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We discuss several issues bearing on the observed asymmetry between matter and antimatter in the content
of the universe, in particular, the possible role in this .of Hawking radiation from black holes, with
aliowance for weak C- and T-violating interactions. We show that the radiation, species by species, can be
asymmetric between baryons and antibaryons. However, if baryon number is microscopically conserved there
cannot be a net flux of baryon number in the radiation. Black-hole absorption from a medium with net
baryon number zero can drive the medium to an asymmetric state. On the other hand, if baryon
conservation is violated, a net asymmetry can develop. This can arise through asymmetric gravitational
interactions of the radiated particles, and conceivably, by radiation of long-lived particles which decay
asymmetrically. In the absence of microscopic baryon conservation, asymmetries can also arise from collision
processes generally,say in the early stages of the universe as a whole. However, no asymmetries can develop
(indeed any “initial” ones are erased) insofar as the baryon-violating interactions are in thermal equilibrium,
as they might well be in the dense, high-temperature stages of the very early universe. Thus particle
collisions can generate asymmetries only when nonequilibrium effects driven by cosmological expansion come
into play. A scenario for baryon-number generation suggested by superunified theories is discussed in some
detail. Black-hole radiation is another highly nonequilibrium process which is very efficient in producing
asymmetry, given microscopic C, T, and baryon-number violation.

I. INTRODUCTION AND SUMMARY

An annoying feature of big-bang cosmology, as
currently formulated, is the seeming necessity
to specify nonzero values for baryon and perhaps
lepton numbers. (The net electric charge, on the
other hand, must be very nearly equal to zero.)

It would be more attractive to suppose that the in-
itial state is symmetric between matter and anti-
matter. The problem becomes more acute if bary-
on number is not microscopically conserved, and
if its violation becomes large at the high temper-
atures characteristic of the early universe. For
then when thermal equilibrium is established at
early times baryons and antibaryons are equally
numerous. In either case, if we start at early
times with a situation symmetric between matter
and anitmatter, we must understand how the mat-
ter and anitmatter later separated, on a scale
which is sufficiently large to accord with the ob-
servation of local asymmetry,1 or else we must
understand how a universe which is symmetric
early on can evolve in time into one which is
asymmetric. We shall examine the latter alter-
native here, with special attention to the role of
Hawking radiation from black holes.

Even if baryon number is microscopically con-
served, it is not completely obvious that the net
flux of baryon number in black-hole radiation®3
is zero, given the observed fact of CP violation
in weak interactions. Neither baryon-number con-
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servation for the CPT theorem is directly rele-
vant—it is well known that the baryon number of a
black hole is ill defined,? and the fact that a black
hole is radiating gives us an arrow of time (so that
the CPT theorem is not applicable). We shall
show nevertheless that the net flux of baryon num-
ber is zero. Both a quantum-mechanical and a
thermodynamic argument are offered for this.
This shows that if baryon number is microscopic-
ally conserved then black holes can only tend to
give matter-antimatter symmetry—no matter
what goes in, equal numbers of baryons and anti-
baryons come out. It is worth remarking, how-
ever, that species by species the radiation need
not be symmetric, e.g., one may have more A
than A particles. We shall supply an explicit ex-
ample of this. Only the net flux connected with
absolutely conserved quantum numbers is forced
to be zero.

To summarize, if baryon number is microscop-
ically conserved then the “transcendence” of bary-
on number in a black hole can only make an ini-
tially asymmetric situation more symmetric; it
cannot give a net baryon-antibaryon asymmetry
starting from a symmetric situation.

On the other hand, absorplion from a symmetric
medium can lead to an asymmetric condition. For
example, if the hole which preferentially absorbs
A rather than A is surrounded by a medium con-
taining equal amounts of A and A, it will lead to a
medium containing mostly A.
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The situation becomes more interesting if bary-
on number is not microscopically conserved. As
we have mentioned, in this case a dynamical un-

' derstanding of how matter-antimatter asymmetry
can arise from a symmetric situation is not only
esthetically desirable but also physically necess-
ary if the baryon-violating interactions ever es-
tablish thermal equilibrium in the very early
stages of the universe. OQur earlier result that the
flux of particles and antiparticles need not balance
species by species, but only in the net flux of a
conserved quantity, means that if baryon number
is microscopically violated then there can be net
baryon-number flux in black-hole radiation.

Our analysis leads to the conclusion that a net
imbalance of baryons and antibaryons will arise in
particle production by cosmological expansion if
baryon number, C and T are violated microscop-
ically. Cosmological particle production, but
without symmetry violation, has been discussed
by Parker® and others.

The above-mentioned effects result from inter-
actions between matter and gravitational fields,
more precisely from corrections to the minimal
coupling of gravity to matter induced by C-, T-,
and baryon-number-violating interactions. Even
in the presence of such symmetry violations in
thermal equilibrium the number of baryons and
antibaryons must be equal—the number of parti-
cles is governed by the Boltzmann factor, and
baryon and antibaryon have equal mass by the CPT
theorem. One can, however, generate asymmet-
ries if there are nonequilibrium processes. Non-
equilibrium situations may arise because of cos-
mological expansion. Another, very powerful,
method of generating nonequilibrium situations
is through black-hole radiation, an explosive
process.”? We will discuss these possibilities in
detail below. .

The contents of the paper are as follows. In Sec.
II, we shall discuss how asymmetry may develop
kinetically in nonequilibrium processes. A simple
thought experiment involving K mesons is used to
illustrate this. The kinetic mechanisms involving
cosmological expansion and black-hole radiation
are compared and contrasted. A scenario suggest-
ed by superunified gauge theories is described.
Some speculations regarding a possible black-hole-
dominated phase of the universe are presented.

In Sec. III, we prove.our theorem that if baryon
number is microscopically conserved then the net
flux of baryon number in black-hole radiation is
zero. We show by example that if, on the con-
trary, baryon number is not microscopically con-
served then a net flux can arise. The generaliza-
tion of this result to cosmological particle produc-
tion is mentioned.

From the above it should be clear that we cannot
claim to have a theory of the baryon-antibaryon
asymmetry which gives the magic number nB/n,,
=~ 1078, Our knowledge of microscopic baryon non-
conservation (if any) and T violation is much too
uncertain for that. We hope, however, to have
established some rules of the game so that such
questions may be rationally discussed, and to have
shown that the baryon-antibaryon asymmetry need
not be a “given” of cosmology but could arise dy-
namically from regular physical processes.

II. KINETIC PROCESSES
A A thoughfiexpeﬁ;i;e}lt with K mesons

Consider a blackbody with temperature T =m g
comparable to the K-meson mass radiating into
empty space. It will radiate K® and K° mesons
equally. In free space the mesons will decay. The
decay of K mesons is a classic story.® For our
purposes it is sufficient to recall that the time de-
velopment of K° and K° are described by

\1/2
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where € is a parameter which measures T viola-
tion (€ =0 if time-reversal symmetry is good).
For our illustrative purposes we ignore the K
- K5 mass difference. Using CPT and the AS
=AQ rule we find that the amplitudes for semi-
leptonic K%, K} decay are given by

(1°e*v| K%Yy =F(1 +¢), (2.3a)
(r*eV|KL)y =f*(1-¢), (2.3b)
(me*v| KLYy =f(1 +¢), (2.3¢c)
(e T | KLYy == (1 —¢), (2.3d)

where f is a form factor which for our purposes
we take to be constant. Combining these formulas
we find that the total yields from the various pos-
sible semileptonic decays, integrated over time,
are proportional to

K'—7etv:

1 1 4
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Since experimentally € =1.5%X10 and v <y,
we find that in the radiation there is a preponder-
ance of positrons over electrons by roughly a part
in 10%,

Needless to say, lepton number, which is mi-
croscopically conserved, remains zero. With the
preponderance of e¢* over e~ comes a preponder-
ance of v over V. In equilibrium, the back-reac-
tions e*mv— K, etc., would restore the Boltzmann
distribution, with equal numbers of ¢* and e”.

(This example is imperfect because the 7 me-
sons will eventually decay into ¢, restoring the
balance. So our asymmetry is short lived. This
problem, however, is practical rather than con-
ceptual. One could, for instance, imagine a world
with T violation and-a stable 7 meson.)

This thought experiment illustrates how an asym-
metry between matter and antimatter may arise
from the interplay of C and T violation and a non-
equilibrium process. If our blackbody radiator
is replaced by a radiating black hole and the K me-
sons by some heavy mesons whose decays violate
C, T, and baryon number, we see how a baryon-
antibaryon asymmetry might be induced. More
explicitly, suppose there is a meson M and anti-
meson M with the decay channels M —~p +p, p +e,
M —~p+p, p+e. M and M mix through the p +p
channel, and a proper analysis of their decays
would proceed much like the case of K mesons.

If C and T are violated, a net baryon number would
arise from the decay in free space of an equal mix-
ture of M and M.

The radiation of a blackbody into free space is
of course closely related to the behavior of black-
body radiation subject to rapid expansion. There-
fore the same process, production of an imbalance
from the interplay of baryon-number-, C-, and

- T-violating interactions with a nonequilibrium pro-
cess, could be driven by rapid cosmological ex-
pansion in the early stages of the universe.

B. General discussion of kinetics of expansion

As we have just seen, in the presence of baryon-
number-, C-, and T-violating interactions, non-

equilibrium processes can generate a net baryon
number starting from zero baryon number. We
have in mind two mechanisms which may lead to
cosmologically significant disequilibrium: black-
hole radiation and cosmological expansion. Black-
hole radiation is to a first approximation radiation
into empty space, so its kinetics is very simple.
Cosmological expansion is much more complicated
—one must investigate the behavior of matter at

a high and rapidly changing temperature. We shall
now discuss this more complicated case. The two
mechanisms are compared and contrasted in Sec.
IID. )

We shall show in Sec. IIC that insofar as parti-
cle masses are negligible (i.e., the temperature
is much higher than the rest mass of the particles
present) no asymmetry can arise. Furthermore,
as we have mentioned, no asymmetry can arise
from equilibrium processes. We therefore are
concerned with estimating when a massive particle
goes out of equilibrium. Its subsequent decays
(or reactions) can then generate asymmetries.

For definiteness we consider a meson of mass
M which couples to two-fermion (quark or lepton)
channels with electromagnetic strength. In our
estimates, we keep only Born terms. This is in
the spirit of asymptotic freedom, which is pre-
sumably very good at the relevant high tempera-
tures. This discussion, of course, could be gen-
eralized. Let the temperature be T. The charac-
teristic expansion time is then (G'/?T?)!, where
G is the gravitational constant. As T decreases
below M, the reactions which create the heavy
mesons cease. If the decrease of temperature is
slow enough annihilation reactions leading to de-
crease in the number of heavy mesons will pro-
ceed, decreasing the density of mesons in line
with the Boltzmann factor /7, However, if the
annihilation reactions are slow compared to the
characteristic time, then the distribution of me-
sons is no longer in equilibrium. Let us estimate
the temperature at which this occurs.

(i) Pair annihilation: Two heavy mesons may
annihilate into two quarks or leptons. The rate of
this per meson in equilibrium is ~(a/7)*(T3/%/
MY2)e™M/T for M >T and ~(a/7)*T for M <T, and
becomes comparable to the characteristic inverse
expansion time when

; |
(2) e m-c i W=D, @
m

2

(%) T,~GYT 2 (M<T). (2.5b)
Numerically, this gives T;=M/8 for M =10° GeV,
T,~M/4 for M =10'" GeV. In either case the den-
sity ~e™/T of mesons is small at the decoupling
time. When M ~10'%2 GeV, T, becomes comparable
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to M, and when M >10'3 GeV the reaction is never
in equilibrium. '

(ii) Annihilation against light particles: A heavy
meson and a quark or lepton may annihilate into a
quark or lepton plus (say) a photon. This decouples
roughly when

a\?1

(;) M{Tﬁ"’G”szz (]WZT), (2.621).
a\? t/2p 2

(;)T,;G T, (M<T). (2.6b)

which gives T,~ 10" GeV for M =10° GeV, T,
~107 GeV for M =10'" GeV. In either case, this
process dominates the pair annihilation and shows
that very few heavy mesons are present at the de-
coupling time. When M>10'3 GeV, Eq. (2.6) can-
not be satisfied for any value of T.

(iii) Decay: The decay of the heavy mesons will
occur with a rate (a/m)M. If M >T,, the rate dom-
inates the previous two until decoupling. In any
case, decays will dominate once T < (w/a)M.

(iv) Inverse decay: Production of heavy mesons
by inverse decays occurs at a rate ~(a/mMe /T
(M =T) or ~(a/m)T (M < T). At early enough times
particles of mass up to (@/7)G/2~10*® GeV will
be brought into equilibrium by this process.

If M = 10" GeV we have a very peculiar situa-
tion. The distribution of heavy mesons is never
brought into equilibrium. Furthermore, such me-
sons decay before they interact once T <(n/a)M.
For these reasons it is problematical to estimate
how many such mesons would be created in the
history of the universe. If we assume, however,
that in the earliest stages the density of mesons
is not as singular as T°, we can estimate the con-
tribution from their decays to the net baryon num-
ber. The mesons are produced [from reaction
(iv) above] at roughly the rates

8
r~ (%) M—g—:{_—i-;ze"'”‘ (2.7)
per unit time per unit volume at temperature T.
Suppose the meson decays into baryons more than
antibaryons by a fraction e. A baryon produced at
temperature T contributes proportional to (T(,/T)3
to the present density, where T is the present
temperature. Putting it all together, the contribu-
tion of heavy-meson decay to the present baryon
density is approximately (dt =dT/G!/*T3)

(r/ oM a TG T 3 aT
wo [, irtem(2) s

:i(%/r;’,)MT_QS_ 2.8)

The limits on the integral are determined by the
exponential cutoff in (2.7), and the temperature

at which annihilation dominates decay. The con-
tribution to ng/n, is then about e(a/7)/G!/*M. Such
a number could be close to the desired 10~ for
€=10"%, M =10!® GeV as might be suggested by
ideas of superunification.””® Notice that in this
picture the baryons are produced at such an early

" time that the standard big-bang scenario for the

later stages is unaffected.

In this discussion (for M = 10'® GeV) we have
assumed that initially there were no heavy me-
sons. An alternative scenario [developed by one of
the authors (F. W.) in conversations with S. Wein-
berg®] assumes that by some (quantum gravita-
tional ?) mechanism the heavy mesons do follow a
Boltzmann distribution at the highest temperatures
T>M. As we have seen, the fastest processes in-
volving the heavy mesons are decays; they become
important at times ¢, ~[(a/mMM ]* or temperatures
Tp,=G™/4, /2 ~[G/*(a/mMM /2. Until this time the
heavy mesons initially present simply red-shift
freely and therefore are overabundant compared
to the Boltzmann distribution for a massive parti-
cle. In fact the number of heavy mesons is just the
same as the number of photons, The heavy mesons
then decay away (if M = T, back reactions creating
the heavy mesons are unimportant); the net asym-
metry per photon produced is then remarkably
simple:

Llazg Zhoary Re. (2.9)
Ny Y

Finally, we will briefly discuss the regime
M < 10'® GeV, which may be the most interesting
case.® A very crude, preliminary analysis of this
case is as follows. Because massless particles
generate no asymmetry, we concentrate again on
the heavy mesons. Now these are forced into
equilibrium at early times. Asymmetry can be
generated when the temperatures reach T'=M,
where there are significant numbers of heavy me-
sons (roughly equal to the number of photons) and
cosmological expansion drives their distribution
out of equilibrium (see part C below). The asym-
metry produced will be the asymmetry per decay
multiplied by a parameter characterizing the “non-
equilibrium” character of expansion, i.e.,

ma L HIM) % Gy (2.10)

HT=M)
where ¢, = [(q/ 7)T]™ is a characteristic interaction
time and ¢= R/R~(G'/2T?)" is a characteristic ex-
pansion time. Any baryon number produced will be

* partially thermalized (driven to zero) by later in-

teractions.!® We believe that all these effects may
be accurately taken into account using the fluctua-
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tion-dissipation theorems of statistical mechanics.
Calculations of this kind, together with a calcula-
tion of ¢, will be presented in a subsequent paper.

C. Absence of asymmetry for massless particles

One can prove a little theorem that reactions
among massless particles do not give particle-
antiparticle asymmetries from cosmological ex-
pansion. This means that such asymmetries will
be characterized by parameters ~m/T to a power,
in addition to other parameters of smallness, when
the relevant masses m are much less than the
temperature.

It is important to distinguish between kinetic andj

dnpi) _

chemical equilibrium. Kinetic equilibrium, dis-
tribution of energies and momenta according to the
Boltzmann factor, is enforced by the presence of
any collisions at all. Chemical equilibrium may
be established only by much slower interactions
and in fact never reached in an expanding universe.
In the case at hand, baryon-number-violating pro-
cesses may be rare and although in true equilibri-
um the baryon number would be zero such equil-
ibrium may never be established. On the other
hand, kinetic equilibrium should be a good ap-
proximation in the early universe.

Taking into account collisions and cosmological
expansion, we have for the densities

ar Z ["Pp,-pjpkplI(kPklPl |T|ipijpj> lznt(Pi)nj(Pj)

1l
PiPePy

+ Bpyp 040, G0 130 | T | kDRlD ) Pra0 ), (01)] - Kb

Here the Latin indices denote particle type, and
K:R/R is the expansion rate. The last term in-
dicates the effect of the cosmological expansion,
which for massless particles is a simple red-
shift. ¢ is the phase space (and statistics) factor,
and T is the usual scattering matrix. We claim
(2.11) is solved by

7 (b;) e / T(t)’

daT

E =-KT.
Indeed, with the particle number independent of
species the first two terms on the right-hand side
of (2.11) cancel by the completeness relation
TYT =TT", and the equality is a trivial calcula-
tion. This shows that in the approximation of
massless particles cosmological expansion does
not induce particle-antiparticle asymmetry. We
disagree in this with the calculation of Yoshimura.
For massive particles the proof does not work be-
cause the expansion term (red-shift) is not simply
~Kpan/ap.

From a deeper point of view the essential ingre-
dients of the preceding argument are the existence
of thermal equilibrium and the fact that free ex-
pansion of a gas of massless particles is adia-
bactic. Therefore, free expansion of a gas of
massless particles will always reproduce the
equilibrium distribution.

We note parenthetically that the use of the com-
pleteness relation TT'=T'T as a substitute for
detailed balance in the proof of the existence of
thermal equilibrium is completely general, not
tied to massless particles. This follows immed-
iately from the analysis of Ref. (12), although it
is not noted there.

(2.12)

1

any (p;) )

. (2.11)

Ll
D. Comparison of black-hole radiation and cosmological

expansion kinetics

Let us compare the two kinetic mechanisms,
black-hole radiation and cosmological expansion.

(1) Black-hole radiation of particles is governed
simply by the mass of the particles. Thus even
very weakly interacting particles (such as we
might need to give small baryon-number violation)
can be copiously produced if they are light. Then
their decay could give large asymmetries, as in
our K-meson example. We never run into the
problem of particles whose production cannot be
estimated, as in Sec. IIB. On the other hand since
the characteristic temperature T =1/87GM of a
black hole of mass M is inversely proportional to
the mass, very heavy particles do not get produced
until the black hole has lost most of its mass. For
instance, T =10° GeV requires a black-hole mass
M =10" g. Only with large asymmetries in the
decay and very many small black holes could one
generate a sufficient baryon number from such
particles.

(2) Particles which annihilated rapidly in pairs
but whose decays violated baryon number would
generate an asymmetry by the black-hole mech-
anism but would not survive long enough to produce
asymmetry in cosmological expansion.

(3) There are deep questions of cosmology con-
nected with each mechanism: How hot does it get
in the early universe? Is there a limiting tem-
perature for hadronic matter ? What was the spec-
trum of black holes in the early universe? An in-
teresting speculation concerning the second ques-
tion is that the present stage of the universe re-
sults from a cosmological “bounce” from a pre-
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vious collapsing stage. It is then an interesting
question which could be investigated mathematic-
ally whether the collapse results in a large pop-
ulation of black holes whose subsequent explosion
triggers the big bang. This idea, if it can be rea-
lized, would have some other advantages:

. (a) The violation of the weak energy condition
associated with black holes allows one to circum-
vent the singularity theorem and could conceivably
lead to a “bounce.”

(b) In this picture the universe might never get
very hot (except locally, at the surface of black
holes). Thus problems associated with restora-
tion of symmetries at high temperatures and sub-

_sequent formation of domain walls need not arise.

(c) Most attractive conceptually, this type of
cosmology completely eliminates the necessity of
specifying initial conditions in addition to ordinary
physical laws.

Finally, an important remark of a general na-
ture: It has often been objected against cyclic
cosmologies that each cycle increases the en-
tropy, so that the present finite value of the en-
tropy per baryon would militate against an infinite
number of cycles. In theories of the type discus-
sed in this paper, this objection is baseless. The
entropy per baryon is determined dynamically by
physical processes, at extreme temperatures,
which are the same for each cycle. The value of
the entropy per baryon is therefore independent of
the number of cycles.

III. INTERACTIONS WITH FIELDS
A. Theorem on matter-antimatter balance

We now show that in a world with microscopic
baryon-number conservation the net flux of baryon
number in Hawking radiation is zero, We shall
set up slightly more machinery than is strictly
necessary to prove this, so that later we can eas-
ily analyze the effect of dropping the assumption
of microscopic baryon conservation.

Only interactions odd under C and T can possibly
generate asymmetric radiation. (Terms odd un-
der parity are of no interest. They might gener-
ate a preponderance of particles over antiparti-
cles in one hemisphere around a rotating black
hole, but there would be a reversed imbalance in
the other hemisphere and no net asymmetry.) To
allow for such effects we take into account matter
interactions, in particular the weak C- and T-vio-
lating interactions: For example, loop diagrams
which describe quark-graviton scattering, cor-
rected by exchange of virtual W bosons and in-
volving C- and T-violating quark—-W-boson ver-
tices.

When the gravitational field is weak we can sum-

marize the matter field interactions by means of
an effective local Lagrangian. The corrections to
the “free field” Lagrangian will of course be very
complicated, including strong-interaction effects
as well as the weak C- and T-violating effects of
interest here. These corrections will alter the
details of the Hawking radiation, but cannot intro-
duce any asymmetry between matter and anti-
matter. We focus therefore only on the C- and T-
violating interactions between matter and gravity.
These introduce an asymmetry between particles
and antiparticles in their propagation through the
background gravitational field in the vicinity of
the black hole. For illustrative purposes only,
let us consider a set of (three or more) complex
scalar fields ®;, 1<is<N. Restricting ourselves
for simplicity to terms bilinear in these fields,
we may take the following Lagrangian as repre-
sentative of the effects under discussion:

£=Vg (gu,0, 8F0,%; — m;’®]®;

- &}V Ragyo Rasro) (38.1)

Here R,gys is the curvature tensor, and V;; is a
matrix whose details depend on the details of the
weak interactions [recall that (3.1) is not to be
taken as a fundamental Lagrangian, but as an
effective Lagrangian summarizing the weak cor-
rections to.gravity]. The matrix V;; is of course
Hermitian but not necessarily real and can lead to .
C and T violation. The Lagrangian (3.1) may serve
to illustrate both the cases where there is a con-
served “baryon number” and where there is not:
The total number of ¢ quanta of all types is con-
served, since £ is invariant under the multiplica-
tion of all the ®; by a common phase, but the num-
ber of quanta of species 1,2,...,N are not sep-
arately conserved. For the remainder of this sec-
tion we will analyze the case of a microscopically
conserved quantum number and call the quanta of
®; baryons, the quanta of <I>;" antibaryons.

The rate of Hawking radiation is a product of
two factors. One is a universal factor, the same
for particles and antiparticles and irrespective of
type i; roughly speaking, it corresponds to black-
body emission at the event horizon. The other
factor describes transmission of the emitted ob-
jects through the gravitational field outside the
event horizon. The net effect corresponds to gray-
body emission, with graybody coefficients that de-
pend on the transmission. In our example the
transmission phenomena for baryons involves
transformations among the various types, and sim-
ilarly for antibaryons. The former effects are
governed by the field equations for &;, the latter
by the equations for ®%.

To evaluate the transmission coefficients we
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should now solve for the probability, given the
Lagrangian (3.1), of particles and antiparticles
emitted at the horizon to emerge at infinity. We
shall abstract from this a model problem which
contains the essence of the phenomena (it amounts
to a generalization of the radial equation one would
derive by separating the field equations in appro-
priate coordinates). The model problem is that of
one-dimensional transmission through a position-
dependent matrix potential, governed by the La-
grangian
ks 0
L= éi CI’g - 'a_"c—
All of our remarks about C, T, and baryon number
apply equally as well to the Lagrangian of Eq. (3.2)
as to that of Eq. (3.1). We assume (for simplicity)
that V,;(x) vanishes as |x|—w.
Let us introduce a 2N-component complex vec-
tor

‘I’?a’?{ @ - B W)V (x)®;(x).  (3.2)

~ ")
a4

a',., E(Z) , . (3.3)

]
n

by
- ;
which describes the situation where we have an
outgoing wave a,e'*** and an incoming wave
b,e* ¥t a5 x— — © associated with a particle of
species 1, outgoing wave a,e***"* and incoming
‘wave bye'***) as x — — « for species 2, etc. Sim-
ilarly we int_x;oduce

(C-l

ccz.f EC), (3.4)

5

S
i

J
which describes an outgoing wave ce and an

incoming wave d,e’* " for species 1 as x— +,
and so forth. There is a linear relationship be-
tween the fields at +« if the fields are governed by
the Lagrangian Eq. (3.2); we write this as

(tci):(g g) (Z)Em((;) (3.5)

The baryon number flux Ia Iz_ ]bl2 at — © must be
equal to the baryon number flux [c lz— Id]2 at
+,  for any choice of the vectors a,b. This im-

iR (x=t)

plies .

1 01)_(3* c*)(l 0>(A B)

(0—‘*1)* 0 -1/\Cc D)’ (3.6)
or, after a little algebra, the three matrix equa-
tions

AtA-C'c =1, (3.7a)
D'D-B'B=1, (3.70)
ATB=C'D. (3.7c)

The transmission probabilities are readily ex-
pressed in terms of A. . Indeed, the total baryon
transmission for a particle of species j is govern-
ed by requiring that the outgoing waves at —= be
only a unit flux of species j and that there be no
incoming wave at +», i.e.,

(5)-C 2)(%) .9

where &; is the vector with unit entry in the jth
slot and zeros elsewhere. Multiplying both sides by

4 (AT =C!
”“1:(_3* <) | (3.9)

leads to
AN =g, t9=@aN1E; . (3.10)

[t follows from (3.7a) that A is invertible.] Thus
the transmission probability for a unit incoming
wave of particle species j is

|t?|2=8,A™MAN) ;. (3.11)
And the net flux for all species j is
St =trAti(an)t . (8.12)

J

We must compare this to the total flux of anti-
particles. If the particles are governed by the
potential V;;(x), the antiparticles are governed by
Vji(x) =V7;(x), as one can see by comparing the
equations of motion for &; and <I>T following from
the Lagrangian Eq. (3.2). Let us call the corres-
ponding transmission matrix for antiparticles

(3 })
“\C D/"
Then one can show by manipulating the relevant

Schrddinger equations and boundary conditions that

A =D*,

D =A%,
Before deriving this from the Schrodinger equa-
tion, we should remark that the same results fol-
low from the deeper principle of CPT invariance.
Namely, the amplitude for an outgoing particle of
type i at — © to propagate to a particle of type j

(3.13)

(3.14)
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at + is the complex conjugate of the amplitude
for an incoming antiparticle of type j at — to
propagate to an antiparticle of type ¢ at +. Writ-
ing this verbal statement in equations gives simply
Eq. (3.14).

To see Eq. (3.14) directly from the Schréddinger
equation, notice that the matrix A is defined as the
solution of the problem

azzp.(l) aZw(l) @
‘5‘7’ - Fx-g_ + Vi =0 , (3.15a)
subject to

Px,t)—~ e* %5, +incoming waves, x——

(3.15b)
(pi(.i)(x’ t)—’ eik(x-t)A”’ x — + 0, (3.15(:)
Similarly D is the solution of the problem
62 [ 32 (€
T v =o, (3.162)
subject to

MNx, t)— e** *D5, ; + outgoing waves, *— — o
(3.16b)

PP (x,8) = * 0D, x4, (3.16¢)

[Notice the transposition of V in Eq. (3.16a), which
arises because the antiparticles are governed by
the equation of motion for ®* derived from the
Lagrangian (3.2).] Now complex conjugating all
the equations [(3.16a)-(3.16¢)] and changing the
sign of time (which leaves the equation of motion
invariant) maps a solution of [(3.16a)-(3.16¢c)]
onto a solution of [(3.15a)-(3.15¢)], with A;; =D};.
This proves (3.14).

Now the total flux of particles minus the total
number of antiparticles, starting from unit ampli-

tude for all species at —«, is, from (3.12) and(3.14),

trA (AN - tr AV (AN T =tr A1 (AT)?
— tr(D*T)"1D*"t, (3.17)

Use of the unitarity equations (3.7) and cyclic in-
variance of the trace gives

trA (AN =tr(AN A = tr[1 - (A7) 'CTcA),

tr(D*¥")1(D*)! = tr(D")"'D"! = tr[1 - (DH'B'BD].
(3.18)

But according to Eq. (3.7c) (A*)"'C*=BD™, so we
see that the final traces in both equations are
equal, Thus the total flux of particles is equal to
the total flux of antiparticles.

This proof'? requires several comments:

(1) We have assumed that the potential turns
off at both £+, In the realistic black-hole case
the potential does turn off at — (the event hori-

zon) but not at +« (i.e., the particles may have
nonvanishing mass). The proof actually works for
this situation too, with only notational modifications.
" (2) Although we couched our derivation in the
language of one-particle quantum mechanics,

clearly the ingredients of the proof are very gen-
eral: basically CPT invariance and unitarity.

(3) The proof involves use of manipulations in-
side the trace which are not general matrix iden-
tities— which is a particularly obscure way of
saying that it does not imply equality of particle
and antiparticle flux species by species.

B. Thermodynamic argument

We now show that the theorem on matter-anti-
matter balance just proved follows also from a
thermodynamic argument. It is reassuring to see
that thermodynamic principles retain their vitality
even in a world with T violation.

Consider the box depicted in Fig. 1, consisting
of two compartments at temperature T and chemi-
cal potential zero separated by a semipermeable
membrane characterized by the potential V;;(x).
Suppose that baryon number is conserved, and
that baryons (summed over species) penetrate
V;;(x) from left to right more readily than anti-
baryons (summed over species). It follows from
the PCT theorem that from right to left this mem-
brane will allow anitbaryons to penetrate more
readily than baryons. We see that such a mem-
brane would act.as a Maxwell demon for baryon
number, separating baryons from antibaryons.

In time, the two sides of the box would become
distinguishable, contrary to the zeroth law of"
thermodynamics (uniqueness of thermal equili-
brium). Alternatively one could set up a pipe con-
necting the two compartments, and extract work
from the diffusion gradient, violating the second

matter % matter
antimatter % antimatter

=i

extract work diffusion gradient
from flux

FIG. 1. Box illustrating the thermodynamic argument
for zero net baryon number. See text.
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law. It follows that thermodynamics does not per-
mit a membrane with these properties, in agree-

ment with the previous quantum-mechanical argu-
ment.

Notice that a net flux of any nonconserved quan-
tity across the membrane is permitted. Such
fluxes do not lead to different equilibrium situa-
tions in the two compartments, because informa-
tion concerning the nonconserved quantum num-
bers is completely lost in thermal equilibrium.,
We now establish that such fluxes do indeed occur.

C. Example of imbalance

For our example we will use notations as before
with two species 1, 2 of scalar fields and the poten-
tial

V(x) =M,5 (x +%) + M40 (x ——g—) ,

where M, and M, are two-by-two Hermitian ma-
trices. We assume species 1 is distinguished from
species 2 by interactions [other than the correc-
tions to gravity summarized by Eq. (3.19)] whose
details need not concernus—e.g., species 1 mightbe
strongly interacting while species 2 is not. We
shall call particles of species 1 “baryons” and
particles of species 2 “leptons”—so if M or M,
has off-diagonal components baryon and lepton
number are not separately conserved.

By standard quantum-mechanical methods it is
not difficult to compute the transmission matrix
for this problem; in our previous notations the ma-
trix A is (up to an overall phase)

(3.19)

A=1-iM+M,) +(a-1)M,M,, (3.20)

where o =e¢ %** is the phase change for a round

trip between the two & functions, and we have ab-
sorbed a factor 1/ into the definition of M, and
M,. In the present case the transmission prob-
ability of baryons is given not by the trace of

A1 (AH", put by its 11 component,

Tp= 3 [tP|2=[A AN ] =@tA) T,  (3.21)
J

as one readily sees from Eq. (3.10). One could of
course solve for this directly given Eq. (3.20), but
much simpler expressions result if one expands

T p in a power series in My, M,:

ATA) ' =1-aM,M,- a*M M,

—Mlz—M22—"“. (3.22)
For antiparticles we use the complex-conjugate
potential to Eq. (3.20), which is equivalent to re-
placing M, and M, by their transposes. Then
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AR =(1 - aM My — a*M,M

-M12—M22"")T- (3-23)
Letting
a, ¢
My=(} 1)», 3.24
=3 5 (3.24)
_[@2 C
MZ_(C3= bz) , (3.25)
we find, assembling the formulas,
Tp-Ts=@A"A)" - @A™,
=(a - a*)(c¥c, - cic¥). (3.26)

This expression for the net flux of baryon number
does not vanish except for special values of «,
Cy, Cy.

Notice that the asymmetry vanishes if a =1, In
this case one has effectively only one & function in
the potential and one associated matrix, namely
M +M,. This matrix may be made real by a re-
definition of the phase of &,, 'so that there is ac-
tually no time-reversal noninvariance in this case.
Similar remarks imply that the asymmetry must
vanish if C; or C, vanishes, or if they have the
same phase, so that the form of the asymmetry
in Eq. (3.26) is almost dictated a priovi.

We have now demonstrated that a net baryon
number flux will arise in Hawking radiation if
(and only if) there is microscopic baryon noncon-
servation, and C and T violation. .

The species-by-species imbalance found here
also implies that a symmetric medium (consisting
of, say, an equal number of p’s and p’s) surround-
ing a black hole will evolve asymmetrically.

D. Cosmological particle production

Particles may also be produced by the time-
changing gravitational fields associated with the
expansion of the universe.’ The analysis we have
performed for black-hole radiation carries over

" essentially unchanged to this case. It is only nec-

essary to replace the space-dependent potential
V,;(x) by a time-dependent potential V, (). We
conclude that in this case also a net baryon asym-
metry arises if and only if there is a microscopic
C-, T-, and baryon-number-violating interac-
tion,'*
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