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Higher-order mass formulas in SU(4)
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%e derive mass formulas among hadrons (~,~, 0, l ) in SU(4) framework including second-order
mass contributions from 84 and 20" representations. Some hybrid mass relations are obtained by relating

second-order parameters. Masses of some hadrons are estimated.

I. INTRODUCTION

Several mass sum rules relating the mass spl. it-
tings of hadrons have been obtained in charm
quark models' and in SU(4) symmetry considera-
tions. ' In SU(4) symmetry, the strong mass-
breaking operator has been assumed' to transform
like the T,'+y T,' component of the adjoint represen-
tation 15. A large mass difference between g and

(p, u, P, K*) indicates, however, that SU(4) is so
badly broken that the mass sum rules derived in

first-order breaking are likely to be subjected to
large corrections due to higher-order SU(4) break-
ing.

In the present paper we examine the second-
order SU(4)-breaking effects on the masses oi had-
rons (;", —,", 0, and 1 ). Higher-order effects
have been considered earlier in the SU(3) frame-
work. ' Some hybrid mass formulas have also been
obtained by relating higher-order parameters. 4

In our considerations electromagnetic (em) mass
breaking is also included. The first-order mass-
breaking operator is taken to transform like the

aT', + bT', +cT',

component of 15. The second-order mass-break-
ing Hamiltonian then would have an SU(4) trans-
formation property dictated by the direct pro-
duct:

15 S15= 162(15)620"6 45645*684. (1.2)

The representation 15 has already been taken in
the first-order breaking (1.1). We wish to con-
sider the effects of 20" and 84 as second-order
mass contributions. Thus the second-order mass-
breaking operator transforms as

11 33 44 13 14 34
ll & 33 44 13 14 & 3

components of 20" and 84. The general mass
operator in SU(4) then can be written as

where t, stands for the spin of the multiplet.
In Sec. II various mass relations are obtained

assuming 84 dominance [as an extension of 27 in

SU(3)]' in second-order effects. 20" is also in-
cluded later in order to have more general mass
breaking. We express the higher-order param-
eters in terms of masses thereby relating the dis-
crepancies present in the first-order mass form-
ulas. We observe that the more general mass
operator (1.4) gives the Coleman-Glashow sum
rule and its charmed analog (2.2b). It also gives
many relations which have been obtained in quark
models. ' Mixing masses are also derived in Sec.
II.

In Sec. III, we give some hybrid mass relations
assuming universality of certain ratios of the
higher-order parameters. The hybrid mass form-
ula. s (3.1) among the uncharmed hadrons have been
obtained earlier in SU(3) considerations. ' Be-
cause general mass-breaking formulas have a
large number of parameters, we are unable to pre-
dict mass values of hadrons as such. In order to
have some idea about the values of masses we as-
sume that the terms like T,",, T14 T34 do not con-
tribute appreciably to the mass breaking. This
may be understandable if symmetry breaking is
considered in a tadpole scheme. '

II. SECONDARDER EFFECTS

In this section we describe various mass rela-
tions among baryons and mesons assuming 84
dominance of second-order mass breaking. The
20" representation is included later. In writing
mass relations we have used the particle symbol
to denote its mass.

A. 2 baryons
1+

Second-order mass contributions are obtained
from the contraction:

+ /DIFT1+ $ Dl F T3 + p Dl FT4+ d T (1,1)
f i 1 i 3 i 4 i (1,1)

8' B" 'H"
[k, m] l (2.1)

(3,3) (4, 4) (1,3) (1,4)+ eiT(, ' )+fi T( '
) +g,. T(] 3) +h,. T(1'4)

k T""+g"Tt"~ h' Tt"~ k' T"'",'1 4)(3,4) +~ i [ly3] i [1 4) + i [3 43

where H, z represents a second-order mass-break-
ing spurion. Both upper and lower indices are sym-
metric and antisymmetric for 84 and 20" repre-
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sentations, respectively.
|'a) 84 dominance. This gives the following:

—Z'+ Z =n —P

(1.6 + 0.7 MeV = 1.29 + 0.01 MeV),
~++ ~+ Q++ ~0+El —Pl P

3(:-,"-:,")-4(Z - Z', )- (:;—,)

=2(:"'—:") —4(Z' —Z )-20 MeV,

-dl/. —~l + ~l —2~l

= Z'+ Z —2Z' (1.8+0.2 MeV),

2g, t.= (Z; —Z', ) —(:;—:-,'),
2h, t, = 4(Z' —Z ) —3(Z; —Z', ) —(:.; —:-',)

In the absence of em breaking we get

(0, :-,) —(0, Z, ) = (Z —:")(-125 Me V),

(2.2a)

(2.2b)

(2.2c}

(2.2d}

(2.2e)

(2.2f)

(2.3a)

3(=, Z, ) (:-,' A,') = 2(A —N) (353 MeV),

(2.3b)

—2e, /, ——2N+ 2:" —3A —Z

= 2(Q, + Z, —2:",) (-26.83 Me V), (2.3c)

—2f l/2 = 2N+ 2 2
—3A

2k, t, ——(3A+ Z —2:" —2N)

(2.3d)

2[2(:",—Z, ) —(:- N)] (see Ref. 6)

(2.3e)

+ (:;—:.',)-(Z(- Z;), (2.4a)

In this multiplet some of the states are mixed be-
cause of SU(2) and SU(3) breakings. We calculate
the mixing masses to be

V3 m~c0=(Z —Z —:"+. )

2k,'i, ——(A,' —:.() —2(A —N) + 3(:-, Z,),
2V 3 m~a+=4(Z —Z += =0)

1 1

+ 3[(:-,"-:-,")- (Z; —Z;))

+ (:;—:-,')-(Zi- Z;),

2(V 3 m ~ =- (A —Z)+ (:",' —:,)-(A,' —Z,).

(2.5d}

(2.5e)

(2.5j)

3+B.
&

baryon resonances

For —,
' isobars, the 20" representation gives a

null contribution, as it is not present in the direct
product

20~ {320 = 1 $15 $84 $300. (2.6)

Second-order mass effects from the 84 are ob-
tained from the contraction:

ffm (u, r)
&~r 0((,'y) ~

This relates the discrepancies present in the
equal-spacing rule in the following manner:

(2.7)

The Coleman-Glashow relation' (2.2a) and its
charmed analog (2.2b), already obtained in qua". k

models, ' remain valid in our general mass break-
ing (1.4). Relations (2.2d) and (2.3a) have been
obtained in. quark models by Franklin' and by
Hendry and Lichtenberg, ' respectively. In other
relations, discrepancies present in first-order
ma. ss formulas a.re rela. ted. ' It may be worthwhile
noting that the most general mass operator (1.4)
gives t;he A —Z mixing mass to be the same as
predicted in SU(3) breaking up to first order, 'if the
T(l 3) component of 84 can be ignored. For the
mass breaking, the tadpole consideration. s' do
not favor this contribution (TI,",I).

W3m0- c+=(Z —Z —:"+" ),
1 l

+ (:i — i) —(Zi —Zi)

+ 3[(Z; ZO) —(ZO —Z )], (2.4b)

2/v 3 ma. ~ =2(:,—Z, ) —(A N) (Z-N) . (2.4—c)

(b) ZO" effects. If we include the 20" represen-
tation, relations (2.2a), (2.2b); (2.2d7, (2.2e), (2.3a);
(2.3c), (2.3d); and (2.4a) remain unaffected. In

addition, the following relations are obtained:

Q++ Q 3(Q+ QO)

(="- ) (&'- & ) =2(Z*'- Z* ),
(

g++ g+) (AO A ) 2(Z++ Z+0)

3/a
8 d =El "+Zlo-2Z1'

= Z*'+ Z* 2Z~'

2ao,

(2.8a)

(2.8b)

(2.8c)

(2.8d)

4h, t, = 2 (:" —:-) -3 (:"",-,')

-(:-i —:-i)+2(Zi —Zi» (2.5a) ls h (Zg+ Zgo) (g0 (t )

(2.Se)

(2.8f)

4(g,'t 0
—h', i,) = 4(Z' —Z ) —4(Z —Z, )

+ 3(:-f'- =-l')
In the absence of the electromagnetic interaction

we get

-(:";—:"',) —2( -: ),
4k, t, ——(:,—Z, )+ 3(A,' —:",')+ 2(Z —N),

(2.5b)

(2.5c)

0 A = 3(:-* Z*)

(440 Me V = 447 Me V), (2.9a)
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n,* n=s(n,*-n,*),
3( 4 g4)

(2.91)

(2.9c)

2v 6 m'(POP8) = 3(n' —Ps') —2(E' + w —K' —D ),
(2. 12d)

2v 3 m (POP„) = (w + P8 —2P, 5 )

—2 (F + n' —K —D') . (2.12e)

(2.9d)

—"h», =(:-+ Z~) (Z+ s).
(2.9e)

Relations (2.8a) and (2.8d) have been obtained in

the quark model by Franklin' and (2.9a), (2.91),
(2.9c), (2.9d) by Hendry and Llchtenbel g.

C. Pseudoscalar and vector mesons

We consider sixteen 0 mesons to belong to the
15S 1 irreducible representations of SU(4). Sec-
ond-order effects with 84 dominance predict

SP,'= 2(F' —IP —K'+ w')+ w'+ P,'+ P»'. (2.10a)

We express the higher-order parameters in terms
of meson masses as follows:

d, = 2[(n')' (w')']

= -0.0026 GeV',

2g, = (K')'- (K'}'+ (w')'- (w')'- V 3 m'(w'q),

(2.10c)

n the 20 representation is also included, re-
lations (2.101), (2.10c) and (2.11a) are maintained.
Other relations are modified to

2h, = (P,)' —(w')'+ (D')' —(D')' —(-,')'~'m'(P, P„)
—(1/v 3 )m'(PnP, ), (2, 13a)

2g,'= (K )' —(K')'- (P,)'+ (w'}'+ v 2 m'(P+, )

—(1/v 3 )m'(P, P,) + (2/v 6 )m'(P, P„),
(2.1S1)

2h,'= (D')'- (D')'- (P,)'+ (w')'- (2/v 6 )m'(P, P„)
+ W2m'(P, P,)+ (1/WS) m'(P, P,), (2.13c)

2f0=2P~, + 2PO —4D —IB +m' (2.13d)

4ho = 2 (E + w —K' —D ) + 3P0 —Pn' —P„—w

(2. 13e)

4h,' = SP,' —P,' —P„'—w' —2(E'+ w' —K' —D'),

(2.13f)

2iYm'(P, P„)= SP,'- P„' 2P,', (2.1Sg)

4v 6 m (P+8) =6(w —P, ') —2(E + n —K' —D')

2h, = 2[(D')'- (D')'] + (w')'- (w')'

+ (K ) —(K') —V 3 m (n' q) . (2.10d)

—(SPO —PB —Pi, —w ), (2.13h)

8WS m'(POP„) =4(w +P, —2P„)
In the absence of em breaking we get

280=3' —4K +g2

0.062 Gey', (2.11a)

2f, = (BP„'+5w' —12D'- rP)+ 4(E'+ w'-K' —D'),

ko=E +m —K —D .

(2.111)

(2.11c)

The pseudoscalRI' mesons 'II, 'g, 'g, g~ Rre InIxed.
The w q mixing is expected to be small; hence P3

and P, -q limits have been used in the rela-
tions given above. However, for completeness we
write the mixing masses as follows:

(2~2/~3)m'(P, P„)= (2/V 3 )m'(P, P,) —(D')'+ (D')n

—(K')'+ (K')', (2.12a)

2V 2 m'(P, P,) = (K')' —(K')'+ (D')' —(D')'

+ 2[(P,)' —(n ")'], (2.121)

2 v 2 m'(P, P„)= (n' —P,') + 2 (F'+ w' —K' —D'),
(2.12c)

—2(E +w —K —D )

-3(SPO —P8' —P» —w ) . (2. 13i)

ctor mesoDs cRD Rlso be treRted In R sImllar
manner.

Using SU(3) considerations Coleman and
Qlashow' derived hybrid mass formulas among
baryon Rnd meson masses ln R dynamical model
of symmetry breaking in the first-order limit,
neglecting the nontadpole- type contr ibutions.
Eliezer and Singer also got many hybrid mass
formulas by relating the higher-order SU(3) mass
breaking. 4 In this paper we obtain some hybrid
mass relations among the hadron multiplets by
assuming the universality of the ratios of higher-
order parameters. Our hybrid mass formula
among the uncharmed hadrons has already been
obtained by Eliezer and Singer. The assumption
of the universality of d/e, e/f, g/h, g/h, d/g for
baryons and mesons yields:
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Z'+ Z 2Z' 2[(w')' —(w')'] Z*' + Z* 2V' 2[(p')' (p')']
2K+2:" —3A- Z 4K' —3q' —n' Q*+ Z* —2" * 4K*'- p' —3V ' (3.1)

2N+ 2:"-3A+Z 3g —4K + w

2N+ 2:",—3A,'+ Z, (BPi, + 5w' —1'2D' —r)')+ 4(E'+ w' —K' —D')

Q+ Z* —2™~
Q4+Z4 2~4

3VS —4K* + p
(8V„+5p —12D~ —Vs ) + 4(F* + p —K* —D* )

Z; —Z', —:";+ ",' (K')' —(K')' + (w')' —(w' )' v 3 m'(w'g)

4(Z —Z —Z;+ Zo) 2[(D )~ —(D')2 —{K')'+ (K )']
Z*' Z* b,'+ b,

Zg+ y go

(K"')'- (K*')'+ (p')'- (p')'- ~Sm'{p'l', )
2 [(DOO)2 (De+)2 (Ke)2+ (Kgo)2 ]

Z; —Z,' —:";+ .,' (K')' —(K')' + (w')' —(w')' —WS m'(w'q)

3A+ Z —2N —2:" —2[2(:"~—Z, ) —(:" —N)] +m' —E —D

Zg0 Zg go

:"
~

—Za —Z*+ ~

(K*')' —(K* )'+ (p )' —(p')'- WSm (p Vs)
y y2+ p2 K42 g)42

(3.2)

(3 4)

Z'+ Z- 2Z'
~+ ~O + p
-& —-i- Z~+ Z~

2[(wo)'- {w')']
(K'}'- (K')'+ (w')'- (w')'- ~3 m'(w'q)

Zg++ Zg 2Z+0
Z~ —Z~ —& +&

2[(p')'- (p')']
{K )' —(K*')'+ (p')'- (p')'- ~3 m'(p'V. )

' (3.5)

Most of these formulas are not amenable to test-
ing experimentally because of scanty experimental
information available about the masses of charmed
hadrons and about em mass differences of 2'

isobars.

=Z' Z-

= (-4.87~ O. O8 Me V), (4.la)

IV. ESTIMATION OF MASSES OF HADRONS

As the Hamiltonian under consideration (1.4) in-
volves several parameters, we are unable to pre-
dict the numerical mass values of most of the
particles. In order to reduce the number of param-
eters, we drop terms like T",„T'„',T,", in the Ham-
iltonian, which is plausible in the tadpole mech-
anism of Coleman and Glashow.

Neglecting the T,"„Tgy and Tgy components in

the mass-breaking operator (1.4) we get the follow-
ing mass relations

1+
A. 2 baryons

Relations (2.2a), (2.2b), (2.3c), and (2.3d) are
maintained. Other relations are reduced to

= (-3.12*0.08 MeV},

3(:","—:",")=2(:"'-:")+ Z' —Z

= (-1"I.7+ 0.6 MeV},

= (378 MeV),

4(:",—Z, ) =3A+ Z —4N

= (784 MeV),

Q, —"-,=Z N

= (254 MeV),

4("{—Af ) = A+ SZ —4N

= (939 MeV),

(4.1b)

(4 1c)

(4.1d)

(4.1e)

(4.1f)

(4 lg)
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&3m„o= &3m. ..f
=zp z =p+ = =149 MeV, (4.2d)

= (2.66 MeV),

4/W3 m~ ~ =A —Z'

= (-77 MeV) .

(4.1h)

(4.1i)

B. —'baryons

Recently a candidate for A,"has been observed
as a narrow state at 2.26 GeV in Am w n' decay
mode. ' Another state is also observed at 2.5 GeV
which decays to AI and positive pion. This state
can be either E', (—,")or an isobar +,*.0. Putting X,"(2.26
GeV) and Z,' (2.5 GeV) as input we are able to give nu-
merical values of sextet and antitriplet (C = 1}baryons
in Table I. Mass values of triplet (C = 2) have a
parameter f which gives the extent of second-
order SU(4) breaking. Mixing masses are esti-
mated and mixing angles are found to be

3+B. 2 baryons

In case of 0 mesons, (2.10b) and (2.11a) re-
main unaffected. In addition we get

= —0.0013 GeV', (4.3a)

F =K —n+D
= (1.93 GeV)', (4.3b)

Relations (2.8a), (2.8d), (2.9a), (2.9b), (2.9c),
(2.9d), and (2.9e) are maintained.

Using Z~
' (2.5 GeV) as input we give various

masses in Table I. Masses of triplet (C=2) and
singlet (C =3) have a parameter f which gives sec-
ond-order SU(4) breaking. Discovery of a charmed
isobar C —2 will determine this parameter.

For 2 isobars we get
+0++ w 0+ —s 0+

ggt $+p
1 1

= 0.019 GeV,

2fp 8Pj 5 P8 + 5n —12D

~S m'(P, P, ) = (K')' - (K')' - (w')'+ (w')'

= 0.0053 GeV',

(4.3c)

(4.3d)

(4.3e)

Q+p

Z+++ —Z + =Z++ Z+p
1

(4.2a)

2u 6 m'(P, P„)= 5[(K')' —(K )'] —(w )' —(w')'

= 0.0213 GeV', (4.3f)

2v 3 m'(P, P,) = 3I (w')' —(w')'] + (K')' —(K')'

=152 MeV,

(4.2b)

(4.2c}

= 0.0001 GeV',

2v 3 m'(PBP„) = (2v 2 /&3)m (P0PB)

=w —Ps2

2u 3 m'(POP„) =w'+P, —2P, S .

(4 3g)

(4.3h)

(4.3 i.)

TABLE I. Estimated masses of baryons (see text).

isomultiplets1+ ~

Z(

a (6)

Mass
(GeV)

2.50 (input)

2.69

2.88

+ ~is omultiplets
2

1

D(6

Mass
(GeV)

2.50 (input)

2.65

2.80

s(3)
02

A'
a(3+)

MI

3.75 —2'/g

4 00 2fi/2

2.26 (input)

2.49

D (3)

D(1)I Q

3.77 +8/3f„,
3.92 +8/3f„,
5.04 +8f3/g
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From the above relations (4.3c) to (4.3i) we can
obtain the mass relations among physical states
making the following transformation

g, =P, sing —P„cosp,
q' = P, s—in8+ cos8(P, cosQ+ P» sing),

q = P, cos8+ sin8(P, cosQ+ P» sing),

lT = P3 Cosg

+ si ng[P, cos8 —sin8(PO cosQ+ P„sing)] .

Here we have three mixing angles 6, P, g. ~' can
be assumed to be pure P, state, i.e. , $= 0. Sim-
ilarly, relations among vector mesons can be ob-
tained. In the calculations of the E-meson mass we

take the D meson to be the 1.87-6eV boson,
recently observed as a narrow state decaying to
(Kn) and (Kvvv)' decay modes. '

V. SUMMARY AND DISCUSSIONS

In this work we have considered second-order
effects on the masses in addition to first-order
breaking by including contributions from 20
and 84 representations. We summarize our re-
sults as follows:

(i) The Coleman-Glashow sum rule and its
charmed analog are reproduced by the general
mass-breaking operator (1.4). Some of the rela. -
tions obtained in quark models' are also regained.

(ii) Contributions of 84 and 20' representations
for the baryons and mesons are expressed in terms
of particle masses; thereby, discrepancies in the
relations obtained in first-order limit are esti-
mated.

(iii) Assuming the universality of the ratios of
the higher-order parameters for the baryons and
mesons, we obtain a few hybrid mass formulas.
Similar hybrid mass formulas have been obtained
earlier in SU(3). Hybrid mass formulas obtained
by Coleman and Qlashow' neglect the nontadpole
contribution corresponding to higher-order break-
ing (in the pure tadpole model no= v', a result
which is not present in our ease). We have derived
hybrid mass formulas among charmed states
also.

(iv) Neglecting the T,",, T«, T',, components of
the mass operator (1.4), we obtain additional mass
relations given in Sec. IV. Mass values for
charmed hadrons are given in Table I.

(v) It is noted that the most general mass-break-
ing operator (1.4), in the absence of the T,", com-
ponent of 84, predicts the SU(3) value of the A —Z'
mixing mass. ' Mixing angles of other states in
20' are also calculated.
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