
model, which is essentially the Doroshkevich,
Zeldovich; and Novikov universe, filled with col-
lisionless null fluid. The latter solution was or-
iginally written in synchronous coordinates. The
synchronous form of the metric g „and the cor-
responding energy-momentum-tensor are given in
the Appendix.

In the limit (» 1 the null fluid contribution T'"„'
is dominant and the metric g„„- asymptotically
evolves into the Doroshkevich et al. solution.

It is interesting to note that the null fluid-type
asymptotic behavior of a. scalar field source can
be obtained by a different approach. Rewriting
Eq. (2) explicitly with the help of the exact metric
g», given by Eqs. (3), (11), and (16)-(19), one
finds

«OO

(53} Bq7 t Bp
,(I+,

I

(58)

and the scalar radiation contribution to the T„"„'is Bp Bp
alas ' (59}

In
ff «OQ

Here the null vector k„ is defined by

u„= '
(~n~, ~, o, o).

vg

(54)

(55)

(60)

(61)

Then it follows that the traceless part T~v of the
energy-momentum tensor corresponds to the null
fluid, consisting of collisionless flows of scalar

where p, y, and f are defined by Eqs. (16)-(19).
Then up to the order ( ', T«has the following
asymptotic form:
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Q %am cos[n(z —z„)]cos[m(z -z„}] C„sin n$ —
4 +D„cos~ 11k —

4
1 v) '

n=1 m=1
4

& 4]-
v 1' v"

x C„sin mg —— +D cos ~m ——
4 I, 4

+sin[n(z —z„)]sin[m(z-z }1 C„cosl "& I+D„sinl n]- —
I

t' v) . t' el
4&

"
i 4i

vx C„cos m$ —— +D sin~ m$ ——
~4 (62)

Vg~gy — dx dy cEE. (65)

A straightforward application of Eqs. (31}and (36}
shows that there is an increase of V„„„from zero
at )=0 to infinity at g=~.

VI. DISCUSSION

To the best of our knowledge the cosmological
model, given by Eqs. (3), (11), and (16)-(19}is
the first inhomogeneous model with inhomogene-
ities due both to gravitational and scalar waves.
An important feature of the present solution is re-
lated to the total decoupling of the dynamical vari-
able's y and P, which represent the scalar field
and the transverse part of the gravitational field,
respectively. Nevertheless the scalar source con-
tribution to the longitudinal part of the gravitation-
al field leads to a significant change in the nature
of the initial singularity as compared to the vacuum
model. The Kasner-type asymptotics is replaced
by the more general Belinskii-Khaltnikov-type be-
havior. For large times ($- ~), or equivalently,
in the high-frequency limit, the present solution
evolves into an anisotropic, but spatially homogen-
eous model filled with a spatially homogeneous
scalar field and collsionless flows of massless
scalar particles and gravitons. Both fluids prop-
agate along the null geodesics. Further expansion

Averaging Eq. (62} over phase leads to
eo

(T )=2 (C. +D. ) (63)

This is essentially the T«component of the energy-
momentum tensor T„"„given by Eq. (54). Similar-
ly it can be shown that in the same approximation

(64}

Hence, .in both methods the energy-momentum ten-
sor of the massless scalar field can be reduced
for $» 1 to the null fluid form (up to the order g ').

Finally we note that the presence of the mini-
mally coupled massless scalar field does not sup-
press the increase of the spacelike volume of the
universe, which is defined by

is dominated by these null fluids and the final state
of evolution is described by Doroshkevich, Zeldo-
vich, and Novikov's spatially homogeneous aniso-
tropic universe.

It is still not clear if the present solution can be
used in order to describe some particular eras in
more complicated inhomogeneous "mixmas ter"
universe. In this context it is interesting to con-
sider the simpler case of the spatially homogen-
eous anisotropic universe filled with ultrarelativ-
istic matter. The initial stages of such a universe
can be represented by the Kasner solution with
contraction along the ~ axis and expansion along
the x and y axes. During this stage the components
T& and T', of the energy-momentum tensor rapidly
increase, and later they dominate the further evo-
lution of the universe. The contraction along the
z axis is then replaced by a rapid expansion (much
more rapid than the expansion along the x and y
axes). During this process T& and T,'rapidly de-
crease and finally T„" and T,' become important.
The above stages of the cosmological expansion
are adequately described by the Doroshkevich et
al. solution. U we include in this picture also the
massless scalar field, it can lead to a significant
change in the behavior of the universe. ,The in-
itial contraction along the z axis occurs only for
some particular values of parameter Po, which
characterize the homogeneous part of the scalar
field. For these values of Po the general features
of the cosmological expansion are qualitatively the
same as those without the scalar field, and later
stages of expansion can be taken to be the same as
those described by Doroshkevich et a/. This is
due to a very rapid decrease of the energy-momen-
tum tensor of the homogeneous part of the scalar
field T~„'. lt is worthwhile to note that the inclu-
sion of a massless scalar field which causes ex-
pansion on all three axes initially might lead to
complete removal of the mixmaster behavior in
models which are mixmaster like without the scal-
ar field.

The present model has been used- to construct a
new solution, which describes a conformally in-
variant massless scalar field, coupled to the grav-
itational field. Such a solution was found by per-
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forming Bekenstein's transformation '

gwv=( p'p) gee ~

P=P ' tanhP9&,
(66)

where g» is the metric tensor of a new solution,
P =(4»/3)', and &)& is a massless scalar field,
which satisfies the conformally invariant wave
equation

where

(t& ~-S+1/4 && t)&S-& /4a
7

(f) If-Go+1&/2r(f)(no+&&/2

a (t) A&no-&&/2 r-(uo-&&/2a3 — y

The function r(t) is defined by

(A2)

"—-'R&t& =0. (67) &=~0 & e A' (A3)

A full presentation of this model will be given in
a subsequent paper.
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The energy-momentum tensor given by Eqs. (4l),
(42), and (45)-(47) has the following components:

APPENDIX

Transforming the metric q„„, which is defined
by Eqs. (36) and (38) one obtains

ds2 = —dt2 +a,~(t)dz + a22(f)dx2 + a32(t)dy', (Al)

x [1 + 4vP, 'r(t) '],

& -2r(f)-3/2-28 -2r(g&

(A5)

(A6)
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