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Leading Regge trajectories of baryons and exotic hadrons are studied in the quark-string model. Boundary
conditions at the string end point and the junction provide a simple topological rule on the configuration of
hadron structure and also provide a relationship between the asymptotic Regge slope and the hadron
structure. The center of mass of the string is shown to play a special role in classical solutions. The quark-
diquark type of the baryon is absent in our formalism.

I. INTRODUCTION

In previous papers"' we introduced a theory of
the quark-string and presented a semiclassical
approximation method to the theory. (Reference
2 is referred to as L) The meson mass spectrum
was also investigated in detail. In this article we
extend the arguments over the baryons and exotic
hadrons.

In our model, any hadron is made from strings
and quarks which are joined together in such a way
that the color-flux conservation law is fulfilled ac-
cording to the lattice gauge theory. ' Each branch
of strings is oriented to indicate ihe direction of
the color-flux flow. The quark is the source of
the flux, so that the oriented string can begin from
an extremity with a quark [Fig. 1(a}]. The anti-
quark is the sink of the flux, so that the oriented
string can end up with an extremity with an anti-
tluark [Fig. 1(b)]. Either of them will be called a
string end with a quark if the quark or the anti-
quark need not be discriminated. Since the flux
is assumed to be the SU(3) color flux, three in-
coming (or outgoing) strips can join together at
a point to form a junction [Fig. 1(c)]. A hadron
forms a system of the quark-string which is com-
posed of the branches of strings with quarks and
the junctions. '

As was shown in Ref. 1 a quark-string system is
obtained by integrating over the color components
in the lattice gauge theory for a given configura-
tion of strings and quarks. The resulting effective
Lagrangian for the given configuration, as will be
presented in the next section, has no color index
and is considered to be the Lagrangian in the con-
figuration space which governs ihe motion of the
given quark-string system. As a consequence the
tluark fields, 4"s in (2.3) below, which also have
no col.or index, can be treated as distinguishable
fields. The orientation of the string is needed in

determining the configuration of the quark-string
as discussed above. Once the effective Lagrangian
is obtained to the configuration, however, the
string orientation does not play any role in the dy-
namical calculation. Our aim is not to explain
which configurations are allowed by the quark-
siring model. , but instead, to obtain the mass spec-
tra for the quark-strings allowed by the lattice
gauge theory. This is in contrast to the work of
Giles and Tye, ' whose model confines the quark as
a consequence of dynamics of their string mendel.

In the following sections we study leading Regge
trajectories of baryons and exotic particles by
looking for classical rigid-rotator solutions to
equations of motion. %e give a systematic way
of constructing the classical solutions and mass
formulas. The quantum corrections to the clas-
sical solutions will not be considered.

II. CLASSICAL SOLUTIONS

Let us consider a quark-string system which is
made from N strings and I quarks. The position
of the «th string is represented by X„"(v,o„) (8, =0
(g„&a,=-st, 1(tt (N) and that of the ith quark (or
antiquark} is represented by X"( t).vThey must
satisfy joining conditions, X",(vt}=X„"(v,tt„= 8,) for
the end of the ~th string at which the ith quagk is

FIG. 1. The string represents the flow of color Qux.
The circle denotes the quark and the black dot the anti-
quark.
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attached, and X„"(v,o„=8,) = X6 (&, so = 8,) = X„"(v,o„
= 8,) at the three strings junction. The Lagran-
gian of the quark-string is given by

N I
&=Q L„„+PL, ,~„

Ical j|s1
(2.1)

and
1

p„(o„)=- sin[c„(o„-o'„)], or a constant. (2.6)

The parameters c„and 0'„are determined as fol-
lows. ' First, we substitute (2.4)-(2.6) into the
Euler equations for 4'j with the joining conditions,
X",(r) =X„"(r,o„=8,), and solve it for 4', to repre-
sent ~j as a function of c„and a'„. Second, c„and
o „are determined by the boundary conditions
(Euler equations) for X„"(r,o„.= 8,) in which 4, is
replaced by the function of c„and 0 „'-. For the sake

~s

92
&„„=-y da'„[(x„;x„.)' (x„,)'(x„.)']'~',

81
(2.2)I,„=-,' '[x", g(x, ,')'~'](e,.y„e, ,—e, ,y„e,)

—m, (X, ,')'~%P, , (2.3)

where notation is explained in I, 4',(r) represents
the ith quark field and is assumed to be anticom-
muting. The leading Regge trajectory of the
quark-string is given by the stablest classical
solution. This solution is a rigid-rotator solu-
tion, because all the energy of the solution is
shared with rotation modes so that the highest'

angular momentum is attained for a given energy.
We consider rigid rotators in the timelike gauge
X„'(7,o„)=X', (r) = &. From the Euler. equations for
strings we find that each branch of the strings
must so rotate around the center of mass that
obeys the zero mass density condition P X,=O of
the string. Because of this condition, one can
easily confirm that all branches of strings, wheth-
er or not junctions are on them, must be ar-
ranged along the radial direction from the center
of mass [Figs. 2(a) and 2(b)]. Take the center of
mass of the rigid rotator at the origin of our co-
ordinate frame and the direction of angular velocity
along the positive z axis. Each string has the form

X„(r,o„)= p„(o„)e„, (2.4)
where

e„=(cos(&ov' -0„), sin(&o& —L„),0) (2.5)

of convenience, instead of c„, 0'„, and o„, we in-
troduce a(», a) and a(») for the»th string; a(», s
= 1) denotes the smaller one of c„(8,- o'„) where 5
takes 1 or 2 representing either one of the end
points of the»th string, and a(», a= 2) [&a(», a= 1)]
denotes the other. The running parameter of the
»th string is represented by a(») = c„(o„-o'„) in-
stead of a„. Using these a(», a) we obtain the
boundary condition to each joint.

(i} For the string end with a quark (or an anti-
quark) [Figs. 1(a) and 1(b)], the boundary condi-
tion is given by'

(o2'p, [m,(i —(o'p, ')+ (os,]/(1 —(o'p, ')'~'

= (-1)'y sgn[p„, (8,)][1—(o'p„'(8,)], (2.&)

where m, and s,(= sz) denote the mass and the z
component of spin of the ith quark (or antiquark},
respectively. The joining condition p, = p„(8,}must

be imposed, too. There are two solutions [(i-a)
and (i-b) below] to (2.V):

(i-a) p„(o„)= p&- 0 (0» o'„» v) . (2.8)

In this case, the string shrinks to the origin (the
center of mass} and the quark is, therefore, at
the origin, too.

r
p„=- sina„[a(», 1)» a(»)» a(», 2)],

40 (2.9}
(i-b) (-1)'—sgn[cosa(», a) ] cos'a(», a) sin 'a(», a)

= m, cos'a(», a)+ &us, .
In this case the string is stretched and the possible
solutions were studied in detail in I.

(ii) For the junction [Fig. 1(c)], the situation is
different depending on whether the junction is at
the center of mass or not.

(ii-a) When the junction is at the center of mass,
the boundary condition is given by

( 1)'sgn[g, (8„)]e„+(-1)~sgn[po,(8~))e~

+ (-1}'sgn[p„, (8,)]e„=0, (2.10)

where the e's are defined by (2.5). There are three
types of solutions to (2.10):

(ii-a-1) pg(o„)= p,(o,)= p„(o„)=0

(0» o„,o„o„»v) . (2.11)
In this case, all three strings shrink to the origin.

~p =—sina(») [a(», 1)» a(»)» a(», 2)],
K

p, =- sinn(5) [a(5, 1)» a(5)» a(5, 2)],1 ~

(ii-a-2){ p„(o„)=0 (0»g„»v),
e„=eo,
(-1)'sgn [cosa(», a)] = -(-1)~ sgn[cosa(5, 5)],

~sina(», a) = sinu(5, fp) = 0.

(2.12)
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In this case, one of the three -strings shrinks to
the origin and the other two extend from the origin
to form a straight 'line.

r
p„=—sina(») [a(», 1.) ~ a(») ~ a(K 2)],

p, =—sinn(&) [a(5, 1) & a(5) & a(5, 2}],1

1
p.= sm-a(n) [a(n, 1)- a(n) - a(q, 2)],

sina(», a}=sinn(5, 5)= sina(ri, c}=0, '(2.13)

a=b=g,

R d 3 0 3g = Cd+ —m= f„+—m

where the f's are defined by (2.5}. This solution
forms a symmetrical Y-shaped tree with a junc-

FIG. 2. Geometrical configurations of quark-strings.
The diagram (a) is allowed. The diagram (b) is an exam-
ple of forbidden structure. A junction having three
Strings not along a straight line is not aQowed. The
cross represents the center of mass around which the
system is rotating.

tion at the origin.
(ii-b} When the junction is not the center of

mass, the boundary condition is given by

y(1 —&g'p')'I [(-1)'sgn[p„, (8$]+(-1)~sgn[p~, (8~)]+(-1)'sgn[p„, (&,)]j=0,
where

p=- p„(e,) = p,(e,) = p.(e.)
There are also three types of solutions to (2.14):

(ii-b-1) p„(o„)=p,(o,)= p„(o„)=p,

(2.14}

(2.15)

(2.16}

a constant for 0- 0„,r„o„&m. The other end of each string cannot be a string end with a quark if the
junction is not at the center of mass. All the strings shrink to the same point.

1
~p =—sina(») [a(», 1) & a(») & a(», 2)],

p, =—sma(5) [a(5, 1}~ a(5) ~ a(5, 2)],1

(ii-b 2} ( p„(g„}= p, a constant for 0 ~ o„~w

1 - 1 ~—sina(», a) =- sina(5, b) = p,

(2.1V}

(-1)'sgn[cosa(», a)] = -(-1)~sgn[cosa(5 5)] ~

In this case, the other end of the gth string, which
is shrunk, cannot be a string end ~ith a quark.
The other two strings extend from the point p to
form a straight line.

l p =—sina(») [a(», 1) & a(») & a(») 2)],
Ã (g

p~= —sina(5) [a(5, 1)- a(5) - a(5, 2)],1

(ii-b-3)
g

(2.18)

p„=- sina(q) [a(q, 1)- a(q) «(q, 2)],I

~sina(», a) = sina(5, b) = sina(q, c)= 1.

f

This means that the velocity of the junction equals
the speed of light. Three strings extend toward
the origin from the junction to form a triple bunch

of strings [the right most part of Fig. 2(a)].

IH. PROPERTIES OF QUARKS

Before going into the calculations of energies and

angular momenta of quark-strings, we wish to re-
view some properties of quarks' when they are at-
tached to the string according to the boundary con-
ditions stated in the preceding section.

When the quark is sitting on the center of mass
of the quark-string, the contributions from the
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quark to the energy and angular momentum are the
rest quark mass m, and the spin s,= + &, respec-
tivel. y.

When the quark is not at the center of mass,
the behavior of the quark is quite different depend-
ing on the spin state.

If the quark spin is parallel to the classical an-
gular velocity, the solution to the boundary condi-
tion is unique. The centrifugal force of the quark
works outward and is balanced by the tension of
the string [see, for example Fig. 3(a)].

If the quark spin is antiparallel to the classical
angular velocity, as was di.scussed in I, there are
three solutions (au', at'', and nt") if m&'u' &1/v,
and one (a"~) if m, 'o. '„&f /s (the definition of a+'
is given in I). One of the solutions, which is called
e"', shows a strange behavior. The canonical mo-
mentum of the quark p, is antiparallel to the ve-
locity X, ~ As a consequence, the centrifugal '

force of the quark works inseaxd and is balanced
by the outward tension of the string as shown in
Fig. 3(b}. This solution might be unstable against
quantum corrections. Since we have not succeeded
in confirming the inst@bil. ity, we temporarily adopt
this as a possible solution in the following discus-
sion. It may be worthwhile to note that, if e "is
unacceptable because of the instability, the pion
trajectory turns out to be unstable. This implies
that the pion cannot be obtained as a shrunken limit

P

Fc

of the relativistic string, at least, within the
framework of the semiclassical approximation.

The other two spin-down solutions, N'" and ~+',
behave as normal as the spin-up quark e„ i.e.,
the canonical momentum is parallel to the veloc-
ity and the configuratio~ of the quark and string
appears as shown in Fig. 3(a).

'IV. REGGK TRAJECTORIES

The mass and the spin of a hadron are given by
the total energy and the total angular momentum
of the corresponding quark-string in the center-
of-mass system. The total energy and angular
momentum of the classical solution for a given
configuration can be represented by a sum of the
foBowing subenergies S's and subangular momen-
ta J''s which are associated with each sub-quark-
string shown in Fig. 4. Contributions from the
sub-quark-string to the energy and the angular
momentum are described in the following. The
shrunken string can be disregarded because it has
no energy and angular momentum.

(A) For a tluark at the center of mass [Fig.
4(A)], the case of (i-a) in the above classifica-
tj.on, the subenergy and subangular momentum
turn out to be

E(A) ~ m, , (4 &)

J(A}=s, . (4.2}

(8}The substring with no fold satisfying the fol-
lowing two conditions [Fig. 4(B}]. One of the
string ends rests at the center of mass. The other
end is rotating with the light velocity. The energy
and angular momentum turn out to be, ' respec-
tively,

(4.3)

(4,4)

(C) The substring with a iluark which has no fold
[Fig. 4(C)]. One of the string ends rests at the
center of mass. The other end is the string end
with a quark. The solution o„a„"',or e"', de-

Fc

FIG. 3. Balance of forces. .&~ and T denote the cen-
trifugal force and the tension, respectively. The solu-
tion n "~, shown in (b), ha. s the canonical momentum ll
antiparallel to the velocity v.

FIG. 4. Sub-quark-strings. The cross denotes the ro-
tation center. The open ends in (8) and (D) show those
which are moving with the light velocity.
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fined in I, . is-the: case. Using these e's the sub-
energy. and angular momentum are represented as

E(C)=—a'+!+ (m +s (stan'~'&!),cose'"'
Sg

J(C) = (~'"' --,' sin2a'"')
2v

(4,5)

+. . . —,
-' sin'~, "". . '+1 tg . s

c'osa'"' io 'i cos' o'"' (4.6)S] Sg

where a~"~ satisfies (2.15) in I and 0 & g'"' & v/2.
Sg . . . : , S]

In the above two equations the' first terms are con-
tributions'from the stririg part and the second
terms from the quark.

(D) The substr ing with a quark 'such as shown in
Fig. 4(D). One of the string ends is moving with
the light velocity and the other is 'the string end
with a quirk. The solution Nu'is the case (the
momentum of the quark is antip'arillel' to the ve-
locity as diScussed in Sec. III). The subenergy
and angular'momentum turn oui-to be'

counted as C+B.
The Regge trajectory is obtained by eliminating

the classical angular velocity & from the mass
(4.9) and the spin (4.10). There is a simple rule
in calculating the asymptotic Regge slope. In the
asymptotic region (~ 0}, a,'~' in (4.5)-(4.8) be-
haves as

~"'--+O(W(o ) .S (4.11)

From (4.11) one can find the behavior of the sub-
energy and the sub-angular momentum as + 0,

E(sub) ™—-n(sub),y 7r

(d 2' (4.12)

J(sub}-,-n(sub), (4.18)

FIG. 5. Decomposition of a string into bvo sub-quark-
strings.

+.
(

&, ) (m, +s,(stan I ),1
cos'df

J(D)= u"'----, sin2n"'~y g
2(0 2 )

(4.V)

where s(sub) is defined by

B(A) = 0,
n(B}=1,

n(C)=1,

g(D) = 0,

(4.14)

sl.n ~ + 2 +&, 4.8
. . Icos+„ I: cg, . -. cos jy

hwere n"' satisf'ies (2.15) in I and ir/2 & a"' & v.
In the above e'quations the first terms are contri-
butions from the string and the second terms from
the quark;

By the use of these subenergies and angular mo-
menta, the total energy (mass) and angular mo-
mentum (spin) of a quark-string are given by

Ei~q= Q E(A)+Q E(B)+Q E(C) + Q E(D),
A B C D

(4.9)

Z...=g gA)ig J(B)+g gc) ig J(D),

(4.10}

yr
tot + 2 tot& (4.15)

y lr
tot 2+2 2 tot & (4.16)

where g„t is the sum of the number of 8 sub-
quark-strings and that of C sub-quark-strings in
the given configuration. The asymptotic Regge
slope is, therefore, given by

Of~=-
St

(4.1V)

V. BARYONS AND EXOTIC HADRONS

In the previous sections we have shown the sys-
tematic way of constructing the classical solutions
to a hadron. Some examples are shown below.

for each class A, . . ., D. Then the total energy and
angular. momentum turn out to be, respectively,

where each summation is taken over constituent
sub-quark-strings of a given configuration. For
example, the quark-string shown in Fig. 2(a) con-
sists of two B's, four C's, and one D. Note that
the string with the 5th quark in Fig. 2(a} is de-
composed into two parts as shown in Fig. 5, and FIG. 6. Possible baryon structures.
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FIG. 7. (a) Regge trajectories of the linear baryons shown in Fig. 6(a). Each trajectory has a different spin configuration.
(b} The F-shaped baryons, shown in Fig. 6(b), for various spin configurations.
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Q u

0 Q-

FIG. 11. (a) is an allowed topological configuration of
the baryon. (b) and (c), which is considered to be a
limiting case of (b), are forbidden geometrical struc-
tures although topologically aQowed.

FIG. 10. Examples of complicated exotic hadrons.

The leading trajectory of the exotic mesons
(qqqq } is given by the linear configuration [Fig.
8(a)] in which a pair of quarks (or antiquarks) are
at the center of mass. This is a special case of .

the X-shaped meson [Fig. 8(b)] with two branches
of strings shrunken. These types of exotic mesons
may be expected to de,cay into two mesons rather
.than R bRryon-RntlbRrgon pRlr. More massive ex-
otic mesons are those which include junctions mov-
ing with the light velocity [Fig. 8(c)-8(e)]. They
may mostly decay into a baryon-antibaryon pair.
These states can be associated with the baryon-
iums which are the center of many physicists'
attention. ' The Regge trajectories of two exotic
mesons, Fig. 8(a} and Fig. 8(c}are shown in Fig.
9.

Some other examples of exotic hadrons are shown
in Fig. 10, %'e note that if the number of quarks
(or antiquarks) at the center of mass is more than
three, so~e configurations will be forbidden due
to the Pauli principle.

VI. CONCLUDING REMARKS

tories.
The diquark-quark baryon [Fig. 11(c}]has not

, been considered in our text. If one looks for the
diquark-quark solution to the effective Lagrangian
which has three branches of strings and a junction
[Fig. 11(a)], one cannot find such a rigid-rotator
solution that has two branches of shrunken strings
and forms the diquark-quark configuration. The
reason is' that, since the tension of the string is
the function of only the distance from the rotation
center, a single string cannot balance with two
strings at the junction if the configuration is such
as the one shown in Fig. 11(b). It is, however,
possible to construct a diquark-quark solution if
one begins with the effective Lagrangian having a
single string with quark fieMs at both ends. The
(lattice) gauge theory, however, prohibits us from
choosing such a configuration.

Another remark is on the stability of the bnear
baryon trajectory. One may suspect that the quark
at the center of mass in the linear baryon [Fig.
6(a)] might be unstable against small disturbanc'es
because the centrifugal force works if the position
is a bit off the center. It is, however, that the
linear baryon has the lightest mass for a given
spin, at least, among our rigid-rotator solutions.
%e conclude, therefore, that the linear baryon is
stable.

Vfe have studied leading Hegge trajectories of
baryons and exotic hadrons. The mass and the
spin of particl. es are analyzed based on the effec-
tive Lagrangian (2.1}-(2.3). In concluding this
article we make some remarks on baryon trajec-
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