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We consider the effects of hadron size and quark composition on the distiibution of gluons in mesons and
batyons. Coherence effects in the color-singlet bound state eliminate the usual quark-mass infrared

singularity. The color cancellations are important for all x&„„unless the gluon transverse momentum is large
compared to the inverse hadron size. Using a simple model for the meson bound state, we relate the scale
size of color coherence to the scale of the electromagnetic form factor. Applications to the flavor and quark-
number dependence of total cross sections and gluon-induced reactions are discussed.

I. INTRODUCTION

A remarkable feature of quantum chromodyn-
amics (QCD), first noted by Gross and Wilcmek, t

is that the gluon momentum fraction in hadrons

tfxxG„„(x,Q') =fe,„(Q')
0

approaches a universal value f,(~) as loygs/As
where -Q' is the momentum transfer squared of
the probe. The value f,(~) =n, /(n, +sn, ) depends
on the number of gluons [8 in SU(3)] and the num-
ber of quarks (flavor and color), but is indepen-
dent of the nature of the target II, holding for mes-
ons, nucleons, nuclei, and even gluon bound states.
The rate of approach to the asymptotic regime in
logQ'/A' is also in principle computable from QCD.
However, .it should be noted that as f,(Q') reaches
its asymptotic value, the structure functions
G«n(x, Q') and Get„(x, Q') will each vanish for all
x except for x near zero.

In this paper we shall consider the effects of
hadronic size and structure on the value of
G«tr(x, Q') at moderate Q'. One possible approach
to the hadronic gluon distribution has already been
considered in detail in Ref. .2. In these papers an
estimate of the gluon distribution at a reference
point Qcs is computed (self-consistently) from a
convolution over the quark and antiquark distribu-
tion. functions G,ttt(x, Q,'), as dictated by the gluon
bremsstrahlung (q qg) and pair production (g qq,
g gg) processes. ' In these approaches, knowledge
of the quark distribution function is sufficient to
fix the gluon distribution. However, as the gluon
wavelength becomes large compared to the hadronic
size, the ability to resolve the internal hadronic
structure becomes lost. and the gluon will tend to
decouple from the color-singlet source. Thus (de-
structive) interference effects due to the emission

of low-momentum gluoris from different quarks
within a hadron must occur. The simple convolu-
tion approach, which treats each quark incoher-
ently, clearly will fail in the low-momentum re-
gion. It is also clear that the size of the hadron
(as determined, for example, by the electromag-
netic form factor) will be an important parameter
for determining the shape and magnitude of the
preasymptotic gluon distribution, and the gluon
momentum fraction f,„(Qs) is in general target
dependent. The coherent cancellations in the in-
frared for gluons are of course analogous to the
suppression of long-wavelength radiation from
neutraI bound states such as positronium in QED.
More generally, the absence of infrared mass
singularities in hadronic (color-singlet) amplitudes
for hadrons of fixed size and mass follows from the
Kinoshita, 4 Lee, Niuenberg' theorem.

Phenomenologically, information on the gluon
distribution for mesons, etc., should be obtain-
able from high-pr reactions where gluon-initiated
subprocesses such as gq qg, gg gg, and gq yq
can become important. 6 Furthermore, the produc-
tion of heavy particles, g/J', ti„T, gluon bound
states, etc., in hadronic collisions may be attribu-
ted to gluon-induced reactions. ' It has also been
proposed that the Pomeron is directly related to
the exchange of gluons' or sea quarks; both me-
ch,anisms are sensitive to the gluon distribution
in the infrared region.

In addition to the infrared coherent cancellations
for gluon emission, there is the additional com-
plication of final-state interactions in QCD: The
gluon, being colored, can continue to interact with
the quarks after the bremsstrahlung production
[see Fig. 1(a)]. Since the hadronic system has
strong binding forces such "final-state interac-
tions" will evidently tend to equalize the rapidities
of all the colored constituents. %'e note that there
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gauge invariance is satisfied by the amplitudes
of Fig. 2(a) and 2(b) above.

(a) (b)

II. THE EFFECTS OF HADRONIC SIZE

FIG. 1. Final-state-interaction corrections to the
gluon and qq sea distributions in protons.
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is a (semi-) infinite amount of time available for
such interactions before the current probe acts.
Only for large log@'/A' where asymptotic free-
dom sets in, or at x -1, where soft exchange is
a relatively negligible effect can one argue that
final-state interactions are unimportant. We also
note that the rapidity-equalizing effects of final-
state interactions on the sea quarks [see Fig. 1(b)],
wouM tend to eliminate the "hole" parton flavor
correlations. ' For example, if a sea quark q is
probed at a given rapidity y„ its Qavor-balancing
antiquark partner wiQ tend to have the rapidity of
the hadron rather than y, ;»»

The complete calculation of the gluon distribution
within hadrons in the framework of QCD is clearly
very complicated. A representative set of pertur-
bation-theory graphs is shown in Fig. 2. The final-
state-interaction graphs (c), (d), (e), .. . are un-
avoidable because of gauge invariance. Further-
more it is not clear that such distributions can be

, calculated without considering nonperturbative
effects, especially in the infrared region. Our
goal in this paper is more modest; we wish to in-
vestigate the effects of coherent cancellations due
to the overall neutrality of the hadron. Note that
the amplitudes (a) and (b) [as well as (c) and (d)]
of Fig. 2 tend to cancel for low-momentum gluons
because of the opposite sign of the gluon coupling
to quarks and antiquarks. The gluons emitted
from internal lines [such as (c), (d), (e)] are sup-
pressed in the infrared (for gluons of wavelength
large compared to hadronic size) by the classical
Yennie, Frautschi, and Suura»2 arguments. Thus,
to simplify the discussion, we wiQ consider a sim-
ple gauge-theory model with scalar quarks, where

rI'- @,'+ m, ')/x(1-x) (2.2)

and is normahze@ to satisfy the momentum and
"charge" sum rules-

» 1
dxxa„„(x)= dxa„„(x)= l.

e, e 0

As usual x =(h, +k,)/(pa+p, ) is the light-cone/in-
finite-momentum fraction. The contribution to the
M form factor from quark q can be written in the
Dreu V~ form, "

d Q~ dx
2(2 )s (j )

4(4~«)

(2.3)

x q.(ki+(1-«)q„x) (2.4)

(with q~=-Q'=-q„2) which 1 as q2 0 from (2.3).
All the above formulas apply equally to the q; this
follows from the x (1 —x) symmetry of g(k» x).
Despite the simplicity of the model, it gives the
standard behavior expected for mesons:

G„„(«)-(1 x) as x-1

E(q') -(q') 'iogq' as q'-
The lowest-order coupling of vector gluons to

the meson is computed from the two diagrams of
Fig. 3. The amplitude is gauge-invariant without
final-state interactions. We sha11 compute the dis-
tribution g~iz(z, P, ) =dN/d'l ~dz for transverse
gluons (k, 0, =0). Using standard light-cone/in-
finite-momentum-frame techniques we obtain

The simplest model for a hadronic wave func-
tion which can illustrate the effects of hadronic
size consists of an SU(3) color-singlet scalar
meson which couples to spin-zero colo'-triplet
q and q, with a constant vertex function, I'. The
quark structure function is"

d'k~ [g(k» x) ('
G„„(x)— . 2(2' )3 (1 )

0&«&1. (2.1)

The meson wave function is

(d} (e) (f)

FIG. 2. A representative set of @CD peiturbation-
theory diagrams for gluori emission from a meson qq
bound state.

q q

(~) &b)
FIG. 3. Lowest-order diagrams for the simplified

@CD model discussion in the text for gluon emission
from a meson.
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( )
a, dQ 1 k +xm, (xl -zk)+xzm,

Y z' 2(2vP, z'(1-x)(x -z) z x(1-x) xz(x -z)
,(„(»T-zki) y(ki, x)y(ki-li, x-z)(xli-zk~) ~ [(I-x)T+zkij

+(x-1 —», %i--k~) . (2.5)

The two terms in the second large square bracket of (2.5) correspond to the diagonal and off-diagonal terms
of Fig. 4. The factor ~s is from SU(3) color, with the standard definition of a, .

In the limit of small z, Eq. (2.5) becomes

d2 1
(2.5)

The explicit factor of (2) in (2.6) corresponds to
the emission from both quark and antiquark. Thus
the off-diagonal term regulates the infrared be-
havior at l~ 0. We can make this quantitative by
writing the meson form factor given in Eq. (2.4) in
the form (q'=-Q')

I
F(q') =- dxf (», (1-x)'q') .

0

Then for z-O,

(2.7)

1

G„„(z,l~) =(2);—,dx[f(», 0) f(x, l~')],

(2.8)

which is valid for I~2/z»Mz2 —(k~'+xm, 2)/x(1 -x).
Using the mean-value theorem, we can write

8 (y, 1 1
3 v2 z )~'+M„'/4 ' (2.9)

(o) (b)
FIG. 4. Diagonal and off-diagonal contributions to the

gluon distribution for a hadronic system.

where we used F(Q') - I/(I+@'/M„') and took 1-x
Thus the scale of the meson form factor M~'

sets the scale of color coherence. This form ex-
plicitly shows the absence of infrared singularities
in zG«„(z). For M„'=—0.5 GeV', the coherence
size is Xz=2/M„=—1/350 MeV. If we integrate Eq.
(2.9), then for small z

zG„„(z)—=—~ in[1+X„'(I,'),„j, (2.10)

which sets the magnitude of wee gluon emission.
The value of (f~'),„in this model is in principle
only set by kinematics: (I~'),„~s in hadronic col-
lisions and (l~2) ~ (q+p)~ =W in current-induced
reactions.

The modifications at large and small W' from
asymptotic-freedom effects in QCD are discussed
in the Appendix. To the order computed here, one
can argue that e, in Eq. (2.10) should be evaluated
at the renormalization point p, '=A, „"'. We note that
if zG«„0"-(1-z)' then (2.10) implies that -40% of
the meson momentum is carried by gluons at (T~')
=50 GeV', if n, (A,„')=—0.33. The crucial point
here is the hadronic size (X„) dependence; for the
same available energy, the distributions, for glu-
ons and sea quarks, depend logarithmically on the
hadronic size. Thus the gluon- and sea-quark-in-
duced reactions discussed in Sec. I will depend
logarithmically on X~'. For the case of gluon-
exchange reactions (which involve the integration
of hvo G«z(z, I„') over l~', the total meson-meson
cross section depends linearly on X~'. Thus even
though the basic gluon interactions are Qavor in-
dependent, the flavor content of hadrons indirectly
affects the magnitude of cross sections, with heavi-
er (i.e., smaller) hadrons interacting least. (The
precise relation between hadron mass and size can
be model dependent. In the simplest models based
on vector dominance Xz'-1/M„' where M„ is the
lowest-mass vector meson for quarks of the type
composing H. Inlinear-potential models Xz' -I/~.
For the MIT bag model, "the variation is even
slower. ) We discuss some numerical results be-
low.

Let us return again to the perturbation-theory
result (2.5) for G(z, l~) and consider the region
z 1, where the gluon carries off a large fraction
of the hadron momentum. Since x~z, let (1-x)
=(I-z)(1-r). Then for (1-z) 0, we find
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Y v' 0 2(2w)' ~(l —~) 1

x[y'$„x)(T, k, )m-q(k„x)(}(k,-T„x-z)(T,-k, ) k, ]

+ (symmetric terms), (2.11)

In our model g is symmetrical about x 1-x. For any /~ (2.11}predicts that G~lz(l~, z}' -(1-zp. [More
generally, if the power-law dependence of G, „(x) is (1-x)' at x-1, then the power falloff of G &z(z) at
z 1 in perturbation theory is (1-z)'" in the case of spin-0 quarks and (1-z)'" in the case of spin=,
quarkS. ],For E~-O, both terms in the last line of (2.11) add coherently. Thus even for hard gluons with
z-1, there isconstruetive interference when 1~' is small compared to the hadronic scale X~ '. The co-
herence is absent only for large T~ where for any z, we have

2 Y v' 2(2m)~, zx(1-x) [I (z/x)k ]2

This is in fact the expected convolution rule

G„„(z,.T)-.Q f —fd k'c„(—,, ),——. I, la„„(x,k, ),
e, q g

(2.12)

(2.13)

where the gluon distribution from a single scalar
quark at large l~ is

so' z

(For spin=~ quarks, 1-z in (2.14) becomes
2[1+(1-z)'].] Thus the region of gluon momen-
tum where coherent effects can be ignored (and
the simple impulse approximation becomes valid)
always entails large l~ even for glans with large
light-cone fraction s. In particular it is not in
general- correct to calculate the gluon momentum
fraction j Cz zG,»(z) f~«using formulas based
on convolutions over the quark distributions. Co-
herent corrections which are sensitive to the bi-
quark distributions are necessary. The coherent
effects replace the usual dependence ori quark mass
in zG„,-(l, '+z'm, ') ' by the size effects indicated
by Eq. (2.9}.

lt should, however, be emphasized that the QCD
renormalization-group analysis which gives the
logarithmic dependence of the gluon-distribution
moments on Q' and-their approach to the asymp-
totic values only requires the large l~' region of
integration and the convolution formulas are valid
for this application. The biquark correction terms
cori espond to higher-twist operators with extra
power-law falloff and can be neglected in the ultra-
violet, high-/~' region. The coherent terms are
necessary for discussing the starting values of,

G«„(z, p, ) and G,»(z) at initial values of Q,'.
Fin)alj. y, we note that in our perturbation-theory

model, to first approximation G»(z), at small z,
depends linearly on the number of valence quarks

in the hadron as in Eq. (2.6). In the case of bary-
ons, there are three diagonal and three off-diag-
onal terms, and the latter are controlled by the
communication between two quarks in the hadron
wave function. The corresponding diquark "form
factor" is expected by dimensional counting to
have the same monopole behavior as the meson
form factor and shou1d have a similar scale for
quarks of the same mass. Thus we expect the
size parameter which controls the coherence ef-
fects to be the same for the pion and proton and
hence at small z,

3
C~]~ ~ &r]. (2.15a)

G, q~-2G~ I . (2.15b)

Again, this indicates that the gluon momentum
fraction is in general dependent on the hadronic
parameters.

A less direct experimental manifestation of this
dependence on the hadronic parameters appears
through measurements of total hadronic cross sec-
tions, although the precise results depend on the
detailed quark/gluon scattering mechanism. Four
basic models can be distinguished: (a) gluon ex-
change, (b) gluon annihilation, (c) wee-quark ex-
change, and (d) wee-quark-antiquark annihilation
(Fig. 5}. 1'n the latter three cases the number of
gluons (or wee quarks} available for collision in
each hadron is proportional to G(z and Gz(p Hence
the ratio of total cross sections [which obviously
are constant or rising with log(s) due to the 1/z
behavior of G &z] is determined by the number of



19 6LUON DISTRIBUTION IN HADRON S 1009

(c)

(b)

picture of quark and gluon distributions will require
attention to coherent effects. It will be necessary
to extend the QCD calculations to include realistic
bound states, wave functions, higher. -order, integ-
actions, and final-state interaction effects. How-
ever, the minimal effects of coherence and hadron
size are already evident in the results from the
simple model calculations considered here: The
preasymptotic momentum fraction carried by glu-
ons is dependent on the number of valence quarks
and on the size of the hadron.

FIG. 5. The four simplest mechanisms for the had-
ron-hadron total cross section in @CD: (a) gluon ex-
change, {b) gluon annihilation into a low-mass hadronic
state, (c) wee-quark exchange, and (d) wee-quark-wee-
antiquark annihilation into a low-mass hadronie state.

quarks in A. and g and the logarithmic size-depen-
dence factors for A and B. For example we find
for (l~') -s-50 GeV' that
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are in the ratio 6:5:3:1 in a vector-dominance
model where we take A,„'=4/M„', X~' =4/m ~' and

ignore the variation of o(,(X„') (which minimizes
the ratios).

The gluon-exchange mechanism is the leading
contribution to the cross section to lowest order
in the running coupling constant e, . Unlike the
total Coulomb cross section, the gluon-exchange
cross section far color singlets is finite because
the coherent distribution at s ™0,

is finite at l~=0 [assuming that c(,(l~') is regular
at TA'-0]. Here II„is the n. umber of quarks and

antiquarks in H. The gluon-exchange contribution
to the total cross section is essentially obtained
by convoluting two G»(0, F,) with one another. To
lowest order in 0.',

—c(,'(X„~)1n(1+%,„'s)] (2.1V)

(2.18)

Although this contribution will be modified by the
higher-order correction, it may give a rough
guide to the Pomeron contribution in QCD. If we
assume that zG«~(z)()(:(1-z)4 and take (IA'),„=50
GeV' and a, (X~ ') —= 0.33 (as we did for the meson)
one obtains 50% for the gluon momentum fraction
in protons using Eq. (2.10). This gives o» —=58 mb
if Xp=2/mp.

In conclusion, we reemphasize that the complete

APPENDIX: THE VALUE OF 0.,

zG«„(z) —=
8 a, (A,„')ln(1+W Xz ), (A2)

which should be valid for moderate values of 8".
For large W', the logarithmic varIation of o.,(l'}
in (Al) gives zG«„(z) -lnlnW'. An approximate
expression which incorporates these two limiting
behaviors is

82 a,(X„')
3(11- -,'nr) a,(W'+Xz~) ' (AS)

where N~ is the number of quark flavors, and we
have used the one-loop QCD equation'

+
4

' ~ ln(1+W'X ') . (A4)

The general prescription, consistent with re-
normalization-group analyses, is to use the. run-
ning coupling constant o(,(l') in Eqs. (2.5)-(2.&)
where l ~ is the off-shell gluon four momentum
(I'=-IA' for z 0). Equation (2.10}for z 0 then
becomes in QCD

8a„„(z)=
s f:,', a(T*). (,A&,)O'I

p

Here (l~'} =W'=Q'(1-z)/z. We shall need to as-
sume that a,(l') is regular at iI=0. If a,(12}.is
slowly varying over the range of the integral and
is characterized by its value at E'-X~ 2, then we
can write
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In fact Eq. (AS) follows from (Al) if the argument
of e, is taken as l~'+X„"'. For moderate values of
Wm the second term in (A4) is small, and Eq. (A2)

follows from (AS). This is in agreement with Eq.
(2.10) if we identify a, =a,(X„').
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