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Corrections to the partially conserved axial-vector current hypothesis are evaluated by taking into account
the contributions of the radially excited pseudoscalar mesons, whose existence is predicted in the quark

model. The coupling of these mesons to the axial-vector current is first order in chiral-symmetry breaking,

Several sum rules, related to matrix elements of light-plane commutators of charges and divergences of
currents, are analyzed. Predictions are made for some decay modes of the radially excited pseudoscalar and

vector mesons.

I. INTRODUCTION

The successes of the partially conserved axial-
vector current hypothesis' (PCAC) are generally
understood at this time as R consequence of the
approximate SU(3) && SU(3) invariance property oi
the strong interactions. " This idea is suggested
by the fact that the smallness of the low-lying
pseudoscalar-meson masses allows their inter-
pretation as almost-Goldstone bosons and suggests
a description of the real world by use of the sim-
pler chirally "invariant" world as a reference.

An explicit representation of the PCAC mecha-
nism has been obtained4 in the o model where the
divergence of the axial-vector current emerges
proportional to the corresponding pseudoscalar-
xneson field, the chiral symmetry being spontane-
ously broken in the limit of the vanishing of the
pseudoscalar-meson mass.

On the other hand, the successes of the quark
model in explaining the hadronic spectrum' as well
as the lepton-hadron deep-inelastic scattering
data' suggest that the hadronic worM should be
described by means of a field theory built up

from interacting quark field variables. ' The ques-
tion which then arises is whether the original idea
of PCAC can still be maintained in such theories.
Fortunately it has appeared that, when the quark
interaction is mediated via SU(3)-singlet vector
gluons, chiral symmetry is only broken by the
quark mass term, which is not expected to dras-
tically modify the picture of the symmetric
world. ' Furthermore, one finds in that case
simple relations between the low-lying pseudo-
scalar-meson masses and that of the quarks; these
relations reflect in some sense the almost-Gold-
stone nature of the mesons. '

However, in contrast to the a model, one feature
seems to be definitely lost: The pseudoscalar
mesons are no longer described by elementary

fields of the theory, and one is led to wonder
whether the stronger formulation of PCAC, as
stated in the 0 model, can still make sense in a
quark field theory. "" A full answer to this ques-
tion cannot be given unless the whole dynamics of
the theory is solved, and more particularly when
all the hadronic states are explicitly expressed in
terms of the (current) quark field variables.
Nevertheless, lacking a complete solution of this
problem, one may make an educated guess, based
upon some observations of the general structure
of the hadronic spectrum in the quark model.

The fundamental observation is that in a theory
of confined quarks the hadronic spectrum is com-
posed of an infinite number of particles; in parti-
culRr to evex'y ground stR'te with def1nlte quantum
numbers corresponds an infinite sequence of ra-
dial excitations. " Thus the low'-lying pseudoscalar
mesons have their own radial excitations which
would also couple (although more weakly, via
first-order chirai-symmetry-breaking effects) to
the axial-vector currents. In other words, the
lowest-lying pseudoscalar mesons, although they
are the only almost-Goldstone bosons of the the-
ory, should not be expected to completely domi-
nate axial-vector current divexgence operators.

This then suggests that, in view of PCAC, the
axial-vector divergence, instead of being ex-
pressed in terms of the single ground-state pseu-
doscaiar-meson (effective) field, should be ex-
pressed as a sum of the infinite sequence of all
pseudoscalar-meson (effective) fields appearing
in the theory. Such an expansion, which seems to
be the most natural transcription of the o-model
PCAC into the quark model, would provide, we
think„a more complete and faithful interpretation
of PCAC equations.

The aim of the present paper is to investigate
in some simple cases the possible corrective ef-
fects to I'CA. C, coming from these high-lying
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Pseudoscalar mesons, &chose existence is predict-
ed in the qua~k model. This is achieved by a study
of certain matrix elements of light-plane commu-
tators of charges and axial-vector divergences
which are saturated (on the mass shell) by the in-
finite sequences of pseudoscalar mesons. Similar-
ly, matrix elements of axial-vector light-plane
charges are systematically expressed, via unsub-
tracted dispersion relations, as a series of pole
terms arising from the contributions from these
mesons. In the past, soft-meson theorems have
been used to test both the algebra of charges as
well as the hypotheses concerning the nature of
chiral-symmetry breaking. " The difficulty in
making these tests originates in the fact that soft-
meson theorems fix the values of the matrix ele-
ments in question at points off the meson mass
shells. The problem of confronting theories of
the commutators with experiment therefore be-
comes one of obtaining from the on-mass-shell
data a reliable "experimental" estimate of the off-
mass-shell matrix element at the soft-meson
points. In the present approach, however, we may
attempt to learn something of value about the
PCAC hypothesis, without having to contend with
complications arising from extrapolation pro-
cedures, which would otherwise make comparisons
of theoretical and experimental quantities prob-
lematic.

The idea of extending the PCAC hypothesis to
include the contributions of heavy pseudoscalar
mesons to the axial-vector current divergence has
been developed by several authors, in particular
by Drell, Bars, and Halpern, and by Dominguez. "
In contrast to the former authors, we follow
Dominguez in insisting upon the conservation of
the axial-vector current when the pion (kaon)
mass vanishes. We differ from Dominguez in that
our inves tigation uses the frarnew ork of the quark
model, thus enabling us to make some definite
predictions for the couplings of the radially ex-
cited pseudoscalar mesons, whereas Dominguez
must make additional assumptions regarding their
coupl ings.

There have been attempts to estimate the cor-
rec tions to PCAC arising from the continuum. "
Pagels and Zepeda conclude that such contribu-
tions cannot account for the observed deviations
from PCAC, while Jones and Scadron find that
they may account for roughly half the deviation.
We follow Dominguez in assuming that the most
important part of PCAC corrections comes from
the one-particle sector, represented by contribu-
tions from the heavy mesons.

Furthermore, in the spirit of the proposal by
Dashen and Weinstein, we base our work on the
hypothesis that certain matrix elements of observ-

ables may be evaluated by means of a perturbative
expansion, up to second order, about a chiral
symmetric limit. However, owing to the specific
framework for chiral-symmetry breaking (the
quark model) and the knowledge of the symmetry
breaking parameters (the quark masses), one ex-
pects to obtain here more quantitative predictions
from such a hypothesis.

After briefly reviewing in Sec. II the two most
commonly accepted relations which connect pseu-
doscalar-meson masses to the bare-quark-mass
ratio m, /m„, we develop in Sec. III the idea of
"generalized" PCAC as sketched above. Sections
IV and V are devoted to some of its a.pplications
through the use of light-plane comrnutators of
charges and axial-vector divergences taken be-
tween vacuum and one-particle states. In Sec ~ IV
we exhibit the correction to a well-known sum
rule related to the K» form factor f, . In Sec. V
we analyze some new sum rules which provide us
with predictions about decay modes of radially ex-
cited pseudoscalar and vector mesons. We sum-
marize our results in Sec. VI and we conclude
with a few remarks about low-energy theorems.

II. THE QUARK MASSES

(0/v'/P )=AEi„+BTr([—,
' V, [m, —,X~],],)

+ 0( rrz'), (2.1)

Since the bare quark masses are the basic theo-
retical parameters of chiral-symmetry breaking,
it is essential to get at least a crude estimate of
their values. A convenient way to evaluate the
ratio of the strange- and nonstrange-quark masses
(m, /m„) is to consider the matrix element of the
axial-vector divergence between vacuum and a
pseudoscalar-meson state (O~D;~P'), which is
proportional to the matrix element of the corre-
sponding pseudoscalar density v' = iqy, 21t.'q. (In
order to avoid complications arising from the
g-g' mixing problem, and from the existence of an
anomaly term in the singlet axial-vector diver-
gence, we limit ourselves throughout this paper to
the pion and kaon axial divergences. )

One generally assumes that the chiral-symme-
try-breaking Harniltonian Hy H'7pQ + m yQ where
the u's are the scalar densities q-,'Vq and the ~n's
are combinations of m, and v~„, can be treated as
a perturbation, "and the various matrix elements
of operators, can be formally computed by the
standard techniques of perturbation theory in
terms of H, . Consequently the matrix elements
(O~v'~P') can be expanded in terms of the quark
masses (which are assumed to be small on the
hadronic mass scale), and thus give to first
order
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where n~ is the quark mass matrix, and the con-
stants A, and 8 are independent of ~n. %e have
assumed for this expansion that the scalar densi-
ties u' and u' (present in H, ) have the same re-
duced matrix elements between given SU(3) octet
and/or singlet states.

If the constant A is different from zero, then one
expects that the second term in the right-hand side
of Eq.' (2.l} can be neglected, and so one gets in

leading order in chiral-symmetry breaking the
mell-known solution"

m, /m „-2M, '—/M, ' —1=24.

However, it may happen thatA. is zero; this can
be the consequence of some additional group-theo-
retical constraints or of some dynamical mech-
anism, related for instance to the may the pseudo-
scalar-meson masses are generated. In that case
the second term tn the right-hand side of Eq. (2.1}
is dominant, and one gets another solution" '4'"
for m, /m„:

m, /m„=2M /M, —1=6. (2.3)

It is evident that for the first type of solution,
hereafter called the quadratic solution, the pseu-
doscalar-meson masses squared are of first order
in chiral- symmetry breaking,

M,'=a,m„, M»'=a»(m, +m„)/2, a„a»=O(1)
(2 .4)

while for the second type of solution, hereafter
called the linear solution, it is the masses them-
selves mhich are of first; order,

M, = b,m „,M» = b» (m, + m „)/2, b„b»——O(1) .

(2.6)

The different relationships between pseudosca-
lar-meson and quark masses in the tmo cases
above mill clearly have different consequences for
chiral-symmetry-breaking effects; some of these
mill be analyzed below.

To proceed further by evaluating the magnitude
of the quark masses involves more dynamical as-
sumptions, which mill not: be reviewed here. In
the quadratic-solution case typical values are'0

m„-—5 MeV, m, =125 Mey, (2.6)

implying that SU(2) && SU(2) is almost a perfect
symmetry of nature, and that SU(3) x SU(3) break-
ing can be treated as a perturbation. In the l.inear
solution case, typical values are"'o

Another set of values is"
u~„=140MeV, »~, = 680 MeV. (2.8)

which is not obviously compatible mith a perturba-
tive treatment of chiral-SU(3) x SU(3) breaking.

Actually, aside fxom R fev numerical applica
tions involving the first tmo sets of values for n~„
and sn„me shall not be much concerned here with
presumed values for the quark masses. On the
other hand, me shall 1HRke exteIls1ve use of the
(assumed} property that the quark masses are
relatively small mith respect: to the hadronic
mass scale. This mill allow us to expand various
quantities in perturbation series in terms of them,
at least up to second order, in the quadratic as
mell as in the linear solution cases.

III. GENERALIZED PCAC

As me mentioned in the Introduction, me mill be
guided by confined-quark potential models to the
extent that me make the assumption of the exist-
ence of a possibly infinite sequence of pseudo-
scalar mesons for each SU(3)-octet state quantum
number. The ensuing SU(6) && 0(3}pattern can be
interpreted as arising from radial excitations of
the cox'x'espond1Qg lowest-lylQg particles. The K
particle (1.4 GeV) recently discovered" at SLAC
is a candidate for the first radial excitation of the
K," presumably, its noQstx'RIlge pal tner "jT lies
nearby in mass.

Because of their large masses, these radially
excited pseudoscalar mesons cannot be considered
to be almost-Goldstone bosons; their masses are
set by the hadronic mass scale, Rnd so should not
VRQ1sh 1n the chiral-symmetry l1mlt. In this 110l1t,
the corresponding weak decay constants should
vanish~ these COIlstants Rx'e then first-order quRQ-

tihes in chiral-symmetry breaking. (There does
not appear to be any reason to expect, the decay
constants to be second-order quantities. )

I et E,n and I'En be the meak decay constants of
the nth radially excited pseudoscalar mesons m"

and K". From the matrix elements

&O~D;~v"&= fM,.'F...
(O[D»~ff")= fM 'F- (3.1)

and the fact that M,n', M„~are zeroth-order-quan-
tities for n~ 1, one finds in lowest order in the
quark mRsses, m1th P'l ~ 1

n „=30-40MeV, n~, =180-240 MeV, (2.7)

which also lead one to expect a perturbative ap-
proach to chiral-symmetry breaking to be useful.

%'hat could be the magnitude of these decay con-
stants'P An estimate has been made in the linear-
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solution case, yielding"

F n/F M /)if

F» /F» M»—/Af»n.
(3.3)

Now, for the case n= &, 117~ and M, are approxi-
mately 1.4 GeV, which implies

F;/F, =0.1, F» /F»=0. 35. (3.4)

In the quadratic solution case one gets the upper
bound s-'-

F n/F ~(~n) M /MnnMnz

E»,/F» 5 (;)M»-/M»nM»n,

F;/F, = 0.015,

F» ~ /E» = 0.18.

(3.5)

(3.6)

zD5 =MF zp + P . AI n Ennzpnn,
n= 1

Z'D»n =.11» F» y»+ g M»n E»n(P»n ~

n= 1

(3.7)

The above equations are to be understood in the
sense of the saturation of absorptive parts of dis-
persion integrals and sum rules by sequences of
particles, since the existence of appropria. te inter-
polating fields y, ~, y n, constructed in terms of
elementary quark fields, is not guaranteed. For
instance, the ansatz Eq. (3.7) could be used to
express, through the use of unsubtracted disper-
sion relations, the one-particle matrix elements
of light-plane charges in terms of the contribu-
tions of the infinite sequence of pseudoscalar me-
sons. Denoting by g„the pion axial-vector form
factor at zero momentum transfer, say between
two nucleons, one gets

@A/Pv)MN ngNNn+ p Enng»Nnnz
n=l

(3 8)

where g», n is the coupling constant of p" to two
nucleons. Similar expressions could also be de-

Consequently, we are encouraged to proceed with
a perturbative approach to chiral-symmetry
breaking, without prejudice as to the linear or
quadratic solution; furthermore, we feel jus tif ied
in using the n = 1 meson contribution when a rough
estimate of correction terms is desired.

In order to have an explicit framework to ex-
plore the consequences of this approach to chiral-
symmetry breaking, we will adopt the hypothesis
that the infinite family of pseudoscalar mesons,
with n=0, l, . . . , effectively provides a complete
set of states in the relevant sector of quantum
numbers. In the narrow-width approximation, this
implies that the axial-vector divergence can be
expressed as an infinite sum of effective fields":

IV. N(3 FORM FACTOR

In the following we shall study ma. trix elements
of the type

&0
l [Qzn& Dn] lP'& (s ~=1 7) (4 1)

where Q&„is a vector (axial-vector) light-plane
charge, ip) is a one-particle state, and the com-
mutator is taken at equal lightlike "times, " The
special property of the light-plane charges in an-
nihilating the vacuum, independently of the non-
conservation of the corresponding currents, for-
bids the presence of disconnected diagrams in the
expansion over intermediate states of the above
matrix elements. '4 As far as the convergence of
this expansion is concerned, one can show on the
basis of light-cone analysis and the support pro-
perties of the relevant scaling functions" that
asymptotically the contributions decrease (in the
quark-parton model) faster than (M„')', where M„
is the invariant mass of the nth intermediate
state (see Refs. 24 and 26, Sec. 8, and Ref. 27,
Sec. 4); therefore the series is convergent.

We abstract" """the transformation proper-
ties of the current divergences with respect to the

[SU(3) x SU(3)]z algebra of light-plane charges
from the formal vector-gluon model (or the tree
approximation of quantum chromodynamics). The
divergences belong to a mixture of three repre-
sentations: one [(3,3)» (3, 3)] representation with
a coeffic ient linear in the quark mass matrix
(proportional to [m, —,

' V],), and two [(8, 1) + (1, 8)]
representations which are of quadratic order in
the quark mass matrix (proportional to
[zzz, [m, —,A.'],], and [zzz', —,

' X'], respectively) and
interaction independent. When taken between

rived from the matrix elements of the kaon axial-
vector charge. " Since the decay constants E,&

(F»n) are first-order quantities in chiral-sym-
metry breaking, then the contribution of the pion
(kaon) term, which is of zeroth order, is domi-
nant and the usual Goldberger- Treiman relations
can be understood as exact in the chiral-symmetry
limit. ' However, the additional contribution of the
new terms of (3.7) can also be used to evaluate the
corrective effects (at first order) to these rela-
tions. "

It is important to emphasize that the series Eq.
(3.7) will effectively reduce in most cases to a
small number of terms, as a consequence of the
empirical fact that one-particle states seem to
couple preferentially to nearby states.

In the next two sections we shall consider ap-
plications of generalized PCAC to matrix elements
which are not of zeroth order in chiral-symmetry
breaking.
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vacuum and a meson state, the last two pieces
will act in the sector of the Hilbert space contain-
ing only a quark-antiquark pair.

As stated earlier, we assume that physical
quantities can be expanded in perturbation series
(at least up to second order) in terms of the quark
masses.

m.'™.'
+ ' " IKFK (4.2)

where f,'"'(0) is the analog of the K» form factor
defined by the matrix elements (v" IQ»IK), and is
a first-order SU(3}-breaking quantity; further-
more,

+1 /2

«q, (~)/(-'-~'),
X/2

(4.3)

being the "scaling function" of the K meson,
related to the matrix element

(o~q(»}(y, +y, ) y, —,'&'q(0) ~KB}.

and satisfying

F =
K

/2
d tq»(&). (4 4)

Spectral conditions" force the scaling function

( $} to vanish outside the region I ) I
& —,. Charge-

conjugation invariance implies that yK is an even
function of (. Assuming a simple dependence for
rp ( $) upon the sealing variable $, of the type ( —,

'

—g')", we ean get a rough estimate of the quan-

tity IK. For ni=1 we getIK=6 while for other
values of m & 0, the above estimate is not modified
significantly. In any event, an estimate of the
order of IK= 6+3 seems reasonable.

We can now analyze relation (4.2} in both quad-
ratic and linear cases. For simplicity we retain
only the contribution of the n' meson in the series
of the right-hand side of Eq. (4.2).

(i) In the quadratic-soLution case (2.4), M,2 and
MK' are first-order quantities. To this order Eq.
(4.2) reduces to

2 S f4 ~2 (4 5)

A. PCAC for n

We begin by considering the matrix elements

&01[@', D,'] IK},

which were first studied by Leutwyler. ' Using the

light-plane transformation properties of the axial
divergence and saturating the matrix element ac-
cording to the scheme Eq. (3.7), we get the rela-
tion

00

+ 2F = ' "- M2F 0+ M.'F ~ '"'0
n=l

which is nothing other than Eq. (2.2). After using
(4.5), Eq. (4.2) becomes in second order

p 4~ 2 KFf p

11I,.'F,, f,~"(0)
M; F, f,(0)

(4.6)

Numerical analysis of this relation shows that it
is consistent so long as f,"'(0)/f, (0) =0.1, which
is a typical first-order SU(3)-breaking effect.
Thus the sum rule Eq. (4.2} appears to be reason-
ably satisfied in the quadratic-solution ease.

(ii) In the linear-solution case (2.5), M, ' and 3I '
are second-order quantities, and therefore the
deviations of F»/F, and f.(0) from 1 will ontribute
only in third and fourth order. To second order,
after using Eq. (2.5), Eq. (4.2) becomes

(1 M /M )
8 u f +

'
ll Ir' f (1)(0)4&S' m a~F

(4.7)

B. PCAC for K

Our prescription for generalized PCAC should
be valid for both pion and kaon axial-vector diver-
gences. If correctly applied, it should not lead to
inconsistencies, at least on the formal level. The
only difference arises on numerical grounds,
where one observes from Eq. (3.2) that correc-
tions to ordinary PCAC will be more important
for the kaon axial-vector divergence.

As a first check for the consistency of the ap-
plication of (generalized) kaon PCAC, we consider

In view of the uncertainty in ~v, ' —ni„'and in IK,
the contribution of the vr' term is not determined
by the above sum rule. Nevertheless, it is worth
noting that a value of f,"'=0.1 is sufficient for
saturation if ~n, ' —v~„'and IK fall in the range of
values described earlier. For some cases, the
7t' term contributes nearly 40~/(; of the right-hand
side; an analysis of relation (4.2) which ignores
the contribution of the heavy state v' might lead
one to reject the linear solution, Eq. (2.5). How-

ever, it is important to stress that this results
only from an incorrect application of PCAC, since
the disregarded terms are of the same order in

chiral-symmetry breaking as those retained. Also
notice that both sides of Eq. (4.7) have the same
quark mass dependence (m, —n~„)/(m,+m„),ensur-
ing the formal consistency of the equation.

Thus the sum rule resulting from the matrix ele-
ment (01[@»,D;] IK) appears to be satisfactorily
verified both by the quadratic and linear solutions
Eqs. (2.4) and (2.5) provided one uses PCAC in its
generalized form Eq. (3.7).
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the matrix element

&01[q" D ]I & (4.8)

where I, is the analog of the quantities IK, I, de-
fined above in Eqs. (4.3) and (4.4). The coupling
constants are defined as

which involves form factors similar to those of
Eq. (4.2). Proceeding as above, we obtain the
relation

OO

Q + MK FK Q

n=l I

S tt (4.10)

To second order in chiral-symmetry breaking,
this is equivalent to Eq. (4.2) which was derived
by the application of (generalized) pion PCAC.

V. COUPLINGS OF THE RADIAL EXCITATIONS

A. Coupling to vector and pseudoscalar mesons, VPP"

We now turn to a consideration of matrix ele-
ments of the type

(0l[qn Dnn]IV', &=0) ( b a1, . . . =, 7), (S.l)

where IV, X=O) represents a vector meson in its
longitudinal light-plane helicity state. We take
into account the [SU(3) && SU(3)]~ transformation
properties of the axial-vector divergences, satu-
rate the matrix element by the sequence of radi-
ally excited pseudoscalar mesons, and use Eq.
(3.7). If V is a p meson, one gets the two rela-
tions

Mn Fn fn + P Mnn FnnFnfnnnn+ g Mn Fgnnfnnnn
n+ 1 n= 1

Mnn FnnFnmfnnn nt= m„InFnMn, (5.2a)
n, m = I

~ ~

'0'1m, -m„ (4.9)

where f,'"'(0) is the form factor defined by the
matrix element (K"

I q I }}).Taking into account
charge-conjugation invariance and the fact that
the form factors f,'"' and f,'"' defined in (4.2) are
first-order quantities, one can show to this order
that f,'"' (0) = f,'"'(0).-Therefore, using Eq. (3.2)
and the fact that at zeroth order MKn ——M,n', Eq.
(4.9) implies

} OO

n 'E f(D}= (
' ," M, 'F, + Q M,, n, f,'"'(D}
2m

(V'(k, }()
I j~(

I
P'(p))=f ~ 2 e ~ pfrep. (5.3)

Note that because of its even charge-conjugation
parity, the [(3, 3) + (3, 3)] part of the commutator
does not contribute to the above matrix elements,
and the latter come out to be of second order in
the quark masses.

We next analyze, up to second order, the quark-
mass dependence of the left-hand sides of Eqs.
(5.2).

(I) The quadratic solutio-n case. Let us first
point out that if we had retained only the pion or
kaon contribution (ordinary PCAC), we would have
concluded that M,' and MK are second-order quan-
titie s in the quark masse s. Theref ore, the P CAC
hypothesis in its generalized form Eq. (3.7) main-
tains the viability of the quadratic solution. Re-
cail that in this case both M, ' and F,n are of first
order in ~n„. The third and fourth terms of the
left-hand side of Eq. (5.2a) are therefore of second
order in the quark mass. Since the first term of
the left-hand side is of first order in m„, the
second term must also be of first order so as to
cancel it; therefore,

M 2F f + p Mnn F nfn nn= O(m') . (5 4)
n=l

If we assume that the p meson couples only to
nearby resonances then we can neglect in the sum-
mation above all but the first radially excited
meson (the v'). To this approximation,

If-"ff-.l

= IM' F,fM F" l=o(1). (s.s)

A similar conclusion can also be deduced from
(5.2b), as well as from analysis of the matrix ele-
ment (01[q», L}5»] I(d):

pK& K pKK cvK' K cuKK

= IM»'F«IM» 'F«. I=o(1) . (5 5)

(ii) The linear solution case. Her-e the first and
fourth terms of Eq. (5.2a) are of second order,
while the third term is of third order (and so can
be neglected). Therefore, the second term must
also be of second order. With the same approxi-
mation as above, this implies

M» F» fn»»+ Q M»n F»nF»fn»n»
n=1

+P M«'F»F»nf(}»n»+ Q M»n'F»nF»~fn»n»~
n=l n, m =1

f„,,=o(m.„)
and similarly

m +m„f» «=f- «=o

(s.7)

(5.8)

2

InFnMn, (5.2b)
Next we consider the matrix elements Eq. (5.1)

corresponding to the K* meson state. One gets'
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the two equations
I f»' «'./fx*«. I ™x/Mx' (5.12a)

M x'F»F.fx*x.+ Q M x' Fx"F.fx'x"
n= 1

+ Q M» F»Fnnfxnxnn
n~ 1

I fx 'x.'/f» 'x. I ™./M; .
Similarly)

If„„/f„,l= lf.../f„,„l=M, /M, , (5.13a)

n, m=1

Mx"'Fx"F. f»*x" lf„„/f;„I
=M, /M, . (5.13b)

=m„' " I~wE~gM~w, 5.9a
One can now estimate the partial decay widths

of the»' and K' mesons (within 20-40%%d),

M, F,F»fxnx, +Q M~ F, Fxfxn»,
n=l

+ Q M nF Fxnfxwxn„+ Q M nnF nF»mfxnxm „

n, m=1

I'z{»'- p») =10 MeV,

I'~(K' - p K) = 30 MeV,

I'~ (K'- &uK) = 10 MeV,

I'r (K' K») = 60 MeV,

(5.14)

+ M
Q=m„'

2
" Ix+FxgM»n, (5.9b)

(i) In the quadratic-solution case the conclusions
are analogous to Eq. (5.4): The first and second
terms in the left-hand side must cancel to first
ordex', while the third and fourth texms have the
same quark-mass dependence as the right-hand
side. The approximation of retaining only the
first radial excitation implies

If»*',/fxnx. l

= IM 'F /M 'Fx
I
=o(1),

(5.10a)

Ifx'x" /fx*x. I

= IM' F./Mg' F" I

= o(I)
(5.10b)

(ii) In the linear-solution case, the third term
in Eqs. (5.9) is of third order, while the fourth
term is of second order and has the same type of
quark mass dependence as the xight-hand side.
The first term is also of second order, but is
proportional to I„'(or [(I,+I„)/2j2)which does
not match the right-hand side. Consequently, the
second term of the left-hand side not only has to
be of second order, but also has to cancel the
contribution of the first term.

I,et us assume for simplicity that the quark-mass
dependence of the second term is entirely of the
same type as that of the first texm. Thus, to low-
est 01der,

M» Fxfxnx, + Q Mxn Fxnfxnxn, 0(m ), -
(5.1 la)

F fxnxn+ Q Mnn Fnnfxnxnn= Q(m ) .
n=1

(5.11b)

Keeping the 7)' and K' contributions only, after
using Eq. (3.3), we find

where the subscript L indicates that these esti-
mates refer to the linear solution. Recall now

that the ratios F;/F, and F» /F„satisfy in the
quadratic solution case the bounds of Eq. (3.6);
this allows us to place the following lower bounds
(which we trust to about 20%) on the partial decay
widths for m' and K'.

I'o(»'- p») &500 MeV,

I"o(K'- pK) ~125 MeV,

I'o(IC'- ~K) &40 MeV,

I'o (K' K*») & 250 MeV .

(5.15)

B. Couplings to scalar and pseudoscalar mesons, SPP"

The preceding analysis can be extended, to the
couplings of scalar to pseudoscalar mesons. %e
considex the matrix elements

(Ol[@;, D,'] ls') (a, b=1, . . . , 7), (5.16)

where IS) is a scalar meson state.
If S is the isoscalar e meson, presumably made

of nonstrange quarks, we find

The subscript Q indicates that these estimates
refer to the quadratic solution.

In summary, analysis of the quark-mass depen-
dence of the matrix elements Eq. (5.1) leads to
predictions about the coupling constants of the
radially excited pseudoscalar mesons to the low-
lying vector and pseudoscalar mesons. The con-
clusions differ, however, in the quadratic- and
linear-solution cases. In the former case, they
are predicted to be zeroth-order quantities in
chiral-symmetry breaking, with consequently
rather lax ge partial decay widths. In the latter
case, they appear to be first-order quantities,
thus leading to relatively small partial decay
widths.
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(5.17)

where G, represents the coupling of the scalar
meson S' to the vacuum via the scalar density w':

which can be generalized to the other scalar me-
sons

&0I&'IS'&= G, 6„(a,b= 1, . . . , 7),

&s'I j.o IF'&=Id...+ (i}"6..5-„]f,»
(5.18) G, = (g) 11f,F„,

(5.21) then reduces to

(5.26)

(b, c= 1, . . . , 7). (5.19) If,„,„I=M,(fif„' M, ')/F, ,u, , (5.27a)

Here, in contrast to the vector-ineson case, it
is the [(3, 3)+ (3, 3)] part of the commutator which
provides the unique contribution to the matrix ele-
ment. In general, the coupling constant G, is ex-
pected to be a zeroth-order quantity in chiral-
symmetry breaking and therefore the right-hand
side of the equation is of first order. The quark-
mass-dependence analysis is now straightforward
and proceeds as in Sec. V A.

(i) For the quadratic-solution case, the first and

second terms of the left-hand side are of first
order; there are no results of importance for the

coupling constants f„,, Presumably they are
zeroth-order quantities.

(ii) For the linear-solution case, only the second
term of the left-hand side can be a first-order
quantity, and therefore it must balance (in leading
order) the right-hand side of the equation:

Similar expressions can also be obtained for the
coupling constants f,»», f„».„ f„».by choosing
the appropriate SU(3) indices in the matrix ele-
ments of (5.16),

I f,», I
=M„(half»,2 M, ')/F-»M», ,

I f„»,, I
=31„(M», —iaaf„)/FqilI», ,

If„,„,I
=,if„(M„~,lf„)/F„fif,

(5.27b}

(5.27c)

(5.27d)

These formulas allow us to calculate the partial
decay widths of m' and K' into scalar and pseudo-
scalar mesons. The only difficulty lies in the lack
of knowledge of the masses of the scalar mesons.
These are not accurately known; we adopt here a
purely phenomenological attitude by assigning
the)m "effective" values. We choose M, = 700 Me V
and, VI„=1100—1300 MeV. We then get the partial
decay widths

PM n" F,nF z" ' 2= 2m„G,+ O(rn'"), (5.20)

After retaining in the series the m' only, one ob-
tains the estimate

I'~ (v' - «-„)= 400 Me V,

I'~ (K' - «K) = 100 MeV,

I'~ (IC'- » m)
.:- 100 MeV .

(5.28)

2n)„G,(M, ' —M„,'} (5.21)

r'lI„E„=M~FE —r'll, F,
Remembering that

&&0I 11I»&»= I„' „F=(»~, »~„)&0I~rI..&

(5.22)

(5.23}

and using the quark mass formulas obtained in
Ref. 20,

n2„=M, F,/MGF„(ng, + &n „)/2= 'l1»F»/W6F»*, .
(5.24)

The coupling constants G, are not measurable
quantities; however, they can be evaluated on
theoretical grounds. In Ref. 20, the following
relation was derived between the I&-meson param-
eters and that of K and v:

I'~"'(m') =400 MeV, I' ~o" (m') &900 MeV,

200 MeV = I' "'(K').- 300 MeV.

I'~"(K')&600 MeV.

(5.29)

Qualitatively, then, the linear solution gives a K'
total as well as partial width consistent v ith ex-
periment, "while the quadratic solution gives the
corresponding widths too large. " The 7)' total
w'. dth is so large in both cases «s tn make its de-
tection quite difficult.

C. Couplings to two pseudoscalar n&eson», I'I'V"

Let us suppose that ~' and K' decay entirely via
the channels just discussed; furthermore, it is
reasonable to suppose that for the quadratic solu-
tion the P' - SP rates are at least as great as for
the linear solution. Then the total widths satisfy

we find

G„=(-,.') .U„F,~, (5.25)

As we analyzed the couplings of radially exc.teri

pseudoscalar mesons, we may similarly treat
their vector-meson partners. If we assume that
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the p' (1.55-GeV) meson is one of the SU(6) part-
ners of m' and K', then we get the equalities"

&"
I
v',

I » =
&

p'
I C I

v ), (5.30a)

(5.30b)

We can now apply generalized PCAC, Eq. (3.7), to
get

(
P f ... Q P, f„...) 31,

n=l

Pf„~Q, ,, P,,f„„)III, , (5.313)
n=l

I'z ( p' —w)() = 10 MeV,

I'z (p' —KK) =30 MeV .
(5.34)

which seem to be in agreement with the experi-

P f, , + P f.,)31,
n=

P f; +Q P "f,, )
51, (5.315)

n=l

(i) For the quadratic-solution case the first term
of the left-hand side of Eqs. (5.31) is of zeroth
order in chiral-symmetry breaking, while the
second terms of the left-hand and right-hand sides
are of first order. Therefore the first term of the
right-hand sides must also be of zeroth order, and
must satisfy the equalitiesf„,/M, =f,„/M,, = IM, F,f„,/MP. F;MP I,

(5.32a)

f.r 'r/M. =f"rr/if" = IMz'+rf. rr/I(fr '&» M. I
.

(5.32b)

The second equalities come from Eqs. (5.5) and

(5.6). These relations imply that the coupling con-
stants f, „andf, ~ r are zeroth-order quantities
and the decay widths I'(p'-7()(), I'(p'-KK) [eval-
uated by using the estimates Eq. (3.6)] are of the
order of a. few hundred MeV.

(ii) For the linear-solution case all the terms of
the left-hand sides of Eqs. (5.31) are of first order
in chiral-symmetry breaking, which implies that
the first term of the right-hand sides is also of
first order. Therefore the coupling constants
f;„andf, rx are expected to be small. To get a
quantitative estimate of their values, let us sup-
pose that the equalities Eq. (5.31) hold also (ap-
proximately) term by term, that is

fP.../MP =fP„,/MP, =fP„M,/MPM. . . (5.33a)

fpr'r/M, =f;rr/M p. =fp„rMr/»& p Mx. . (5»b)
The second equalities come from Eqs. (5.13). One
then gets the predictions

mental data. '-' This indicates qualitatively that the
decay modes of the p' into two pseudoscalar me-
sons are completely negligible, since I', is on the
order of several hundred MeV.

There are experimental indications" for the
existence of a p resonance at 1250 MeV, but the
overall evidence is inconclusive at present. In the
conventional quark-model framework, with a
harmonic-oscillator spectruns, only even daughters
of Hegge trajectories appear; therefore, the first
radial excitation of the p is found near 1.6 QeV.
If one were forced to include odd daughter trajec-
tories [as a p(1250) would imply], then the con-
ventional framework would have to be drastically
modified. Similar remarks hold, ~nutatzs nsutan-
dis, for daughter trajectories of the pions.

VL SUMMARY AND CONCLUD1NG REMARKS

The idea of an approximate hadronic symmetry
such as SU(2), SU(3), or SU(3) x SU(3) has proved
to be extremely useful, in spite of our lack of
knowledge of the forces which break these sym-
metries. The key to success lies in our ability to
recognize an appropriate "symmetric" world as
a reference, from which we may proceed in a
perturbative sense if the symmetry breaking is
small ~ We have been concerned in this paper with
the problem of SU(3) x SU(3) symmetry in general,
and with the breaking of this symmetry via PCAC
in particular. The quark-vector-gluon model
suggests that chiral symmetry is only broken by
the quark mass term; we have adopted this view-
point, with the further assumption that the quark
masses may be treated as small parameters in a
perturbative expansion about the "massless" lim-
it. Note that the quark masses enter not as in-
ertial masses of free quarks, but as symmetry-
breaking parameters. In particular, the mass
)))„=»),measures the breaking of SU(2) x SU(2),
while»3, —n„d3escribes the breaking of SU(3}.

We have stressed the necessity of generalizing
the notion of PCAC by assuming the dominance of
the axial-vector divergence by the sequence of all
pseudoscalar mesons appearing in the model. The
ground state of this sequence is the usual almost-
Goldstone boson, while the remaining particles are
its radial excitations, whose masses do not vanish
in the chiral-symmetry limit. Such a generaliza-
tion provides a simple and systematic way of
treating corrections to ordinary PCAC.

We have studied vacuum-to-one-particle matrix
elements of commutators of light-plane charges
and axial-vector divergences, expanded up to
second order in the quark masses. It was shown
that the quadratic [M,'=0(m„)]and linear [M,
= 0(3))„}]solutions lead to consister1t results, at
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least formally. However, the respective predic-
tions frequently differ from each other, notably
with respect to the decay modes of the radially
excited pseudoscalar and vector mesons. It ap-
pears that the linear solution provides a natural
explanation for the smallness of some decay am-
plitudes which are predicted to be first-order
chiral-symmetry-breaking quantities.

One may also study low-energy theorems, such
as those involving 0 terms in mN scattering, using
the approach we have developed in this paper.
However, one will encounter technical difficulties
here which arise from the mass-shell extrapola-
tion. One may adopt one of the several prescrip-
tions that have been proposed for extrapolating
onto the mass shell. Then one saturates the pseu-
doscalar sector of the absorptive part of the re-

levant amplitude by the entire family of pseudo-
scalar mesons and radially excited partners, and
not only by the lowest-lying state. Therefore, the
corrections to PCAC and the corrections arising
from the mass-shell extrapolation may be treated
separately and the effects added.

It is clear that a determination (or even an es-
timate) of the corrections to ordinary PCAC, such
as we have given, leads to a firmer theoretical
basis for certain sum rules and low-energy theo-
rems. If done carefully, a perturbative approach
to chiral SU(3) symmetry breaking can be con-
s is tent.
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