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Why are there only two meson nonet structures' SU(4) provides an answer
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In the theoretical framework of asymptotic SU(4), chiral SU(4) (4) charge algebras, SU(4) breaking
characterized by exotic commutators, and the hypothesis of asymptotic 16-piet realization of SU(4) in the
algebra fA;, A, ] = if;,kV„,three general pure mass relations are derived without using any approximation. One
of the remarkable features of the theory is that its SU(3) limit predicts the existence of only two distinct

nonet mass splittings which accommodate the existing patterns well. The other is that it enables us to predict
reasonable masses of q„D,and I solely from an input of pseudoscalar-nonet masses.

I. INTRODUCTION in the infinite-momentum limit as follows:

The unusual pattern of mass splittings within the
0 ' nonet, as compared to those within other SU(3)
nonets (1,2", etc, ), has been one of the puzzles
of hadron physics. Schvringer's oonet mass form-
ula (SNF), which was discovered' in various ways
in SU(3) and is weH satisfied by the 1 and 2"
nonets, fails for the 0 ' nonet since it predicts
the mass of the ninth 0"' meson. q' to be around

1.6 GeV, while the best candidate is q'(958}. In

this paper, are demonstrate that the observed pat-
terns of SU(3)-nonet splittings (incluCkng that of
the 0 nonet) can be accommodated in the frame-
work of SU(4) [but nof SU(3$ by taking an SU(3)
limit of the general 15+1-piet mass relations in

SU(4) which we derive. Furthermore, the smail
deviation of the observed SU(3) 0

' mass splitting
from that predicted in the SU(3) lfmit sets a rea-
sonable scale, for example, for the mass of the

charmed meson D t0ut adding any further con-
siderations. Our result is also consistent with the

mass of q, (0
'

) in the range 2.'?-2.8 Ge&,2

II. DERIVATION OF SU(4) CONSTRAINTS

We denote the 15 1-piet as (&, ,K„,q„q,„,
D„,F„daqn,') where & denotes the & and other
quantum numbers. A nonperturbative approach'
to broken SU(4)—the method of asymptotic SU(4)
and asymptotic algebraic realization of SU(4) in

the chiral SU(4)@ SU(4) charge algebras of V„and
A —is used. The same approach in broken SU(3)
produced' the SNF

(3q „"+ v„'—4K,')(3q,'+ v„'—4K,') =- 8(K„'—v„'}'

as the general nonet mass formula. In SU(4) we

obtain three mass formulas, which can be used to
predict D„,I'„,and q~ using only nonet masses
as input. According to asymptotic SU(4), we de-
fine the SU(4) q„-q„'-q mixing parameters, among
the annihilation operators of physical particles and
the SU(4)-representation operators a"„ao,and a'„,

F t' r
XQ po +$5 0

The mixing parameter e„P„etc.can be expres-
sed' in terms of three mixing angles (&, Q, P). By
realizing (in our asymptotic limit) the exotic com-
mutators' [V„,Vs]=0, where V„=(&/&&)V„and
(n, P) stands for all the exotic combinations of the
physical SU(4) indices, four independent SU(4)
constraints (in mass squared) are obtained, '

(o;)'q,'+(p",)'q,"+(?".)'u ' =3 (4K '- s ')

&".&"„.q' P+",P"„q,"+?'",?"„q., ' =-
3 (K, ' —v, '),

(3)

(j' 2 D 8) (K 2 v 2)

=-,'(9D, '+K, ' —4w, '), (5)

For the case C„Ct=+I, ere obtain' bvo more inde-
pendent constraints from the exotic commutators6
[V,A8] =0, namely,

o.', (q, ' —x„')A"+P",(q„"—x, ')8"
+y', (q

' —n'„')C"=0, (7)

a," (q„2—r, 2)A" + p"„(q,'2 —s„')8"'
+~[5 (q~' —&,')C"' = 0, (8)

(a', —&~2 a'„)A"'+ (p", —v 2 p"„)8"'

+(?",-M2?"„)C"=0.(9)

where we define A."=—(q„(A, ~
n', ), 8"'=

{q„'IA,-[ &;& and C"'=& q [A„-[~;). The commu-
tators [V„A,] = ~f,»A, yield the additional con-
straint among the asymptotic matrix elements A"',
a"', and C"',
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These constraints, Eblis. (3)-(9), have been studied'
with approximation. Making a straightforward ex-
tension from SU(3) to SU(4), we now add the hypo-
thesis of asymptotic algebraic {or level) realiza-
tion'' of SU(4) in the algebra [A„At]=«ft»V»
which yields one last constraint,

(g tt }n (Dt't)'2 (GTt )» 3(~ PtttP T 13Ft yF Gt't }'t

(10)

The result of this paper as well as the successful

resultr in SU(3) seem to lend strong support for the
hypothesis introduced.

III. EXACT SOLUTION OF SU(4) CONSTRAINTS

We now solve E«ls. (3)-(10) exactly. Using Erl.
(9) we eliminate C"' from Eris. (7}, (8), and (10).
The ratio (A"'/D") can then be eliminated from
E«i. (10) using either Etl. (V) or Etl. (8) yielding
two independent mass-mixing angle equations
which, after simplification using Eris. (3), (4),
and (5), become

3(q..'- q')(q,"-q, ')(rn:)' = N, + (3q! '+w, ' 4K-, ') (q. , ' q. '-),

6(q„'-q„')(q,"- q„')(tn,",)' = (2D„'- q ' - w, ') (9D, '+K„'- 6q„"- 4w, ')

—(D„'-K„'){2K„'+w,
' —3q„")+2(K,' —n„')(q„"—n„') (12)

N, =-', [(4K„'—w,
' —3q„')(4K,' —w„'—3q,"}

+8(K„»—w, '} ]
and represents deviations from exact satisfaction

of SNF. Substituting our mixing-angle expres-
sions for n„p„etc.in Eris. (3), (4), (5), (11),
and (12) we obtain three equations defining the
mixing angles and two (long awaited) pure mass
formulas [in addition to Erl. (6)]:

3(q ' —q, ')(q„"—q„')sin'6' =(4K„'—w„'—3q, ')(q ' —q„')N„-
3(q ' —q„'»}sin'e'sin'g" = (4K„'—w„'—3q, ') —3(q„"—q„')sin»8',

18(q ' —q„')(q„"—q, »)sirPrr'cos'Q' = (9D, '+K„'—6q„"—4w, ')(4K- ,' —w„'—3q, ') —4(K„'—w, ')',

(13)

(14)

(15)

(3q,„+w„-4K„}[2{2K„-q„-q,'q -f., ] =[L,,n+ L,„(4K„-2w„-q„'-q,")
—2(2K„'—q„'—q„")(4K,' —2rr, ' —q, ' —q„'')+4N,], (16}

N„[N„—2(K„'—w„')'](3q '+n, ' —4K„')'+2N,(K, ' — 'w) [L«„—(8K„'—2w„'—3q," 3q„»)]—(3q '+rr, '-4K, ')
+4(K, ' —w, ')'(I, '+4N„}=0, (1V)

where I„=(6D, ' —3w„'—3qt„»—'q„'—'q„"+2K„').
If we impose that q is a pure cc state (i.e. ,
Q" =30 and g' =0 ), these five equations produce
the ideal nonet mass relations, g„"= r„'and g„'
-K,'=K,' —g,', the equal spacing g„'-D,'=D,'
—w, ', and the remarkable selection rule As'= C"
=0 (r is arbitrary).

tures. The first solution, N„=0, is the SNF [i.e.,
Eci. (1)] and is well satisfied by the almost ideal'
nonets, such as 1 and 2 . The second solution

[N, —2{K„'-w, »}']=0

or

IV. PREDICTION ON THE NONET MESON MASS

SPLITTINGS

It is natural to study first the SU(3) limit by
taking a limit of infinite charmed-quark mass. If
the limit, D„'-~and g~'-~, is applied to Eq.
(16) one obtains 2D, ' =q ', a statement of equal
spacing. Then the same limit applied to Eq. (17}
yields N, [Ã~ —2(K, » —w, ')'] =0. Therefore, in
the SU(3) limit we now obtain two possible solu-
tions, hence we predict t~o possible nonet struc-

+& (K» —w ') =0 (18)

coincides with one of the three l$-piet mass
formulas» derived in the very early work on SU(4}
and is well satisfied by the 0 ' nonet (q' is pre-
dicted to be around 0.943 GeV). Therefore, we
find that the SU(3) limit of our mass formulas ac-
commodates nicely the observed Aeo distinct Pat-
tsrrts of SU(3) nonets. We show below that the fin-
ite masses of q, and D do not modify the result
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significantly as long as they are reasonably heavy.
Since Eq. (18) is found only in the framework of
SU(4), the somewhat eccentric structure of the 0 '
nonet may be considered an early manifestation of
an SU(4) effect."

The width of the p is greatly affected by the
size of the small SU(4} angle $". Using Eq. (13),
we rewrite Eq. (14) as 3(q ' —q, ')(q ' —q„'')sin'e"
sin'(I)" =&„.Thus there is a clear difference in the
size of $" for the two types of 16-plets. If N„ is
very small, as is the case for the 1 and 2", $"
will also be small and the width of g,„willbe narrow.
For the 0 ', @„is much larger, leading to a value
of $" and consequently a much broader p~ width.
From Eq. (13) the SU(4) correction to the SU(3}
mass formula 3(q,"—ri„')sin'9' = (4K„'—v, m —3'0„')
is N„/(ri,„'—0„').Thus the g„-q„'mixing angle
will remain largely unchanged for the ideal nonet
while the angle for the 0 ' nonet could be signifi-
cantly changed.
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V. CALCULATION OF THE MASSES OF D AND q,

Using Eqs. (16) and (17), the masses of D„and
g~ can be calculated sole~y" in terms of the
SU(3)-nonetparticles v„,K„,q„,and rt'„. Ingeneral,
there will be four solutions i.e., four pairs of
masses (D„,q ). We have done the calculation
for the0 ' 15 1-piet, inputting the masses of r„,
&„,'g„, and q„', using the average of charged and
neutral mass squareds for r„and&„.Our pre-
dicted values are D =1.65 GeV and g, =2.39 GeV.
The other three possible solutions are unphysical
and can be discarded. To test the sensitivity of
our physical solution, we varied p' between
0.938 and 1.000 GeV. Our results are presented
graphically in Fig. 1. The masses of g, and D,
of course, go asymptotically to infinity" for q'

=0.9425 GeV. For q'& 0.942 GeV, the mass of

ri, becomes imaginary (i.e., q, ' is negative). For
0.980 GeV, q, again becomes complex. Be-

tween g' =0.960 and 0.951 GeV, g, gradually in-
creases from 2.26 to 3.12 GeV and at g' =0.954, a
shift of only 4 MeV from its measured value, we

obtain D =1.87, I" =1.94, and g, =2.69 GeV, rea-
sonably consistent with present experimental val-
ues. ' &The cc contents are 0.03%%up for q, 0.53% for
q', and 99.44% for g~. ) Therefore, our mass

2.00—

l.00 I I I I

0.935 0.945 0.955 0.965 0.975 0.985

Mass of q' (GeV)

FIG. 1. Dependence of the gc and D masses on the in-

put mass of g'.

formulas give a realistic scale for charmed mas-
ses and, with a small shift in the measured mass
of the g', predict reasonable masses for D, +, and

~C '
Although the qualitative features of the 0 ' 16-

piet now seem to be much clarified, detailed
agreement with experiment will require the inclu-
sion of the effects of SU(2} breaking, SU(4) mixing
with the radially excited states, "and the possible
existence of more quarks. These effects will also
certainly play a role for the decays involving the

q, such as &/g- q, +r. One immediate consequence
(compare with Ref. 3) of the now favored choice of
q' = X(958) over q'—= E(1420}is that the hadronic q,
width becomes smaller (& 50 MeV) and the main
modes will be g, -&*K and A, n.

*This paper contains part of the thesis research of H. L.
Hallock to be submitted to the University of Maryland in
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VFor a recent review, see S. Oneda, in Proceedings of
INS International SymPosium on New Particles and the
Structure of Hadrons, University of Tokyo, 1977,
edited by K. Fujikawa, Y. Hara, and H. Terazawa
institute for Nuclear Study, Tokyo, 1977), p. 94.

BHowever, SNF is a much better mass formula for the
1 and 2++ than the ideal nonet formula.

pJ. D. Bjorken and S. L. Glashow, Phys. Lett. 11, 255
(1964); D. Amati, H. Bacry, J. Nuyts, and J. Prentki,
Nuovo Cimento 34, 1732 (1964) ~ Two other mass
formulas derived predict too low masses for the D and
E. Assumption of the 15-piet is certainly not realistic.

Z. Maki, T. Maskawa, and I. Umemura [Prog. Theor.
Phys. 47, 1682 (1972)] used Eq. (18) as an empirical
relationship in their early work on the 16-piet. For
review on the 15- and 16-piet, see M. Nakagawa,
Meijo University Report No. DP-MJU-601, 1976 (un-

published).
' We note that the papers cited in Ref. 3, in which con-

straint (10) was not imposed, produce results consis-
tent with ours, provided the input of the physical
masses of both g' and D are made. In fact, on the
basis of hadronic decay rate calculations, these earli-
er papers seem to favor the choice of q'=X. It is
amusing to note that applying the limiting procedure
employed in Refs. 3 (i.e., g, , p8-0 but p8g, -0)
to our Eqs. (13) and (14), we obtain the SNF, as was
the case in Refs. 3. However, this simple limit is not
sufficient to derive our other nonet formulas, Eq. (18).

' However, for multiplets other than the 0~ this method
is not practical, since the masses involve large un-

certainties.
Corresponding to SNF, another singular behavior
takes place around g' = 1.6 GeV.

~ For example, D. H. Boal, Phys. Rev. Lett. 37, 1333
(1976).




