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Under the assumption that the observed isospin symmetry is a manifestation of the group structures of
hadrons and their interactions, it is attempted to determine the order of the symmetry group, if finite, and
to clarify the physical meaning of each group element. Our scheme is based on the observations that. (1)
classifications of particles according to irreducible representations of both the finite and the continuous
groups are possible under certain restrictions, and (2) the transformation law of particles under continuous
rotations in isospin space cannot be estabbshed directly by experiments. In particular, we consider the
polyhedral kaleidoscope groups. The consistent formulation by finite groups needs a selection rule to exclude
unobserved exotic states, which turns out to be a requirement of charge conservation. Several experiments
are suggested to test our assumptions in strong-interaction processes.

I. INTRODUCTION

Approximate isospin symmetry is one of the
most important concepts of particle physics. This
symmetry or charge independence, which origin-
ated in the study of nucl. ear forces, is usual. ly
formulated as a continuous, rotational symmetry
in a hypothetical isospin space. The particles are
classified into irreducible representations of the
group SU(2) in analogy to the ordinary angular
momentum. Then one asks about consequences
of the assumption that scattering processes due
to strong interactions conserve the total isospin
and that scattering amplitudes depend, as for the
isospin quantum numbers, onl, y on the total iso-
spin. This procedure is applied for most of the
a.ctual analyses. This symmetry has been success-
fully extended to SU(3) symmetry by including
strangeness. The prediction and the subsequent
discovery of Q, in particular, seem to indicate
that the group principle is rea, lly working in na-
ture. [We remember that the J'/g was not pre-
dicted although the SU(4) symmetry had been
known. ] Experiments have revealed, however, a
remarkable property of hadrons that their isospins
seem to have upper limits, I = 1 for mesons, and
I = 2 fox' bax'yons.

Now it is we1l known that the finite groups have
only finite-dimensional irreducible representa-
tions. So the question natura1. ly arises: Is the
isospin group finite or infinite'?

The continuous group is a special case of the
l.atter. This question should be answered before
forming the Clebsch-Gordan series for the pro-
ducts of two irreducible representations. A simi-
lar problem has also occurred for the SU(3) sym-
metry, in which mesons are classified into 1 and

8, while baxyons are classified into 1, 8, and 10.
The reason higher-dimensional multiplets do not

appear in natuxe has not been cl.axified in a con-
vincing way. An interesting fact in this ca,se is
that these representations are constructed in the
following way': 3X 3*=1+8and 3x 3x 3=1+8
+8+10. However, the group SU(3) itself does not
contain any inherent rule to exclude the higher-
dimensional representations. One of the motiva-
tions of our work presented here may be consid-
ered as an attempt to find such a framework. ' In
order to answer the question raised above in con-
nection with the isospin symmetry, it will be
necessary to examine the way in which the group
SU(2) has been used. For the ordinary spin, rela-
tive ang1.es between polarization vectors are mea. —

surable in principle to any degree of accuracy.
This is the key point in establishing that electrons
behave as spinors in the ordinary space. Similar-
ly, in order to establish the transformation law
under a continuous group, it is necessary to find
some ways to observe the pions, the nucleons, and
other particles at every angle 8& (i = 1, 2, and 3)
with respect to some fixed coordinate system in
isospin space, if such ever exists.

The customary reason to believe in SU(2) sym-
metxy comes from an entirel. y different, indirect
observation. The charge independence of systems
with relatively small isospins can be conveniently
described by adopting this symmetry. ' Thus a
far weaker symmetry than SU(2) symmetry may be
sufficient to classify the particles. In this work
we will try to formulate the isospin symmetry by
using the finite subgroups of SU(2). If this method
can explain all the evidence of charge indepen-
dence, then we will lose the argument d'or the
isospin symmetry under a continuous group. On
the other hand, if such an attempt turns out to
be impossible, we must perhaps go to a stronger
symmetry. Thus we find the formal similarity
with questions asked many years ago by Case
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et fvl. ' a.nd Fa.irbairn et al. '
In the formulation we shall encounter the basic

problem: What is the physical meaning of each
group el.ement? This problem is not peculiar
to the formulation by finite groups and arises be-
cause we may think the observed isospin sym-
metry is just like the bilateral —and the rotation-
al—symmetries of various objects and dynamical.
laws in the real world.

One suggestion to this problem comes f rom the
original formulation by Heisenberg. ' Three Pauli
matrices were introduced there to a hypothetical
space to describe the different states of nucleons
and transitions between them. According to our
interpretation, three matrices and the group gen-
erated by them are related to a dicyclic group o.'
order 8. The group elements, or more rigorously
three Pauli matrices, have physical interpretations
in this example. The finite group which appears
here is also generated by three quaternions i, j,
and k (i' =j' = k' = ijk = —1) and is denoted by (2, 2, 2).

The finite groups considered in our work are
slight genera, lizations of it. They are binary
tetrahedral, binary octahedral. , and binary icosa-
hedral groups. These groups are often denoted
b y (3, 3, 2), (4, 3, 2), and (5, 3, 2), respectively.

Now it is not difficult to make the unitary repre-
sentations of these groups. We can identify one
generator with the rotation around the z axis and

diagonalize it. Then what are the possible cor-
respondences between the basis of irreducible
representations and electric charges?

In Sec. II we will consider one natural choice of
the correspondence. The other choices will be
mentioned. We then assign rnesons and baryons
to irreducible representations of the binary tetra. —

hedral group and the binary octahedral group,
respectively. This is based on the possible di-
mensions of irreducible representations of these
groups.

The observed isospins and several arguments
suggest that hadrons actually belong to the repre-
sentations of these groups. However, it should be
stressed that we have no conclusive evidence for it
at present. In the course of analyses, we shall find
that the decomposition of the product of two ir-
reducible representations into the Clebsch- Gordan
series contains, in general, components that are not
eigenstates of the electric charge. If such com-
ponents are realized as particles, then they will
lead to a violation of the charge-conservation law
through scattering processes. A possible inter-
pretation is suggested. In particular, we shall
assume that only the states with definite electric
charges can be realized as particles. This as-
sumption still allows the appearance of incomplete
isospin multiplets such as doublets with charges

II. CLASSIFICATION OF PARTICLES BY FINITE GROUPS

The conventional isospin group SU(2) or O(3) can
classify particles with any values of the isospin
(f = 0, -,'-, 1„.. . ). The observed mesons and baryons,
however, seem to have only limited values of
isospin. The satisfactory explanation of this re-
markable fact is hitherto unknown. We are there-
fore tempted to classify particles by taking this
restriction into account. In order to formulate it
mathematically. the use of finite groups seems to
be the most attractive method for this purpose.
Many-body systems such as heavy nuclei and neu-
tron stars will be a,ssumed to belong to the re-
ducible representations of these symmetry groups.

Now let us begin our discussions with finite sub-
groups of 0(3). The possible finit subgroups
are cyclical, dihedral, tetrahedral, octahedral,
and icosahedral groups.

We know that quantum-mechanical states are
represented by rays, rather than by vectors. So
let us consider the ray representations of these
groups. They are the same as the ordinary repre-

TABLE I. Character table of the binary tetrahedral
group (3, 3, 2), of order 24, ~=-exp(2~i/3). I,, r,»,
and I'& are representations Do, D&i2, and D& of the group
SU(2j.

ss E R 6C2 4C3 4C3 4C3 4C3

r,
Io
I n

0

I(

~&i2
ri/2

1 1 1
1 1 1
1 1 1
3 3 -1
2 —2 0
2 -2 0
2 -2 0

1 1 1 1
2(d Cd

Cd

0 0 0 0
1 —1 1

2 2
CL

2 (d2

+1 and -1. These multiplets, if realized as par-
ticles, will lead to the violation of charge inde-
pendence, yet will conserve the electric charge
through scattering processes. We will suggest
experiments to test such a possibility. If the in-
complete multiplets are suppressed or forbidden
as a whole, then our result is essentially the
same, with respect to the classification of par-
ticles, as the conventional result with all the
exotic contributions omitted. In this case, the
test of our hypotheses will need a much more ad-
vanced framework and will be postponed. Our v ork
presented here should be considered to be of pre-
liminary nature in this sense.

In Sec. III, the scattering processes are con-
sidered and several experiments are suggested as
possible tests of our hypotheses. Section IV con-
tains concluding remarks.
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TABLE II. Character table of the binary octahedral group (4, 3, 2) of order 48. I 0, I'
f/p r f,

and r3/& are representations Do, D&/2, D&, and D3/2 of the group SU(2).

6C~ 6C4 6C4 12C2 8C3 8C',

r,
0

r,
r,
r*

1

r3/2

1
1
2

3
3

-2
-2

4

1
1
2

—1
—1

0
0
0

1
—1

0
1

-1
v2

—v2
0

1
—1

0
1

-1
-W2

v2
0

1
—1

0
—1

1
0
0
0

1
1

—1
0
0
1
1

—1

1
1

-1
0
0

-1
—1

1

sentations of corresponding finite subgroups of
SU(2). ' The character tables for them are given in
Tables I to III.'

The familiar form for the generator of a cyclic
group is given by

27 2m
A = exp(2xi/n) = cos +i sin —,

n n

where n is a positive integer. The group elements
are 1,A, . . . , A" '. In a similar way, finite sub-
groups of SU(2) are generated by three quater-
nions:

A = exp(Px/p), B = exp(Qx/q), C = exp(Rx/r) .

(2)

They a.re cyclic, dicyclic, binary tetrahedral,
binary octahedral, and binary icosahedral groups.
These groups are exactly related to the subgroups
of O(3) in the same way SU(2) is related to O(3).
In (2), P, Q, and R are pure unit quaternions and

p, q, and z are positive integers. Geometrically
P expresses a point on the unit sphere in the
three-dimensional space which is spanned by three
unit quaternions i, j, and k. Thus P, Q, and R
can express a. spherical triangle with angles x/p

at P, x/q at Q, and x/r at R. Atl possible reflec-
tions on the sphere of this triangle, which is often
called a "fundamental region, " generate the de-
sired finite group.

This notion is known to be quite general. '" In
another way, these groups are completely speci-
fied b y def i ning relations

A~ = B' = C" =ABC = Z Z' - 1 (3)

The resultant group is denoted by (p, q, r).
Let us turn to the representation of finite groups.

It is easy to read off the character tables the pos-
sible dimensions of irreducible representations.
They are 1, 2, 3 for (3, 3, 2), 1, 2, 3, 4 for (4, 3, 2),
and 1, 2, 3, 4, 5, 6 for (5, 3, 2). The group mentioned
in Sec. I, (2, 2, 2), has only one- and two-dimen-
sional irreducible representations.

We may identify one generator of the finite group
with the rotation around the z axis of the three-
dimensiona, l Euclidean space and diagonalize it.
Such a generator is conveniently expressed by
using a discrete angle 8 = 2&/n (n = 2, 3, 4, and 5)
and the usual infinitesimal generator I,. Then it
is exp(i8I, )

Next, in order to apply to physical problems,

TABLE III. Character table of the binary icosahedral group (5, 3, 2) of order 120, n
=(1+ v 5)/2, p=-(1-v 5)/2. I'0, r(/2, I (, I 3/~, I p, and r„/& are representations Do, D,/, Df,

D3/ 2, Dz, and D, / &
of the gr oup SU(2) .

ss F. 12C 12C' 12C 12C 20C3 20C3 30C

I'o

r,
r*
ry
r)

r i/ 2

r3/2

1 1
D

3
4 —1
5 0

-2 Q

—2 P
—4 1
-6 -1

1

-1
0
P

1
-1

1
0
0
1

—1
1
1

—1
0

1
0
0
1

-1
—1
-1

1
0

1
—1
-1

0
1
0
0
0
0



K. YAMADA 18

we need to assume some correspondence between
the basis of irreducible representations and the
electric charge. The most natural way is clearly
to retain the Gell-Mann-Nishijima relation in the
integrated form. We may require the equation

exp(ieI, ) = exp[i8(Q —Y/2j (4)

to hold for all possible discrete values of 8 cor-
responding to a given finite group. In this equa-
tion, Q is the electric charge and Y is the hyper-
charge of a. particle. Another possibility is real-
ized if the charge states are permuted among
themselves in an arbitrary way. We note that the
quantum numbers Q, Y, and others, if needed,
specify the eigenvalues of matrices exp(iHI, ), but
that they are not group elements.

It is clear that finite groups considered as sub-
groups of SU(2) contain a finite number of discrete
rotation angles. " However, it may be too early
to conclude that such angles have direct physical
meanings unless the metric is introduced into the
underlying space in a physically meaningful way.
The generators A, B, and C in (2) are the funda-
mental ingredients of finite groups. Therefore in
any physical applications, their meanings should
be clarified.

We simply note that the generating relations (3)
can be realized by isodoublet fermion fields in the
following way:

Af =A„'gA„,

A„=exp d'x gt(x)P(x/p)g(x)

and similar relations for B and C. In (5), P should
be identified with ia„which is a two-dimensional
realization of the pure unit quaternion P in terms
of the Pauli matrix, and p = 2.

III. SCATTERING AMPLITUDES

The isospin coordinate was introduced to de-
scribe the proton and the neutron as different
states of the same particle. The group SU(2) is
usually employed for the classification of par-
ticles. But the hypothesis of charge independence
is a more complicated matter.

The experimental analyses have shown that the
isospin symmetry of scattering amplitudes can be
understood if we assume that the same symmetry
holds for vertices of a diagram corresponding to
the scattering and that the propagators (which are
either resonances or Reggeons) constitute a com-
plete isospin multiplet. '-'

The situation seems to be very general. In this
scheme, a scattering amplitude can be constructed
diagrammatically by combining vertices and pro-
pagators with no loop. One can even imagine that

FIG. 1. The basic diagram for the scattering process.
Three lines a, b, and c represent nonexotic particles.

the vertices are actually 3-vertices (Fig. I).
We know that the apparent absence of exotic

states of mesons and baryons has been confirmed
by analyses based on such diagrams. The basic
observation is that, to a good approximation, such
3-vertices are actually allowed only when three
lines correspond to nonexotic particles.

So let us try to formulate the above rule as a
basic law of scattering processes. We may require
that the allowed vertices in the above sense should
also occur in the Clebsch-Gordan decomposition of
the product of two irreducible representations
corresponding to a and b in Fig. 1. In mm scatter-
ing, the usual decomposition contains I = 0, 1, and
2 states. Then is it possible to suppress the unob-
served direct-channel resonances with I = 2 by a
composition rule for the initial two-pion state?

In order to answer this question, we now propose
the following set of assumptions":

(a) There is no exotic stable or resonance state.
(b) The mesons (baryons) belong to the irredu-

cible representations of the binary tetrahedral
(binary octahedral) group.

(c) The assignment of electric charges to each
member of the multiplet is done in the conventional
way.

(d) Only the eigenstates of the electric charge
are realized as particles.

Before assigning particles to the basis of each
representation, Q and Y must be known before-
hand for each particle. This is clear for any ex-
perimental situation. The converse problem, i.e. ,
to define Q or I' from (4), does not arise.

Let us turn to the Clebsch-Gordan series for the
two-pion system. It will contain the doubly charged
components, e.g. , &&+ and m m . If these com-
ponents are realized as particles, they will contra-
dict our assumption (a). Evidently this process
can lead to states with any values of the electric
charge for sufficientl. y many pions if they are al-
lowed. So some way to exclude such exotic states
is essential for the success of our procedure. It
may be accomplished by a selection rule. We will
find such a rule in the following.

Next we assign mesons to I„I,&„and I'y
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1/2 1 1/2 3/2 ' (6)

of (3, 3, 2), and baryons to I'„I'«„I „andI', /,
of (4, 3, 2). These representations are the same
as the corresponding representations D„D1/2 D1,
and D, /, of group SU(2). Of these representations,I'„1,/„and I', belong to both (3, 3, 2) and (4, 3, 2).

Our assumption (b) implies that the system with
baryon number 0 is to be decomposed into irre-
ducible representations of (3, 3, 2), while the
system with baryon number +1 is always an ir-
reducible representation of (4, 3, 2). In particular,
the baryon-antibaryon systems should be first
decomposed into irreducible representations of

(4, 3, 2), and the latter representations should be
further decomposed, if reducible under (3, 3, 2),
into irreducible representations of (3, 3, 2). For
the rN state, the decomposition is the same as
the conventional case. This is seen from

XI"
/

—,'(~s&-z' —n, off-)

/ -2'(~-Zo+ &snow-)

--2'(Ws~ ff" + n-Z )

1 (~-z'+ n-z-)

(&'K'+ &'K ) .
2

In (6), /1/ belongs to I', /, of (4, 3, 2), while w be-
longs to I', of (3, 3, 2). Thus I', /, and I', are ap-
parently two irreducible representations of dif-
ferent groups. Now we know that

SU(2):~ (4, 3, 2» (3, 3, 2) .
So we may use the decomposition rule of SU(2),
followed by subduction (i.e. , restriction to the

subgroup), to reach (6). The total baryon number
determines whether the group should be subducted
to (4, 3, 2) or (3, 3, 2). The baryon states wi,
K&, and ~~ have unconventional components in the
decompositions.

For the &5 state we obtain

'The assignment of the K& state to j. ,*/, x I'3/ leads
to the same decomposition. The w& state is de-
composed to

I', /, x r, =r, /, x I',*=I', /, +I', /2+r, /, +I',*/

(~)1/ 2~++wO (
2 )1/2~+w+

5 5

(
2 )1/2g++W gogO ( 8 }1/2noW+1
5 v16

(
2 )1/2g+W gOWO (

2 )1/2n W+
1

15 ~16 2

(2 )1/2gOW (2 )1/2n Wo

I', x I", = I';1",+I'~+I'„,

~w)x ~Z)= (wg' —w Z +w'2i )
3

1, 1, o 14'w — dew + n w'
6 Ws

(w'Z' —w'Z')
2

1 (w'Z- —w-I,")
22

1
(w-I;o —woF, -)

//

(w-g" + w'I;-)
v2

1
(wL —wg )

&2

(w Z'+ w'2, ")
2

io its
1-(—')'/2aow + (—')'/2a'w" + &"w

10 5
1/10

1 ~-w'+ (—')1/'~'w'+ (~)'"~'w"
~1O 10

1 (w'Z'+ w-Z-)
&2i

1 (w-Z'+ 2w'Z'+ w'Z-) .
6

16 ~10

—6"w+ —~ n w —~A w

+) 1, , 1 „o1——4'w' — n "w + n w . (10)
Ws 6

The assignments of the s5 state to I', x I",* end
I',*x I',* lead to the same decomposition.

The K& state is decomposed as

In (8), I', and I', are the same as the conventional
1= 0 and I = 1 states, respectively. I",*contains a com-
ponent which does not correspond to a definite charge.
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If such a component is realized as a particle, it
has no definite charge and the conservation law

of the charge will be violated through the process
w'+ 5'- (I/M)(w'Z' —w Z )- w + 5 . This is one
motivation for our assumption (d). It is interesting
to note that all the exotic components appear in
combination with ones of different charges. (This
is also the case for rnesons. )

Stated differently, a.ll. noneigenstates of elec-
tric charge contain at l,east one component, which
is exotic. Therefore if such states are realized
in nature, they will partially decay via exotic re-
sonance states in contradiction with observations.
From this fact we are led to the assumption (d) in

a more convincing way. U this interpretation is
correct, then all the particle states which can be
realized are eigenstates of electric charge. When

the electromagnetic interaction is introduced by
a minimal coupling in this case, the Lagrangian
will be automatically invariant under continuous

gauge transf ormations. The classical Noether
theorem is then clearly applicable and leads to the

charge conservation law. There are still two pos-
sibilities: (a) Incomplete multiplets are realized
in nature; (b) they are not realized. The basis

of an incomplete multiplet no longer constitutes
an irreducible representation of the group. Per-
haps this is the most serious objection against (a).
On the other hand, if the incomplete rnultiplet is
forbidden as a whole as in (b), then it is equivalent
to omit all the exotic multiplets in the conventional
way (I = 2 for the ww state). One should ask whether
such an incomplete multiplet violates well-estab-
lished principles of physics. As noted before, the
charge independence will be violated in scattering
processes if such particles are exchanged. We

found no further difficulty. For the r3 and the
K& scatterings, the gapped-charge states will be
observed if I',* is dominant. These states simulate
the I = 1 state but are different from the latter in
that the neutral components are absent in the par-
ticle spectrum. "

This is not so strange a possibility. We know

one similar example in the case of the ordinary
spin, i.e. , polarization states of the real photon.
One difficulty in identifying such resonances in
the existing data lies in the fact that the usual.
a,nalyses are always done by assuming convention-
al isospin symmetry. " A more definite conclusion
may be obtained from the ratio

o(&'K &'K ):o—(&'K —& K'): o(&"K —&'K"):o(&"K —&"K ) = 1:3:3:9 for I' = 9:3:3: 1 for I'*.

If the & -exchange contribution is sufficientl. y
well separated from the n-exchange contribution in

K p ba.ckward scattering, then this ratio will give
us an interesting test of our assumptions. " We
have as yet no conclusive evidence on these points.

It is interesting to see what should happen if the
assumption (c) is relaxed. Clearly a quite general
wa. y of the assi. gnment of the charge is obtained by

a replacement, & -M&, for pions for example, by
using a unitary 3 x 3 matrix M. The permutation
between definitely charged components will be a
special case of it. However, we have no experi-
mental evidence for such a generalization at pres-
ent.

Final. ly we study the decomposition for the two-
rneson state. The m& state is decomposed as

r, x r, =r„+r,+r, +r;+r;,
1

~w) x
~

w) = (w w+ —w w +w'w )

v2
(w'w' —w"w')

1
(w'w —w w')

v2

1
(w w' —'w"w )

Y2

1
(w w'+ w"w )

v2

1
(w'w' —w w-)

Y'2

(w'w" + w'w')
Y2

+ (w w' —2w wo+ w'w ) — (w'w'+ w w ) C,
~6 Y2

(w-w' —2w'w'+ w'w )+ (w w'+ w w ) C, , (12)
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where C, and C, are normalization constants.
Another interesting example is the mE state. It

is given by'

(ls)

ln (IS), I',&„I",&„and I',&, are equivalent ray
representations. If incomplete multiplets can be
neglected, we get only a conventional I =& state
(I',&2). This decomposition is particularly inter-
esting when we note that in the customary theory
the effective Hamiltonian for the nonleptonic weak
interaction is assumed to have the same isospin
structure as the Kvt' system. More specifically,

H„„=const x d'x J

Thus, under the assumption that incomplete mul-
tiplets (I",&2 and I",») do not occur, we are natu-
rally led to the 4I = & rule. Experimentally the
DI= z part certainly exists and this fact may indi-
cate either that the incomplete multiplet has con-
tributions or that the assumed form of the Hamil-
tonian is not appropriate. " The most attractive
way will be to relate the current operators with
the generators of the finite group in the way of (5)
and to write the Hamiltonian in terms of them in

the usual way. However, we must wait for a much
more detailed, quantitative analysis on this sub-
ject before reaching a definite conclusion.

IV. CONCLUDING REMARKS

If we accept the group concept seriously in any
physical applications, we should find some physi-
cal method to determine the precise structure of
the group. The symmetry under a continuous group

can be established and meaningful only when some
experimental procedure is actually given to prove
the symmetry at every value of the continuous
parameters. The precise group structure respon-
sible for the isospin symmetry is not yet known
in this sense, even if the group concept is actually
relevant in this symmetry. We note, however,
that this is essential in forming the Clebsch-Gor-
da, n series.

In this work we made a preliminary attempt to
clarify the isospin symmetry. We classified par-
ticles into the irreducible ray representations of
finite subgroups of O(S). If exotic mesons and

baryons are established by experiment, then we
may still classify them by an icosahedral group
as long as their isospins are sufficiently small.

In atomic physics, discrete energy levels of
hydrogen atoms were explained by the. standing-
wave condition for the de Broglie wave. Our as-
signment of mesons and baryons into the ray rep-
resentations of finite subgroups of O(S) is there-
fore in close similarity to it. It is quite a re-
markable fa,ct that these finite groups are gen-
erated by reflections. They are analogous to fa-
miliar C, P, T transformations.

Finally we should stress again that we have not
as yet any conclusive evidence for our scheme.
If incomplete multiplets are not observed, it
simply means that we cannot distinguish between
our formulation and the conventional one. Then
a far more elaborate framework is certainly
necessary to test our assumptions. The detailed
knowledge from electromagnetic and weak-interac-
tion processes will be indispensable in that case.
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