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Invariant states and quantized gravitational perturbations
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We study the problem of quantizing the gravitational fluctuations about a symmetric vacuum background
i

spacetime with compact Cauchy surfaces. In the context of lowest-order perturbation theory we show that
the allowed physical states must all be invariant under the symmetry transformations of the background
spacetime. This constraint does not unduly restrict the range of allowed states and is consistent with

temporal evolution (in the presence of a timelike symmetry) or spacial localization (for a spacelike

symmetry) provided the evolution or localization is interpreted intrinsically rather than with reference to the
background spacetime.

I. INTRODUCTION

Recent work has shown that standard gravitation-
al perturbation theory can sometimes lead to
invalid results If t. he (vacuum} spacetime which
one is perturbing has compact Cauchy surfaces
and admits a Killing vector field, then the linear-
ized Einstein equations always admit some spur-
ious, or nonintegrable solutions. A perturbation
is said to be nonintegrable if there is no smooth
curve of exact solutions to which it is tangent.
For each Killing field which occurs there is a sec-
ond-order condition which must be imposed to ex-
clude the nonintegrable perturbations. The second-
order conditions are equivalent to the requirement
that the conserved quantity in linearized theory
associated with each Killing vector field must be
constrained to vanish. Compactness of the Cauchy
hypersurfaces is crucial in obtaining this result;
no such second-order conditions are implied for
asymptotically flat spacetimes.

It is natural to ask whether there is any quantum
analog for the classical problem of linearization
instabilities described above. One method of quan-
tizing the gravitational field is to choose a classi-
cal solution of the Einstein equations to serve as
a background spacetime and to quantize the metric
fluctuations about this background. At lowest order
this procedure reduces to quantizing the linear
perturbations of the given background. In this con-
text it seems plausible that there should be a quan-
tum analog to the second-order conditions when-
ever the background spacetime has compact Cauchy
surfaces and Killing symmetries. However, the
argument for second-order conditions in the clas-
sical theory is usually formulated in terms of the
notion of curves of solutions to the exact equa-
tions. This idea does not appear to have a natural
quantum correspondent.

There is, however, a different way of formu-
lating the classical problem which is free of ref-

erence to curves of classical solutions and which
admits a quantum interpretation. We shall discuss
this formulation in Sec. II and show how it leads to
quantum-mechanical second-order conditions which
are analogous to the classical ones. The second-
order quantum constraints we obtain are that the
allowed quantum states must be annihilated by the
operator-conserved quantities associated with each
Killing field of the background. These conditions
supplement the usual (first-order} constraints
which imply gauge invariance of the physical states
in the linearized theory.

An immediate consequence of the second-order
conditions is that the physical states must be in-
variant under the symmetry transformations of the

background spacetime. This conclusion follows
from the observation that the conserved quantities
are the generators of precisely these symmetry
transformations. At first sight these invariance
requirements would seem to restrict unduly the
range of allowed quantum states. The invariant
states cannot describe events which are localized
in a spacelike symmetry direction or which evolve
in a timelike symmetry direction. We shall argue,
however, that the use of such states foes not really
exclude the description of localized events or of
nontrivial evolution. It merely requires that such
localization or time evolution be interpreted in-
trinsically rather than with reference to the back-
ground spacetime. We shall discuss several ex-
amples in Sec. III which should clarify this idea.

The idea that time evolution or spatial localiza-
tion might make sense only intrinsically is not at
all a new one. It arises rather naturally in
Wheeler's geometrodynamical approach to quantum
gravity based on the Arnowitt-Deser-Misner
(ADM} formalism. ' 2 Our results show that it
plays a role in even the more conventional ap-
proach to quantization based on a classical back-
ground spacetime.

The linearization stability properties of the Ein-
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stein equations have been discussed by Brill and
Deser, ' Fischer and Marsden, '' Deser and Cho-
quet-Bruhat, ' Arms, ' York and O'Murchadha, '
and Moncrief. '' Our discussion is based on a
simplified and extended form of many of these re-
sults given by Fis cher, Mar sden, and M onc rief."

4 (g, v}=(X(g, v), —26v) (2.1)

with

26v =- 2v„l'
(2.2)

in which p,, =(detg)' ', trx=g,
&
v', &(g} is the

curvature scalar, and the vertical bar denotes the
covariant derivative of g.

Let (go, &o) be a particular solution of the con-
straints, 4'(g„v,) =0. This will serve as the initial
data for the background spacetime. We can approxi-
mate the constraint function@'(g, x) near (go, x,) by
its Taylor expansion

4'(g, +h, w +u)) =D@(g, v )(h, w)

+ ~D'4'(g, n )((h, ru}, (h, &a))

+ O ~ ~ (2.3}

where h =A;; and ~ = +'~ are the perturbations of
g and & and where D@'(g, &}(h,~) and D'@(g, v)

((h, &u), (h, &u)) are the first and second derivatives
of @(g, &) (see Refs. 4, 5, 10, and 11 for the ex-
plicit formulas).

Let C be any function and Y = Y be any vector
field on M and define the projection 6'«»(4') of
@ along (C, Y) by

II. SECOND-ORDER CONSTRAINTS

Let M be a three-dimensional manifold which is
compact and without boundary. The phase space
for Einstein's equations is a suitable function space
of pairs (g, v), where g=g, j is a Riemannian me-
tric and & = & is a tensor density defined over W
(See Ref. 4 for a discussion of Sobolev spaces of
Cauchy data. ) The constraint subset of phase
space is defined by @'(g, w) =0, where @ is the con-
straint map

These integrals are coordinate invariant since
5C(g, v) and -25v are densities. We shall define
the first-order approximation to 6'&c, r)(4'(g, .))
near (g„v,) to be its lowest nontrivial contribu-
tion from the Taylor expansion of @(g,v). Thus,
for any choice (C, Y}not identically zero, we ap-
proximate tPi&, r) (@(g, &)) by

((C, Y'), D 4p( g x,)

x ((h, &o), (h, &u))) cPx, (2.6)

The motivation for considering second-order ap-
proximations is that the first-order approxima-
tions (2.5) vanish identically if and only if C and
Y are the normal and tangential projections on the
initial surface of a Killing vector field for the
Einstein spacetime which is determined by the
initial data (g„v,) (see Refs. 4, 5, 9-11 for de-
tails). Thus if Killing fields occur, the Taylor
series expansions of the constraints projected
along Killing directions begin at second order in-
stead of first order (that the second-order pro-
jections are always nontrivial is established in
Ref. 11). To avoid an undue truncation of the full
set of constraint equations, one must include the
second-order projections of @(g, &) along any
Killing fields of the background as "lowest"-order
approximations of the constraints. In the absence
of background Killing symmetries, our lowest-
order approximation reduces to the conventional
linearized theory which we would quantize in the
standard way.

Requiring 6'«. »(C'(g, &)) =0 to lowest order (in
the sense we have just defined) for arbitrary (C, Y)
thus leads to the first-order conditions

DC'(g„w,)(h, ru) = 0, (2.7)

which are the usual linearized constraints, and to
a second-order condition

J
((C, Y), D'@(g„v,)((h, a)), (h, (u)) }cPx =0 (2.6)

4'&c „)(4(g,v))= ((C Y) D&'( g, v )(h, v)) d'x

(2.5)

unless this integral vanishes identically, in which
case we approximate this projection by

4'(c r)(4(g, v)) = ((C, Y), 4'(g, v)} d'x

CX g, g +Y -2g)) ~ dx'.

(2.4)

for each Killing field (C, Y) of the background
spacetime. In the usual approach to linearization
stability the conditions (2.7) and (2.8) are shown
to be necessary conditions to exclude nonintegrable
perturbations. The present formulation, though
rather intuitive, leads to the same conclusion but
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avoids reference to curves of solutions of the con-
straints. The emphasis here is on using a Taylor
expansion to approximate the constraint function
@(g, v) rather than using perturbations (h, (0) to
approximate (as tangent vectors) curves of con-
straint solutions. This change of viewpoint is
important for discussing quantization since one
quantizes functions on phase space, not curves in
phase space.

Let ~4~g and ~4 & signify the spacetime metric and
metric perturbation determined (with suitable co-
ordinate and gauge conditions) by the initial data
{go, s,) and (h, ~}. Let "X be the Killing field with
projections (C, &) on the initial surface. Let ~
be an arbitrary Cauchy surface of the background
spacetime and define

x ((h, &v)(h, ~))) (Px, (2.9)

~h~~~ now (g, &), (&, (d) and (C 1") are the data in-
duced on Z by (4)g, (4)a, and (4 X, respectively
As shown in Refs. 10 and 11, the integral Z&, &((' g, (' h, ~) is hypersurface invariant, i.e, , it is
a conserved quantity for the linearized equations.
It is in fact equivalent to the usual conserved quan-
tity one expects on account of the Killing symmetry
of the background and can also be written

E ((4)g (c)P

dr (a) —lg]) —2ND X g g g (g) pg, (g) )

[-2IP&v((h au) (h x))]

—&NDR(g, wwh, w) —5x D(- 25m)(h, a )},
(2.11)

D4(g, s)(g a)}}4') =0 {2.12)

(Px((C, &), 'D@( gv)((h, &a), (h, e))) } 4') =0.

(2.13)

where P,&) are the lapse and shift fieMs of the
background spacetime and (()N, ()X) are arbitrary
perturbations of the lapse and shift. Varying
(()&, ()X) leads to the first-order constraints (2.7)
while varying (&, u&) gives the evolution equations
for these variables. To take account of lineariza-
tion instability one must also impose the second-
order conditions (2.8) whenever any Killing sym-
metries occur in the background.

To quantize the above perturbation system one
can attempt to define Hermitian fieM operators
(&, d)} with canonical commutation relations which
act on vectors I +) of Hilbert space. One way of
implementing the constraints in quantum theory is
to construct (suitably ordered) constraint operators
and to try to define a physical subspace of Hilbert
space by imposing

(4)x~ [D2E ((4)g)( )h(4(4)h)] (4) ~8~Z
dg

(2.10)

where D'Ez„("'g)(("h, (~'h) is the second derivative
of the Einstein tensor EE ((')g) and where (') )) is
the future-pointing normal field and d~~ is the
volume element of ~. Thus the second-order con-
straints, which are equivalent to E(4) ((')g, (4)h, &)
=0 for each Killing field ~"X, are consistent with
the linearized evolution equations since, if imposed
on an initial surface, they propagate to any other
surface automatically. A simple argument shows
that the second-order constraints are necessarily
gauge invariant (since otherwise they could not be
conserved).

The perturbation equations DEs~ ( ~) g)(~)h =0 can
be derived from a variational principle analogous to
that of Arnowitt, Deser, and Misner(ADM)" for the
exact E instein equations. The variational Lagran-
gian is

Since the ilnearized constraint operators D&'(g, v)
(h, +}are the generators of gauge transformations
of the linearized theory, Eq. (2.12) requires the
physical states to be gauge invariant. However, the
inner product in a Hilbert space on which (&, &o)

are Hermitian operators wouM entail (functional)
integration over the gauge variables. Typically
this will imply an infinite norm for the invariant
states since the "group volume" of gauge trans-
formations would be infinite with respect to the
standard type of formal integration, measure.

To avoid this problem one can decompose the
perturbation (~, (u) by analogy with the transverse-
longitudinal decompositions familiar in electro-
dynamics. A suitable decomposition which works
for an arbitrary vacuum background is given in
Ref. 13. One can then define a Hilbert space for
the transverse" variables alone much as one does
in electrodynamics. These states are independent
of the gauge variables and one thus regards
D@(g, v)(h, ~) as the zero operator when it is ap-
plied to any of them. %e shall consider some ex-



VINCENT MONCRIEF

plicit examples of this quantization in Sec. III,
The second-order integrals (2.10) are gauge in-

var1ant Hl classical hory. This means that ]Lf

one substitutes the general transverse-longitudinal
decomposition of (&, &u) into the integrals one will
find that the longitudinal (i.e. , gauge) terms in the
decomposit:ion can only occur multiplied by the
first-order constraints DC'(g, v)(&, (d). In quan-
tizing this system one can always choose the or-
dering so that the operators L}@(g,&)(h, (d) stand
to the right of the longitudinal terms (and any
transverse terms which also occur as coefficients)
where they will annihilate the physical states.
With this procedure all longitudinal and constraint
terms drop out of the second-order conditions
which thus reduce to the form

(I')(((C, F), IPC (g, v)((i)r, (dr ), (hr, (d')))
~

4 ) = 0,

(2.14)

where the C,'& are constants and where = signifies
weak equality (i.e., equality up to terms in the
linearized constraints). The constants (,; are re-
lated to the I ie algebra of the Killing fields ~' X '
through

[ (4)x(e) (g)x(l} ] pe (4)~ (c } (2.16)

Equation (2.15) is just an expression of the usual
result that conserved quantities are the Hamilton-
ian generators of the associated symmetry trans-
formations and thus have a Poisson bracket al-
gebra isomorphic to that of the symmetry group.

To formulate the second-order quantum con-
straints

E(,) ((g, v), (i)r, (ur)) ) +) =0, (2.17)

where (& , (d ) are the operators representing the
"transverse" summands in the decomposition of
Ref. 13.

The classical conserved quantities E,) (
' g,

(')h, I:)for a set of Killing vector fields( ' & ' }satis-
fy Poisson bracket relations of the form

(g) (g)q (4) (g )} ~)) (4) (C (2.15)

monies which incorporate the "transversality"
conditions automatically.

The identification of the 8~4~ ~,~
as generators4X'

of the symmetry transformations means formally
that the second-order conditions E«} (,) ~+) =0
demand invariance of the physical states under the
full symmetry group of the background spacetime.
This conclusion that all physical states should be
invariant is in sharp contrast to the usual result
in Minkowski-space field theory that only the vac-
uum state is invariant under the full (Poincare)
symmetry group. The exclusive use of invariant
states means that we cannot describe phenomena
which are localized, x'elative to the background
spacetime, in a symmetry direction. The actual
spatial localization which is allowed by the physi-
cal states (even in symmetry directions) must be
sought in an intrinsic description rather than as
an extrinsic localization on the background space-
time. Several examples discussed in the following
section should clarify this idea and make plausible
the exclusive use of invariant states.

ds = —df +gg« tR 6k (3 1)

for which ' &=()/S& is a timelike Killing vector
field [i.e., (s/s~)(')g„()=0]. The decomposition of
Brili and Deser (which is modeled on that of ADM
and generalized in Ref. 13) gives for the transverse
perturbations

~Tf,g ~TT«Pp g'4«

(3.2)

where 0. and P are spatial constants and where T&
signifies transverse and traceless relative to g;«.

The conserved quantity associated with the time-
tx'anslatlon symmetry ls

III. EXAMPLES AND DISCUSSION

An example of linearization instability is provid-
ed by the model of Brill and Deser, If ~admits
a flat metric gq«one can take r'«=0 and set&=I
and X =O. This choice generates the flat space-
time metric

one needs to find an ordering of the operators for
which the commutator algebra

[@(4)x(~)«~(4)x(s) ] ~ ~~&+(4)x(~) (2.18

is satisfied. In addition one needs to adopt a "nor-
mal" ordering of the field operators to ensuxe that
the E[,~ ~, ~

are well-defined operators on Hilbert
space. Satisfying these simultaneous require-
ments is usually facilitated by expanding the field
operators (&, &u ) in a suitable set of tensor har-

dx I O, D4 g 0 k (d k, 43 )

dx —QP «QP
«

—g3 p.g p

[err err(gjk]g+
4 g« IA (3.3)

where for simplicity we have dropped the terms
which weakly vanish. To quantize the perturba-
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(3.4)

To interpret these quantities note that the pertur-
bation of the spatial volume of a t =const hyper-
surface is

6V =-,
, p, g"«„,

J~

Each term in the Brill-Deser decomposition of ~;&

(including longitudinal and constraint terms) has
vanishing integrated trace except the term in a.
Thus

(3.5)

tions one expands the operators («*,v ) in a set
of transverse traceless tensor harmonics. The
coefficients in the expansion become the creation
and annihilation operators for transverse quanta.
The physical states can be labeled by the eigen-
values [q&} of the number operators for the TT
modes. In addition one must allow the states to
depend upon either the variable n or its conjugate
P. The operators n and P satisfy the commutation
relations

tion of the physical states requires the identifica-
tion of an intrinsic time variable. A glance at Eq.
(3.9) suggests the use of a, the perturbed volume
of the model. This is essentially the choice of
time variable made by Misner4 for quantizing

homogeneous cosmological models and by Berger"
for quantizing some inhomogeneous models.

To achieve a natural probability interpretation
we define the inner product of physical states to
be just the Pock-space inner product for the &T
modes (i.e., we refrain from integrating over the
intrinsic time variable a). Furthermore, we adopt
the superselection rule of considering only states
of either purely positive or purely negative fre-
quencies. These are the states expressible as

2V»2
)+(o.)& = g C(„}exp-f — ~(„}o'~bl ]&,

{~g,} [

(3.10)

where

&V =~a p~ =&aV, (3.6)

and classically one has the Hamilton equation

= —3/3 . (3.7)

Therefore a measures the perturbed spatial vol-
ume of the model and P its expansion or contrac-.
tion.

Choosing a as the additional parameter for the
physical states ~ &,(q, }&, we represent P as

(3.6)

and write the second-order constraint as

(3.9}

where:: signifies a suitable normal ordering of
the operator enclcsed.

The Schrodinger. equation is trivial in this case
since the Hamilto»ian operator obtained from Eq.
(2.11) (with N =1, X =0) reduces to a linear com-
bination of the first- and second-order constraints
[Eqs. (2.12) and (3.3), respectively]. Thus the
physical states are time translationally invariant
(i.e., f independent). To regain a temporal evolu-

and where all of the ~„}are taken to be either
purely positive or purely negative. This corre-
sponds to considering states which describe an
expanding (or static) or a contracting (or static)
model, but excludes states which mix expanding
and contracting modes. 9n these subspaces the
usual Fock inner product is always time independ-
ent (i.e., independent of a). Note that a state of
nonzero graviton number is necessarily expanding
or contracting and cannot remain static. This
accords with the classical result that any gravi-
tational wave (i.e., TT mode) excitation forces the
universe to expand or contract. Ignoring the sec-
ond-order constraint, one could construct coherent
quantum states with the nonclassical behavior of
admitting large gravitational wave excitations with-
out expansion or contraction.

If the metric g admits a Killing field ~ then the
spacetime metric (3.1}will admit a Killing field' ~ which is tangent to the t =const. hypersurfaces.
The associated second-order constraint is

(3.12)

where L& is the Lie derivative with respect to ~.
This condition demands the invariance of physical
states under translations in the symmetry direc-
tion given by ~. The description of physical pheno-
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mena which are localized in the symmetry direc-
tions requires again an intrinsic point of view.

To show how translationally invariant states can
be understood to represent localized phenomena we
consider the simple example of a hydrogen atom in
nonrelativistic quantum mechanics. The quantum
states can be written +(x,X, &), where X is the
position vector of the center of mass and x is the
relative position of electron to proton. I et us
(arbitrarily) restrict attention to the translation-
ally invariant states defined by P+(x, X, t ) =0,
where P is the total momentum operator. These
states are independent of X and thus fail completely
to localize the atom with respect to the background
space. However, the dependence upon the relative
coordinates is unaffected by this extra constraint.
In particular, the bound-state wave functions still
describe the electron localized within about an
angstrom of the proton. One could of course ex-
tend this argument to complicated many-body sys-
tems as well. It is clear that the restriction to
translationally invariant states does not prohibit
the localization of one part of the system relative
to another but only excludes localization of the
system as a whole (e.g. , its center of mass) with
respect to the background space.

The exclusive use of invariant states prevents
one from sensibly regarding the observer or his
measuring apparatus as independent of the quantum
system observed and localized in the background
space. Clearly, to obtain a reasonable interpreta-
tion of invariant physical states one needs to re-
gard the measuring apparatus as an intrinsic part
of the quantum system rather than as an external
entity. This viewpoint has long been espoused by
Wheeler' and colleagues ''4' '5 in the context of
geometrodynamical quantization of gravity. We
see here that it may play an essential role in even
the more conventional approach to quantization.

The arguments of this paper can be extended to
the treatment of various matter fields coupled to
gravity and to the inclusion of a cosmological con-
stant. Typically one expects to need second-order
constraints in linearized theory whenever the back-

ground matter and gravitational fields possess a
simultaneous symmetry. If Yang-Mills fields are
considered, second-order constraints can also
arise from gauge symmetries or even from mix-
tures of gauge and spacetime symmetries. '

An interesting application of quantized matter
and gravitational perturbations in a symmetric
background would be the study of the Hawking pro-
cess in de Sitter space. Hawking and Gibbons"
have recently shown. that the Hawking process for
scalar particles in de Sitter space leads to a ther-
mal radiation bath of nonzero temperature and
seemingly paradoxical transformation properties.
The radiation bath appears the same to every
timelike geodesic "observer" in the spacetime.
Such observers are equivalent under de Sitter
group transformations and are in general boosted
with respect to one another. 1n effect, the quantum
state of the radiation is invariant under the trans-
formations of the de Sitter group. To study the
gravitational reaction effects of this Hawking
radiation would seem to require a quantum treat. -
ment of the gravitational perturbations rather than
a semiclassical treatment based on classical me-
trics and expectation values of quantum stress
tensors. This conclusion follows from the ob-
servation of Gibbons and Hawking that such a
group-invariant radiation bath (of nonzero tem-
perature) cannot be described by a classical stress
tensor field. The tensor property required of any
source in the classical Einstein equations conflicts
with the group invariance of their computed ther-
mal radiation bath. In this connection, and per-
haps in other problems involving quantum pro-
cesses in a closed universe, the considerations of
this paper may prove to be relevant.
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