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An extension, that incorporates the eo-$ mixing, of a model proposed by Schwinger in order to include

U(3)-symmetry-breaking effects in vector-meson interactions is presented. The model is applied to vector-

meson leptonic decays and to the one- and two-photon radiative meson decays. With our three parameters

chosen as P = 0.75, 8& ——4.5', and e~ = 54.7' the agreement with the current data is good with the

exception of the decay p ~n y.

Since the measurements of the decays p- 2y
(Ref. 1) and p - w y (Ref. 2) in 1974, the necessity
of reviewing and improving our understanding of
the "old" radiative meson decays, both from the
experimental and the theoretical points of view,
has become apparent. The discrepancy between
the experimental results and the standard theory,
nonrelativistic quark model and vector-meson
dominance based on SU(3), is at the level of 2

standard deviations on the average. ' This fact
has motivated a great deal of work within this
area in an attempt to bring closer together the
theoretical and the experimental results. The
main lines of research that one encounters in the
literature can be roughly classified into three
different categories that sometimes overlap each
other. In the first place, we find various kinds
of modifications to the usual quark-model approach
that, for example, use harmonic-oscillator wave
functions to calculate some overlap integrals, '
leave them as free parameters to fit the data' or
consider the corrections due to recoil. ' Secondly,
there are extended vector-meson-dominance models
which include higher-mass vector mesons in
the description of the radiative meson decays. '
Finally, we are left with those models that try to
take symmetry-breaking effects seriously into
account.

We subscribe to this latter point of view and

present here an extension, that includes the cu-y

mixing, of a phenomenological model proposed by
Schwinger in order to incorporate symmetry-
breaking effects in the non-Abelian vector inter-
actions. '

Our paper is organized as follows: Section I
contains a somewhat detailed review of the above-
mentioned model. The necessary modifications
needed to incorporate the ~-Q mixing effects are
made in Sec. II. In Sec. II we also present the
results of the application of the extended model
to the vector-meson leptonic decays together with

one- and two-photon radiative meson decays.

I. NON-ABELIAN VECTOR INTERACTION

WITHOUT w+ MIXING

In a first approach to the non-Abelian vector
interactions, this model ignores the co-(i) mixing,
assumes that p and co are mass degenerate, and

does not pay any attention to the electromagnetic
mass differences within the p and K* multiplets.
The observable particle fields are conveniently
unified in the following 3x3 array:

p +(d

W2
p

p0+p- ~go
v2

where the vector index has been suppressed for
simplicity.

The starting point for the dynamics of these
particles is the U(3) non-Abelian gauge-invariant
Lagrangian

(2)

which would correspond to a nonet of degenerate
vector mesons if V„were the field that describes
the observed particles. This symmetry is broken
in nature and one takes the attitude that the
Lagrange function Eq. (2) represents, in terms
of the fields V„and V„„, the U(3)-invariant piece
of the full vector-mescn Lagrangian. The U(3)-
symmetry breaking is introduced not only by allow-
ing each vector meson to have its real mass, but
more fundamentally, by distinguishing the observ-
able particle fields v„and v„, from the carriers
of the partial symmetry V„and v„, by means of
the linear transformations
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Vpv= Vp r

(3R)

(3b)

where m signifies the physical mass of a particle,
and P is a parameter to be selected empirically.
In other words, the right-hand side of Eq. (3a),
for example, is intended to be just a shorthand
notation for

(m, ')
'

which specifies the action of the operator (III/mp
upon a matrix v written in terms of the particle
fields.

Tile above-mentioned lllleRI' tI'Rllsfol'111Rtlolls (01'
operators) provide us with a way of assigning
arbitrary symmetry-breaking factors to any one
of the particle fields that are contained in the
array v&. It is worth noticing that this goal cannot
be accomplished in the simpler framework of
matrix multiplication.

The problem of extending the definition of the
linear transformations introduced in Eqs. (3) to
include any 3X 3 matrix A =[a;,] is readily solved
here by noticing that each element a;, of the matrix
A can be naturally associated with a definite
symmetry-breaking factor as suggested by Eq. (4).
One is thus led to the generalization

(m )'

which completely defines the operator (m jm )
8 in

the matrix vector space.
The partially invariant Lagrange function that

describes the vector interaction is taken to be

2=T =,'i„. S"P-a" "-P ", "])+tv„„'"—imp v, i'
2 8 3-38m p j 2 m

+ Tr 4V
m

—1 e" -&m v —1 e"
m

P P
(6)

The first part of it reproduces Eq. (2) and con-
stitutes the invariant part of the Lagrangian. This
partial symmetry is realized in terms of the V„
and V&„ transformation properties provided the
second part of the Lagrange function is absent.
The latter part breaks this invariance and is de-
signed in such a way that the nonderivative terms
of the full Lagrangian expressed in terms of the
physical fields are

Tr [-,' v„,v"" ——,
'
v„m 'v" ],

where m is the vector mass operator. It is worth
noticing that the definitions Eqs. (3a) and (3b)
provide the right derivative terms for the physical

fields in the Lagrange function Eq. (6). The cubic
terms in the interaction do i.ndeed acquire ex-
plicit mass factors which simply means that we
are introducing symmetry-breaking effects in the
effective coupling constants.

Before considering the electromagnetic interac-
tion, we write down the transformation properties
of the field V„under a non-Abelian gauge trans-
formation generated by 6X,

(6)

and the expression for V„„that is produced by
applying the action principle to the Lagrangian,
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Eq. (6),

Vu = ' s„V„-s„V„- [Vv

formation to be the one generated by

6&(x) = q»(x),
one finds that

(14)

From the last two equations it is apparent that
the general transformation property for V~ is
given by

m 2s - '

~~m 't28
5 v~p =z 5A

I / ) vppf ~ (10) and

e
51 V„-v2 —qA„~ =f5y(x) q, V„-vY —qA„

(15a)

In other words, V~ transforms covariantly (or
unitarily) only if one stays within a particle
multiplet, that is to say, under any combination
of isospin and hypercharge gauge transformations.

In order to introduce the electromagnetic in-
teraction one makes the substitution

0 0

e
V -V -M2 —qA q=

P P g P~
10 -3 0

10 0
~eJ

in the mass term of the Lagrangian Eq. (6). The
matrix q is chosen in such a way that it reproduces
the correct U(3) normalization for the electric
charge stated in the expression

1
Q = T „—3 (T„+T3, + T33)

2 1 1
ll 32 33 ' (12)

e5A„(x) = s ~5y(x) . (13)

Taking the compensating non-Abelian gauge trans-

Now it is crucial to check that the full Lagrangian
Eq. (6) is invariant under the Abelian electro-
magnetic gauge transformation

5V„, = f5-y(x) [q, v„„j, (15b)

II. NON-ABELIAN VECTOR INTERACTION

WITH u+ MIXING

In order to include &-g mixing effects we start
by redefining the 3&&3 array of observable particle
fields v„ in the following way:

which is obtained from Eq. (10) by noticing that
the matrix q in Eq. (11) can be written as a linear
combination of the identity matrix, the hypercharge
generator, and the third component isospin
generator. That is to say, the matrix p can be
moved across any operator of the type (m/m)'
that appears in the Lagrangian Eq. (6). In this
way the invariance of this Lagrange function under
the combined electromagnetic and induced non-
Abelian gauge transformations is made apparent
because the problem reduces to show that the
trace of the product of any two matrices is in-
variant under the unitary transformation gener-
ated by q according to Eqs. (15a) and (15b).

This concludes our review of Schwinger's model
which constitutes the basic framework within
which we will discuss (d-g mixing effects in the
next sectio~.

"p'+ & cose, + ysinL9,

v2
-p + (d cos0~+ ysin8~

W2
K+'

Qcos0~ —u si,n0„

(16)

which introduces the +co mixing angle 8~. We
still consider each of the p and K* multiplets to
be separately degenerate in mass.

The distinction between the observable particle
fields and the carriers of the partial symmetry is
stated again by means of Eqs. (3a) and (3b). The ex-
plicit expression for the action of the operator
(m/m), for example, upon the new array v„poses
no problem because this matrix is written in terms
of particle fields, whose masses identify uniquely
the corresponding symmetry-breading factors.

Unfortunately the situation is not so simple when
we want to consider the action of such linear
transformations upon a general matrix A. The
prescription given in Eq. (5) is clearly not sat-
isfactory here because the diagonal terms of the
matrix should be associated with a mixture of
symmetry-breaking factors as suggested by
(m/m~) v„. A natural way of getting around this
problem arises by noticing that there exists a
basis in the matrix vector space that allows v„ to
be written as a superposition of terms, each of
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V p=
P

I

M2
0 0"

(0 10}}
0 — 0, Vp+= 0 0 0

ko o o
0 0

000 00 0

VP = 1 0 0 i) Vg*=i 0 0 1 )

(0001 (oooo

which refers to a definite particle and consequently
has associated with it a definite symmetry-breaking
factor. " This basis, which we will call the V

(vector) basis, is formed by the following set of
nine 3&&3 matrices:

where ji) is an appropriate set of indices that
refers to individual particles, and A; = Tr(V;A)
is the i component of the matrixA in the V basis.
In other words, the action of the operator upon
the off-diagonal matrix elements reduces to the
multiplication by the respective symmetry-
breaking factor as before, while the diagonal
matrix elements are rearranged in a way that
incorporates the mixing angle L9y according to the
definite prescription given in Eq. (19).

The nontrivial aspect of the definition Eq. (19),
which is related only to the diagonal sector of the
matrices A and A,

-=(m/m~) A as we have just dis-
cussed, can be presented in the following equivalent
way:

0 0 1

Vg+= 0 0 0

&0 00)
(000) (0 o 0)

Vg*- —— 0 0 0, Vg*p= 0 0 0

1 0 0 0 1 0

(17)

A33

=Br 0 (m /mp)8

0 (m~/m) 8

A1

R A, ~

A„

cos~y
M2

0

COSOy

}(2

-sin6y

where R is the orthogonal matrix given by

W2

(20)

sin8y

W2

singly

M2

cos~y

sin~y

W2

cos6y —sin&v
2

sin0y
cos8y

M2

(21)

0 0 cos(9y ~

(A, a) = Tr(A'a), (18)

where the superscript T means transposed. The
components of v„ in the V basis are the respective
particle fields as can be directly recognized from
Eqs. (16) and (17).

The V basis constitutes an adequate coordinate
system where we can characterize in general the
linear transformations introduced in Eqs. (3a) and
(3b). For example, the action of the operator
(m/mz) is defined as

( /mp}'A=/ ( ') A,.V, , (19)

We notice in passing that this is an orthonormal
basis when the scalar product in the matrix vector
space is defined as

Equation (20) is the statement that the diagonal
elements A«, i = 1, 2, 3 are first unmixed by the
transformation R in such a way that a definite
symmetry-breaking factor can be assigned to each
one of the resulting terms as described by the
diagonal matrix that operates next. Once this is
done, the terms are mixed again according to the
inverse transformation R to produce the final
result.

The Lagrange function that corresponds to this
extended vector interaction is the same Eq. (6)
provided we use Eq. (16) for the observed particle
field v„. The definitions of the linear transforma-
tions involved here are such that this Lagrangian
remains hypercharge- and isospin-invariant.
Electromagnetism is introduced, as before, by
the substitution Eq. (11) in the mass term of the
Lagrangian and the electromagnetic gauge invari-
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ance of the interaction follows due to the same
arguments already discussed in See. I.

Now that we have settled the basic ideas of this
extended model we turn to the calculation of the

related decay widths. To begin with we present
the electromagnetic coupling between the photon
and the zero-charged vector mesons produced by
the substitution Eq. (11)

= —mp A" pro+ ) 3(cos8„+v 2 sin8v)&uq —
( cosa„—

S

I etting P =9 we recover the standard vector-meson-
dominanee result. " From the interaction Lagran-
gian Eq. (22) and neglecting finite-width effects,
the +-p interference, and the possible modifications
to the photon propagator, we obtain the following
for the leptonic decays of the veetox mesons:

(cos8v +W2 sln8v )I((d~e e 9

where the mass factors (mmmm„)'8
' should be

noticed.
Now we consider the meson radiative decays.

The starting point is the vector-pseudoscalar
interaction and our attitude is to write a I agrange
function in terms of the fields v~ that respect the
partial symmetry in the Lagrangian Eq. (6). That
is to say, we begin with the interaction

(24)

T($ e e )= g icos8v—
2

(~ 2 8-1
x( ~ 1"(P-e'e ),

(rn &

-KX
pp ~ ppKk

is the dual tensor of V~ and the pseudoscalar
matrix p corresponds to the 3~3 array

+ 7t cos6)~+ 'g sin~g

-go+ g cos8++ g'sin8&

M2

'g cos6p —'g sin&~ ~

(26)

which defines the q-q mixing angle 8~. At this level of approximation in the dynamics we do not make any
distinction between the observable fields and the partial symmetry carriers for the pseudoscalar particles.

The Lagrange functions for one- and two-photon radiative meson decays are obtained from Eq. (24) by

making the substitution

&m &'8

gmj g
(2V)

which is a direct consequence of Eqs. (9) and (11), and by rewriting the vector fields with bars in terms
of the physical ones.

In performing this calculation it is convenient to introduce the following parameters:

A, =A+ —WS cos(28„—8,), (28)

ft, = ft + —(-,') '~'sin(28v —8,),

(So)

(S1)

where 8O= 54.V' is defined by cos80= 1/MS and sin8~= (3)' . The quantities R, and R, reduce to (mz/m„)3
and (m~/mz)'e, respectively, when the vector mixing angle 8„ is zero, and to 1 when we have complete
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mass degeneracy. Finally we are led to the following Lagrangians for each of the interactions:

g nEp " 3 ' ]8 9 ]8 9

and

(32)

p y
=

pp 7 + Q cos0g + Q sin0p + (0&& 77 cos8y+ Q cos8y cos8 p 3A sin0y sin0~
e m~ a 2

m
p

3 m Q)

+ q cos0~sin0~+ 3A,sin0~cos0~A~ ~ 2

8
m~ p R~ 2+ (p~ m sin0~ + g sin0~ cos0~+ 3R,cos 0~ sin0~
mg

1R,+ q' —s in0~

sining

3R cos0, cos0~3

-z 1 — + ~R, ' K*'A. +K~v E +p 1+~ —3A, '~ K„*„'K +K~*v K'

+ 3R, ~p, m + ~pv (33)

g (m,2~~= — sin8»~ ' *p»g" ~ v,m, &m,
(34)

from which we obtain the width

If we specialize our results in Eqs. (22), (32),
and (33) to the case where 0» =0 and m =m, we
recover the corresponding Lagrange functions
previously found by Schwinger. '

Now we have all the ingredients to start the cal-
culation of the widths corresponding to the dif-
ferent decay modes. By comparing these pre-
dictions with the experimental results we will be
able to fix the parameters P, 0~, and 0~ of our
model.

In the first place, we consider the decay widths
that are functions only of P and 0~. Within this
class of processes, those that depend more
dramatically on these parameters are y- mp,

my, Q-e'e, and K*-Ky either because of
their rapid variation as in the first two cases, or
because the predicted number is just in the border
of the experimental error bars as in the Q leptonic
decay or in the K* radiative decay. After all, we
must remind ourselves that the decays y- mp

and y- my are forbidden when 0~ =0 and that we
are probing symmetry-breaking factors of the
form (m„/m2) which are more sensitive to the
Q and K* mesons than to the cu meson.

The decay Q- vp (Q- v'p'+ v'p + v p') is des-
cribed by the Lagrange function Eq. (24) and the
relevant piece of it is

s in~0 g~) (m1.(~- p)=
2 4m) &m~)

x 1 — m . (35

2 M'I'„(p)~(4 vp) dM
(M2 — 2)2 M2I ( )2

(38)x I'„(y- v p) .
The mass dependence of the p width I'„(p)
(accounted for entirely by the process p- mv) is
calculated from the familiar coupling

Zp„,=gp„a "mxm,

and is presented as

M 1 —4m /)VI'I'„(p) = 0.152;, GeV. (38)
m~ 1 —4m,2 m~2

This expression is normalized to the nominal p
width of 0.152 GeV for i@I =m~= 0.773 GeV. The
result of carrying on this estimation is con-

In the above equation M is the mass of the p meson.
We would like to estimate the finite-width cor-
rections in this process due to the p-meson in-
stability. To this end, we neglect the interference
between the different p channels and simply average
the mass-dependent width Eq. (35) using a Breit-
Wigner type of weight factor in such a way that
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veniently written in the form

(39)

—=3.1~ 5/p,
4m

(40)

which is consistent with the strong-interaction
relation

(41)

that gives g'/4v = 3.2 when one uses the low-energy
s-wave pion-nucleon coupling constant fo= 0.8.

In dealing with the leptonic decays of the vector
mesons, we face a problem that is common to
most of the models that use some version of
vector-meson dominance to introduce the electro-
magnetic interaction. If we were to calculate the
width r(p- e'e ) according to the Lagrange func-
tion Eq. (22) using the chosen value g'/4v =3.1, we
would obtain a number that is approximately 70$
of the experimental result. One needs the smaller
value g'/4v = 2.1 to reproduce the observed p lep-
tonic width. As a reflection of our ignorance in

understanding the q' dependence of the coupling
constant g in the region 0&@'» 1 GeV, we will
take the width I'(p —e'e ) = 6.54 + 0.76 ke V (Ref. 12)
as the input to predict the other leptonic decays
of the vector mesons according to Eq. (23).

The widths I'(v-Py) for the one-photon radiative
vector-meson decays are calculated according
to the expression

I'(v- py) C(vpy) ' m„
I ((u- v'y) (m, /m„) cosg» m

1 —m~'/m„'

,1 —m,'/m ' (42)

where the coupling constant C(vPy) can be readily
read from the Lagrangian Eq. (33) as the factor
of (e/m) *F"'v»p We use the e. xperimental value
r(u-goy) = 880+ 60 keV as the input in the calcul-
ation of the widths I (v-Py).

The remaining decay widths that are independent
of the pseudoscalar mixing angle 6}~ are presented
in the following formulas:

2 m 2

'/4v) ' m
~

(43)

2S-g m 2 3

r(&u w y) = —cos'g„ 1 —
2 m»

6
v'

m m Qj

(44)

r(Q- vp) = 1.06I' (Q- vp),

which shows that p finite-width effects are of the
order of 6/0 in our approximation.

The calculation of the g- mp width includes the
coupling constant g and, for the sake of definiteness,
we adopt the value

r(»}—2y)/m „'
r(s'- 2y)/m „'

[(9+R,')/6] cosg~ —(v 2/3}R,' singp (45)

where n is the fine-structure constant.
Some comments concerning the general charac-

teristics of the above-mentioned widths and how

they favor one or another choice of the parameters
are now in order.

In the first place, we remark that the widths for
the decays Q-mp, P-m'y, co-m'y, and K*-Ky
depend only on the absolute value of 0~, "while
those corresponding to Q- e'e, +-e'e, m —yy,
and p- my are sensitive to the sign of the vector
mixing angle 0~.

The widths r(Q- mp) and r(Q- v'y) can be fitted
simultaneously only by taking into account the
errors involved through g'/4v and r(~- v'y),
respectively. Then, it is possible to find a con-
tinuous pair of solutions for P and ~g» ~

that ranges
from P =0.6, lg» I

= 4 35' to P = 1 5, I g»l = 5 5 in
the region we have been exploring. The consistency
with the measured values is obtained from the
lower [upper] experimental limit for r(y- vp)
[r(y- v'y)].

The decay R *-R'y is essentially insensitive to
the vector mixing angle for ~g»~ & 10; but its
width depends very strongly on the value of P thus
imposing the constraint P ~ 0.75.

The leptonic mode y- e'e is sensitive to both

P and 6~ favoring P & 0.8 for (9~ &0 while the sector
0~ &0 admits solutions in the range 0.6» P & 1.2
with -4.35 & 8~ & -5.1', respectively. On the
contrary, the decay width for (d- e'e is almost
insensitive to either P or 6~ in the range 4.35
& (g» ~

& 5.1 and depends only on the sign of the
vector mixing angle.

The two-photon decay m -2y favors positive
vector mixing angles and in this region the de-
pendence upon P is very small.

If we restrict ourselves to positive vector mixing
angles (we will see later that the negative sector ap-
pears to be ruled out by the current data) the best
overall fit to the experimental results corresponds to
the choice P = 0.75 and 0~ = 4.5'. The comparison
between our predictions and the experimental
values is presented in Table I where we have also
included the results for the choice P = 1.0 and
(9~ = -4.85 . The latter value for p is appealing
from the aesthetical point of view, but unfortunately
for the moment, it requires a negative vector
mixing angle.

Now we turn our attention to those decay widths
that depend on the pseudoscalar mixing angle (9~.
The most stringent constraint on this parameter
is imposed by the ratio
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TABLE I. Meson decay widths that are independent of the pseudoscalar mixing angle O~,
for two choices of the parameters P and Ov.

Decay mode

Widths (keV)
Theory

Ov-45 ~=1 0 Ov=-4 8 Experiment

f —np

e+e

7l «yy
Q) «7l' y

K~0 Koy
K*'-K'y

P «7l' y

0.52 +0.03
8.41 + 0.59
1.12 + 0.13
0.89 + 0.11

(8.09 + 0.40) x10
870
118.4 + 8.3
76.9 2 5.2
98.4 +6.7

0.52 + 0.03
8.57 + 0.60
1.23 + 0.15
0.55+ 0.07

(6.72+0.34) x10 3

864
100 + 7.0
81.2 + 5.7
82.3 +5.8

0.57 +0.03 (Ref. 14)
5.7 + 2.1 (Ref. 15)
1.31+ 0.10 (Ref. 12)
0.76 +0.17 (Ref. 12)

(7.92 + 0.42) x 10 (Ref. 1)
880 +60 (Ref. 12)
75 + 35 (Ref. 16)

&80 (Ref. 17)
35 +10 (Ref. 2)

Its experimental value is 0.61+0.09. The implied
restrictions upon 8~ are

52.3'& 8~ ~ 56.8' for /=0. 75, 8„=4.5' (46a)

and

57.1' & 8 & 61.1' for P = 1.0, 6) = -4.85" .

(46b)

The other decay modes for which the experimental

widths are known, such as p' —qy, co —qy, and
P-qy are consistent with the bound given in Eq.
(46a) and the general tendency is to favor the lower
angles in this range. In particular, the width
I'(p'-qy) which is independent of P and 8„pro-
duces the constraint 8p ~ 56.5'. When compared
with Eq. (46b), this constraint is the first indica-
tion that negative values for gv might be incon-
sistent with the data. A complementary conclusion
about this matter can be drawn from the ratio

I"(q'- p'y) (m '8 1 —m p'/m„, ' ' sine~
I'(q'- uy) ( m z

1 —m '/m&' (R,/3) cos8» sin8~+ (2/3)R, sin8» cos8~ (47)

which depends strongly upon the sign of 6)v and has
the experimental value 9.9+2.0." In fact, this
ratio varies from 8.9 to 9.5 (increasing) for the
choice P =O.V5 and Bv =4.5' in the range 51'~ 8~

& 61'. When P =0.'?5 and e„=-4.5 this variation
is from 14.5 to 13.5 (decreasing) while for the
choice P =1.0 and 6)v =-4.85, the ratio is between
15 and 14 (decreasing), all this for the same range

TABLE II. Meson decay widths that include the g- g' system, using the same parameters P
and Ov chosen in Table I, together with adequate values for O+. The experimental upper limits
for the g' decays are obtained assuming I (g' —all) &1 MeV.

Decay mode

n -2y
p 6y

4) «7/y

0.322 + 0.022

3.6 4 0.2

0.323 6 0.016

30.8 + 2.2

4.3 +0.3

41.3 +2.9

Widths (keV)
Theory

75 Ov=4. 5 ~=1 0~ Ov=-4 85
Oz= 54.7 O~= 59.1 Experiment

50 + 13 (Ref. 19)
+ 2.5

+17 (Ref. 15)62

55 +12 (Ref. 19)

0.324+ 0.046 (Ref. 1)

rl -2'Y

4-n'y
0 —P 'Y

0 -~y

6.2 + 0.4

0.14 +0.01

152

17

7.3 + 0.4

0.12 + 0.01

168

12

&20 (Ref. 12)

&304 (Ref. 12)

&50 (Ref. 20)
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of 8p mentioned above. As we can see, the present
experimental upper limit 12.9 for the ratio given
in Eq. (47) does not favor negative values for the
vector mixing angle and we will rule them out for
the time being.

The decay width I'(q'-2y) is calculated from
Eq. (45) after changing m~ into m„. and Op into
-(m/2 —&~) as can be seen immediately from the
Lagrange function Eq. (32). For the widths
I"(v-Py), we use Eq. (42) and the decay q'-p'y
is calculated according to

m mI'(q'-p y) = —sin Hp
" 1 —

2 rn„, .
P

(48)

In order to present our results for the preferred
solution P=0.75 and 8~ =4.5, we choose ep —6),

= 54.7' that corresponds to the "ideal" mixing
angle in which case the q' meson belongs entirely
to the singlet representation of U(3). Table II
contains our predictions together with the experi-
mental data when known. For completeness, we

have also included in this table the predictions

for the choice P =1.0 and 0~ = -4.85'. In this case,
we have taken &p =59.1' which corresponds to the
value 0.61 for the ratio given in Eq. (45).

We have presented here a rather successful
model that incorporates in a consistent picture
the leptonic decays of the vector mesons together
with the one- and two-photon meson radiative de-
cays. Moreover, we have been able to see how

our particular way of introducing the U(3)-sym-
metry breaking has played a crucial role in ob-
taining good agreement with the data, notably in
some P and K* decays. The only exception in
which our model fails is in the decay p - n y
which, to our knowledge, still constitutes a chal-
lenge for all present models of radiative meson
decays.
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