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The decay amplitudes $(1020)~3m and f'(1514)~am are calculated using unitarity corrections to the
Okubo-Zweig-Iizuka rule. We use dispersion relations for the amplitudes )~pm and f'~me and evaluate
the contributions arising from intermediate states such as KK, K~K, etc. The KK intermediate state
contributes to the absorptive part of the amplitude P~pm a value which corresponds to a partial width
I ($~37r) of 150 keV. The contribution of the KK and K~K + KK~ to the dispersive part of the amplitude
P~ p7r within the context of approximations employed by us is somewhat larger and corresponds to a partial
width of 900 keV for /~3'. For the f'~nm amplitude we have evaluated the contributions of the KK,
qg, and K~K + K~K intermediate states using the dual model for the amplitudes KK ~em, gq~vr7r, and
K~K ~@'m'. The effective strength of the amplitude f'~an arising from such unitarity corrections to the
Okubo-Zweig-Iizuka rule corresponds to a partial width I (f'~ma) of 170 keV via the absorptive part and
a value of 500 keV via the dispersive part.

I. INTRODUCTION

It is well known' that the pionic decays of the
mesons P(1020) and f'(1514) are suppressed as
compared to the pionic decays of their SU(3) part-
ners m(783) and f(1270). A quantitative estimate
of the suppression factors can be obtained as fol-
lows. It is known experimentally2' from Dalitz-
plot analyses of P- 3m that the process (t)-7t'n m'

is dominated by pn production. In the BNL bubble-
chamber experiment the ratio of the number of
Q
- Sm events with dipion mass above 714 MeV to

the number below 714 MeV was found to be 0.55

+ 0.24 consistent with the value 0.45 expected from
a pr final state with a Breit-Wigner distribution
for the p meson. In the storage-ring experiment
by the Paris group' the observed Dalitz plot of
events in e'e —(t) —m'm 7t was compared with the
prediction of the Gell-Mann-Sharp-Wagner' (GSW)
model, that is, the process is assumed to proceed
as (It)

- pm- 3m. Their analysis shows that this
mechanism accounts for at least 80% of all the
events. We shall then compare the Ppn and ~pm
couplings by using the GSW model for both Q- 3m

and ~- 3m. We write then the matrix element for
V- v (p, )+m (p, ) +v'(p, ) as

EVV)tie 1 2 3~F S~ off

1
+

1
2 2 +

1

(p, +p, )2-m, +im, i', (p2+p, ) —m, ' im+, l', (p, +p, } -m, '+im, I, '

where e" is the polarization vector of the initial
vector meson V (P or ~). Using relativistic phase
space and the values I,= 770 MeV, I', = 150 MeV
we get from Eq. (1.1)

and

g„„'/4m =22 GeV '

g~ „'/4w = 5.2 x 10 ' GeV ' .
(1.4)

(1.2)

g„,'/g„„' = 2.3 x 10 '

and for their individual values

(1.3)

Using further the values' I'(ru- 3v}=9 MeV and
I'(P-3v) = 650 keV we get for the ratio of the
coupling strengths

g„„/4v = 20 GeV~ (1.5)

consistent with Eq. (1.4).
Comparison. of f'- mm and f-wm is made from

I'(fI gg) ~ 2(/pe 2
4ypg 2)5/2 g,

I'(f vga'} yg, 2(m 4~ )5&& g
(1.6)

It is worth noting that an independent determina-
tion' of g„„using superconvergence relations for
pr scattering yields
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A recent experiment' puts the value of the branch-
ing ratio for f'-sx at (1.2 +0.4)&&10 2 and I'(f'- all) at 66+10 MeV. Using the median value
I'( f'-2222)= 'l90 keV and I'( f-22v) =150 MeV (Ref. 1)
we then get

g, '/g '=2.8X10-'.

These suppressions Eq. (1.3) and Eq. (l. t) are to
be contrasted with the fact that the partial widths
I'(P -KK, I'(f'- KK) are characterized by normal
coupling strengths and are in fact consistent with
the expectations from SU(3) symmetry. '

The suppression of the pionic decays is attri-
buted to the validity of the Okubo-Zweig-Iizuka
(OZI) rule, ' that is, since P and f' are pure ss
states, the transitions P or f'- ip osninvolve dis-
connected quark diagrams and are therefore for-
bidden. However, since the QZI rule violates
unitarity of the 8 matrix, it cannot be an exact
selection rule, and the experimentally observed
small but finite amplitudes for Q or f'- pi osncan
be attributed to unitarity corrections to the rule.
In two brief earlier communications"" we had

computed the contributions to the absorptive parts
of the amplitudes P- pm and f'-vv from interme-
diate states such as KK and found that the order of
magnitude of these contributions is compatible with
the experimentally observed magnitudes. In Refs.
9 and 10 we had used simple pole models for the
amplitudes KK- pv and KK- mm. In the present
work we extend our earlier work by computing the
dispersive parts of the amplitudes as well. We
use the dual model for the scattering amplitudes
involved in the calculations. We find that the dis-
persive parts of the couplings gQp and g&, „are
comparable to the absorptive part and, in particu-
lar, within the context of the specific approxima-
tion schemes we use, are somewhat larger than
the absorptive parts of the effective couplings.

The material of this paper is organized as fol-
lows. In Sec. II we outline the general procedure
and evaluate the contribution of the KK intermedi-
ate state to the effective coupling g~„. In Sec. IG
we consider the contribution of the K*K and K~K
intermediate states to g~„. In Secs. IV and V we
extend our method to consider the decay f' .vx-
In Sec. IV the contribution to the absorptive part of

g&,„from intermediate states KK, gg, and K*K
+K*K is evaluated while in Sec. V the contribution
of these states to the dispersive part is evaluated.
In the final section we present a discussion of our
results. In the Appendix a variation of the calcu-
lations presented in Sec. IV is given.

II. KK INTERMEDIATE STATE CONTRIBUTION TO it) ~ pm

The invariant matrix element for the transition
Q- pm can be written as

1 ImF(s')
~ ~

22 S —S —2t
(2.2)

The absorptive part ImF(s) can be computed from
unitarity as follows. Writing

M„=D„+iA.„ (2.3)

the absorptive part is given following standard
procedure by

A =2 (2q20) ~ Q (2w)464(P„-q2 -q2)

where j,=(CI+m, ')II(x) is the source of the pion
field II(x), and J„=(0+ m~2)4 „(x) is the source of
the P field 4„(x). In the sum over intermediate
states ~22) with J =1 and Is=0, we shall restrict
the sum to those which correspond to connected
matrix elements for both terms in the product that
appears on the right-hand side of Eq. (2.4}. That
is, we shall assume validity of the OZI rule in the
right-hand side of Eq. (2.4) as a first approxima-
tion. The lowest-mass state of interest is then the
KK state. Since the threshold for this state lies
below the Q mass it contributes both to the real
and imaginary part of the coupling constant

F(s =m ') =g „-—g„+igz. (2.6)

The higher-mass intermediate states such as
K~K, K*K~, . . . , AA, ZZ, etc. , however, contribute
only to the dispersive part.

Consider the KK intermediate-state contr ibution.
The PKK vertex appearing in Eq. (2.4) can be
written as

(K(k, )K(k, )
~
J„~O)=g~„x(4k,'k,') '~'

x(k, -k,)„X((k,+k,}'), (2.6)

where we normalize the vertex function X(s) to
unity at the P mass. The other matrix element
appearing in Eq. (2.4) is the scattering amplitude
for the KK pair to go into the final p and 7t,

K(k2) +K(k2) p(e2, q2) +w(q2), (2 7)

for which we can write from general invariance
considerations

(q2e,
~ j,~k2k2)= (Sk20k20q20) 2~ c„„„,e", k", k22q', R(s, t),

(2.6)

M = t M =e „~e"P"&2q2F(P, q, q 2), (2.1)

where the invariant amplitude F coincides with the
coupling constant g~„ introduced in Eq. (1.1) when
all the momenta are on their mass shells. E" is
the polarization vector of Q and P is its momentum,
while cg and q, denote those of p. We shall assume
that E satisfies a standard dispersion relation in
the variable P'= s with no subtractions, that is,
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I'(1 —n„(s))1 (1 —n (t))
I'(2 —n„(s) n z~ (t) )

(2.10)

Using linear trajectories with a„'= nK+ =1 GeV
we can substitute Eq. (2.10) in Eq. (2.9) to get

g, =ImF(s =m, ')

where s=(k, +k2)z and t=(k2 —q2) . Using Eqs.
(2.1), (2.4), (2.6), and (2.8) we find

lmF (s) =
32 ~ dz(l —z ) Re[g~zzX(s)R*(s, z)]

1 2k3

32w vs

(2.9)

where k = & (s —4mz'}' ' is the center-of-mass mo-
mentum ands is the cosine of the c.m. scattering an-
gle.

To proceed further we shall assume that the
amplitude R(s, t) is given by a dual amplitude, an-
alogous to the Veneziano formula" for mm- cow

which has the same Lorentz structure as KK- pr.
We can then write

by its asymptotic form, "
R(s, t) =Sr(I n *(t)}z'--z~«&(n„&).z*«&

(2.18)

The extra -1 in the exponent, of course, reflects
the 'fact that in KK- pm the p must be produced
with helicity +1 due to spin-parity selection rules.
Very little is known about the vertex function X(s)
except that it is also expected to decrease for
large s. Since we are interested in only obtaining
estimates of the dispersive part of the P p&& coup)ing,
we shall use the approximation X(s) = X(m~') = 1.
There is no difficulty with convergence of the dis-
persion integral in Eq. (2.2) since R(s, t) as given
by Eq. (2.18) is a rapidly decreasing function of
s. The latter fact also gives us some assurance
that our approximation X(s) =X(»&~ ) will cause no
violent error in our calculations. Given these two
approximations for R(s, t) and X(s) the rest of the
calculation is straightforward. " Using Eqs. (2.2),
(2.9), (2.15}, and (2.18) we get

2A'gCKE
( 4 63)

32» m (m„'-m, ') (2.11) gz(KK) = 2.28 x 10 2g (2.19}

(2.12}

8 = 2FKWK ft+K +Kp ' (2.13)

If, instead, we relate 8 to the residue of the s-
channel ~ pole at n „(s)= 1 we obtain

2~+KK g~pft ' (2.14)

If we use SU(3) symmetry to relate the coupling
strengths these two values of 8 are identical and
using the SU(3) relation 2g„« =g„, we have

~ =g ps~ gwp~ ~ (2.15)

Bg zz(4.4 x10~}

The numerical factor in Eq. (2.11) was arrived at
by performing the angle integration in Eq. (2.9)
numerically. The constant 8 appearing in Eg.
(2.10) can be determined by computing the residue
of R(s, t) at the I."pole occurring at nz+(t) =1 and
is found to be

III. K*K+K*KCONTRIBUTION

The next state of interest in the unitarity sum in
Eq. (2.4) is the KK» state. An elementary angular
momentum analysis shows that the relative angular
momentum between the pion and either one of the
kaons must be at least one. We shall therefore ap-
proximate the KKn state as the K*K plus K*K
state. Returning to Eq. (2.4) the /K*K vertex ap-
pearing in the r'ight-hand side of that equation can
be written as

(4k'k')"'(K*K
~ J„~0) = G,e„„~P"e,"k;H(s), (3.1)

where E, is the polarization vector of K~ with mo-
mentum i„k, is the momentum of the kaon, and
we normalize the vertex function H(s) to unity at
the &t& mass, i.e. , H(mo2) =1. The other matrix
element describing the transition K*K- p7} has the
structur e

Substituting this in Eq. (2.12) we get

g&= g...r, z r...(4 4-&&10")- (2.16) (&I,e ~ ~j IK*K) = (8k~ k2 q~)
' T (e2, k2, k~; e &, &f z, qg) .

2.25 x]0 g (2.17}

This effective coupling strength contributes a value
of approximately 150 keV to the partial width
r(y- 3v).

To compute the dispersive part of the contribu-
tion of the KK state to the Qp71 coupling we need to
know both R(s, t) and X(s) occurring in Eq. (2.6)
and Eq. (2.8) for all s values. We shall assume
that R(s, t) is once again given by Eq. (2.10). How-
ever, since the 9 function has poles for real s, to
avoid absurdities we shall approximate Eq. (2.10)

(3.2)
The amplitude T has five invariant terms which
can be chosen in the following way:

T(e„k,, ik, ; e„q„q,)
= a, e, E(s, t) + e, n e, n D (s, t) + &, ' Q e, ' nC (s, t}

+ ~2' +~i QH(s, t) + e2' Q &g' Q& (s, t), (3.3)

with &= (k, -q, ), Q =(k, +q, ), and s =(k, +k2)' and
t= 4'. The invariant amplitudes A, B, C, D, and
E are free of kinematic singularities. It is clear
from Eq. (2.4) that they enter linearly in the com-
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putation of ImE(s). The amplitude H(s, t) makes
the dominant contribution since, unlike other am-
plitudes, it has no extra momentum factors and
falls off less rapidly asymptotically. We describe
below the computation of the contribution of E(s, t)
only. From Eq. (2.4) we find

r(1 a„(s))ro a,.(t) )
I'(1 a(s) —-as*(t)} (3.5)

The constant 9E is determined by computing the
residue of the K* pole in the t channel,

ImE~) (s) = dz z Re[G~8(s)E~(s, t)],
271 q~s

(s.4)

where 0 and q are the center-of-mass momenta of
K~ and p, respectively and z is the cosine of the
c.m. scattering angle. To proceed further we shall
assume as in the previous section, that E(s, t) is
given by a dual amplitude

OZI rule that is open at the f' mass, namely KK,
KKm, and gg. These changes are easily taken into
account. We can write the S-matrix element as

S =(w(q, )w(q, ) outIf'(c, „,P))
=i(2w) 6 '(P —q, -q2)(2P ) '~

x(,«&, «, ) Id„„I0& -, (4.1)

where c"" is the polarization tensor of the f', P
is its momentum, and q»q2 are the four-momenta
of the final pions. J„„is the source of the f' field.
The transition matrix element is given by

M „=Q„Q„P(P,q~, qo ) (4 3)

I „=t(2qo)(/o d4&s(e( *

('t((q.)I[j.( ), &..(0)]t)( .&Io&,

(4 2)
for which we can write from general invariance
gr ounds

2
8E =glt+Fcpgg+Z r 2gp~ff (s.6) with

where in the last step we have used universality of

p couplings and SU(3) symmetry. To arrive at an

estimate of the contribution of the amplitude
E(s, t) to g „we use the same approximations as
in the preceding section, i.e., we replace Eq. (3.5)
by its asymptotic form

E ( t) 6 r(1 a (t) }s (tu/i)i(t ) (at }sa z(((i) (3.7)

and set H(s) =H(s = m ) = 1. The (t)K*K coupling
constant G, appearing in Eq. (3.1} is related to

g„„by SU(3) symmetry

1
G, =g~E~~ — g„p, .

V2
(3.8)

Using Eq. (2.4) and Eqs. (3.4) to (3.8) we get for the
K*K+K~K contribution'4

( )
1 1m&(s')
m s —s-sC (4 4)

where Ims:(s) is to be computed from the absorp-
tive part of M„„. Writing M„„=D„„+64„„,the ab-
sorptive part A„„is given by

&,„=z(2q')"' Q (2w)'5"'(P„-q, —q, )

Q. = (q, -q,)„.
When all the momenta are on the mass shell the
invariant function F (P', q, ', q, ') is the coupling con-
stant g&,„introduced in Sec. I. We shall asume
F(P,q(, q2 ) to satisfy an unsubtracted dispersion
relation in the variable P'=s,

Gf ) (K~K+ K*K) = -3.2 x 10 og (s.9) (4.5)

Adding the contribution of the KK intermediate
state given by Eq. (2.19) we find

gR 5.5 x 10 2g (3.10}

The effective (t)pw coupling given by Eq. (3.10}cor-
responds to a partial width r((t) —3w) of approxi-
mately 900 keV.

As in the case of our discussion in Sec. II of y - ptTt,

we keep only those intermediate states which yield
connected matrix elements in the right-hand side
of Eq. (4.5). The lowest-mass state of interest
is then the KK state for which we can write

(k, k, Iz„„Io&= (4k,'k,')-"'g(k, —k,)„

IV. ABSORPTIVE PART OF THE f '7t'7f' COUPLING STRENGTH
x(k, ko)„V((k, +k2) &, (4.6)

The procedure for computing the amplitude
f'(1514) -ww is identical to that for (t) - sw except
for the following slight differences. There are
kinematical differences introduced by spin: f' has
spin 2 and the decay is a d-wave decay. Further,
there is more than one channel allowed by the

where g is the f'KK coupling constant and the ver-
tex function V(s) is normalized to unity at the f'
mass. The KK- nm transition matrix element can
be written as

&w(q2) Ij.lk(k2&= (8k(ok2q,') "'T(s, t) . (4.7)

Using Eqs. (4.3), (4.5), (4.6), and (4.7) we get



810 J. PASUPATHY AND C. A. SINGH 18

I'(1 —n, (s))I'(1- a g(t))
r(1 —n, (s) —n *(t)) (4.9)

The constant P is fixed by evaluating the residue
of the K*pole in the t channel to be

g =2gKgK 2 (4.10}

Using Eq. (4.3) and Eqs. (4.5) to(4 10).wegetfor the
KK contribution to the absorptive part of the f'vw

coupling

Qi(KK) =-1.1 x10 g~„, (4.11)

where Qz= Im5:(P' =mz. ) and we have used SU(3)
to relate the f'KK coupling constant occurring in

Eq. (4.6) to the f»v coupling constant

1
gfsKK ~gfrff (4.12)

in arriving at Eq. (4.11).
The calculation of the qg intermediate-state con-

tribution proceeds along similar lines. For the
f'qri vertex we can write an expression analogous
to Eq. (4.6) with the constant g now standing for
the f'qri coupling. Following Baacke, Jacob, and
Pokorski, "we write for the gg-mn scattering am-
plitude T„,(s, t),

T (s, t) =8 '[V(s, t) + V(s, u)+ V(u, t)], (4.13)

where

Vs, t = r(1 n, (s))r(1 a+(t))
r(1 a, (s) a„(t))

and similarly for V(s, u) and V(u, t). Evaluating
the residue at the f pole we find

2
~ =~i gfgggfgg ~

(4.14)

(4.15)

The coupling constants gf~ and gf gg can be related
to g&„using SU(3) symmetry and the OZI rule,

g&„„-—cosmn g&„, g&,„„--M2 sin2ag&„, (4.16}

where a in the mixing angle appearing in the g
wave function

1
q = cosa (uu+ dd) —sinnss .

M2
(4.17)

Using the Gell-Mann-Okubo mass formula one
finds cos'a = sin'a = 0.5. Using Eqs. (4.13) to (4.17)
we get for the gg contribution to the absorptive part
of the f'mm coupling

Im& (s) = dz (3» —1)Re[g V(s)T*(s, t)].
-1 03

32m q'~s

(4.8)

To proceed further we adopt a dual-model" ampli-
tude for KK-mm,

-1 3vs k4

327K

x Re[ggVg(s)U*(s, t)], (4.21)

where k and q are the initial and final center-of-
mass momenta. As in the case of KK- pm, we
adopt a dual model for the amplitude U(s, t) ap-
pearing in Eq. (4.20), that is, we write

with

r(1 —n, (s))I'(1 —n „~(t) )"' =
~ ro ',(),.(t))

(4.22)

Pl Vf »+» gf rr (4.23)

obtained by finding the residue of the f pole at
a, (s) =2 in Eq. (4.22). Using Eqs. (4.21) to (4.23)
we find for the (K~K+K*K) contribution

Q, (rC*K+K*K)=1.70 x 10 'g- (4.24)

In arriving at this result we have used the following
to determine g&, »~» and gz»+». By SU(3) symmetry

gf'K+K gf K+K gK++K+r ' (4.25}

The coupling strength gK~~K~, is determined from
the partial width r(K**(1420)-K*(890)+v) = 30
MeV to be

1—(g»~„»g, ) =1.01 GeV ~. (4.26)

Adding all three contributions to Q~, Eq. (4.11),
Eq. (4.18), and Eq. (4.24), we find

The next more massive intermediate state of in-
terest is the KKn state. Angular momentum analy-
sis shows that the relative angular momentum be-
tween the pion and either of the kaons must be at
least unity. Therefore we shall approximate this
state as K*K+K*K. We can write for the f'K*K
vertex

(4k'k')"'*(k. &)KAi) I J~. I
0)

=g,c„,„,e '(k~ —k2)"(k~ +k2)'(k, —k2)„V~((k~+ k2)2) .
(4.19)

Here a' is the polarization vector of K~, g, is the
f'K*17 coupling strength, and V, (s =m&,2) =1. The
other matrix element describing the transition
K*K-mm has the same Lorentz structure as the
amplitude KK- pm discussed in Sec. II. We can
write

(8qm k,'km}' ~ (» (q2) Ij,IK*K}= e „„„,c"k,"k2 q2 U (s, t) .
(4.20}

The contribution of the K~K intermediate state to
the absorptive part is found from Eq. (4.19) and
Eq. (4.20) to be

Q, (qq) = 1.04 x 10 'g~„. (4.18) Qg 2 63 10 gf gg (4.27}
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which contributes a value of 170 keV to the partial
width of f'-«
V. DISPERSIVE PART OF THE f 'xn COUPLING STRENGTH

We proceed along the same line as in our calcu-
lation of the amplitude P- p~. For calculating the
KK intermediate-state contribution we smooth out
the KK-«amplitude given by Eq. (4.9) by its,
asymptotic form

T(s t) = Sr(1—a (t))e '"«+"'(a,'s)'»*"' (5.1)

and

9»(rtrt) =-4.3 X10 g~„ (5.3)

9»(K*K+K*K)=+7.75 X 10 g~„.
Adding all the contributions we find

Qg = -4.4 x 10 gy~

(5.4}

(5.5)

which contributes to r(f'-«) a value of about
500 keV.

The reason for the difference in sign between the
KK intermediate-state contribution and the (K*K
+K*K) intermediate-state contribution to the dis-
persive part of the f'«coupling is the following.
We can divide the integration in Eq. (4.4) into two
regions, one from the threshold of the intermedi-
ate state up to s =m&, and the other from s =m&, '
to s = ~. Since the transitions f'KK and f'-K*K
are both d-wave transitions the dispersion inte-
grands are strongly suppressed near the threshold,
grow rapidly away from threshold, and eventually
decrease asymptotically due to Regge behavior of
the amplitudes KK- nm and K~K-~~. Because of
the higher threshold of the K*K intermediate state,
the contribution from s &m&, ' dominates over the
contribution from (m«~+m«) &s&mz, ', while in
the case of the KK intermediate state it is the
region 4m+ &s&m&. that is dominant. It is evi-
dent that our approximation of treating the vertex
functions as a constant is especially poor for the
d-wave transitions f'-KK, grt, and K*K and is
responsible for the large individual contributions
of these states to 9~. The almost exact cancella-
tion of the KK and K*K+K*K intermediate-state
contributions is somewhat fortuitous. We should
therefore regard our calculations to indicate only
the order of magnitude of the partial width
r(f -«).

and approximate the vertex function V(s) by its
mass-shell value V(s=mz, ') =1. The rest of the
calculation is then straightforward and we obtain

Re9'(s = m~. ') = 9„(KK)= -7.94»0 'g~„. (5.2)

Similar calculations for the rtq and (K~K+K*K) in-
termediate-state contributions yield

VI. DISCUSSIONS

ACKNOWLEDGMENT

We thank Dr. Sunder and A. D. Gangal for their
help in the numerical computations. One of us
(C.A.S.) is grateful to Professor N. Mukunda for
his ~hospitality at the Center for Theoretical
Studies.

APPENDIX

In Table I we have listed the results of our cal-
culation of Im9:(s =m&, ) as computed in Sec. IV of
this paper and we have also listed the results of
our earlier calculation' where we have used a
simple pole model for the amplitudes KK-mw,
gq-mm, and K~K-mm. It is seen from the figures
in the second and third columns of Table I that the
KK contribution comes out to be very different in
the dual model. The reason for this lies in the
following. Our dual model expression for the KK- «amplitude [cf. Eq (4.9)].

r(1 —a,(s))r(1 a,,(t})
r(1 a, (s) a,,(t))— (AI)

In the foregoing we have tried to estimate the
amplitudes P —3«and f'-«using the following
assumptions: (1) P and f' are pure ss states .(2)
The OZI rule can be used as a first approximation
to the physical S-matrix element. In particular,
in evaluating the corrections to the rule arising
from unitarity as in Eq. (2.4) and Eq. (4.5) we can
use the OZI rule in the right-hand side of the equa-
tions. We have used various models to estimate
the absorptive parts of the amplitudes, and all of
them yield results in agreement with the experi-
mentally observed order of magnitude of the par-
tial widths. Our calculations of the dispersive
parts of the amplitudes p —p«and f'- «v are some-
what less reliable since in our calculations the
various vertex functions involving Q and f' are as-
sumed to be constant and, moreover, we have
neglected the higher-mass intermediate states.
Since within our model all the rescattering ampli-
tudes proceed via the exchange of K~ trajectory
(or strange-baryon trajectory in the case of
baryon-antibaryon intermediate states), their con-
tribution is expected to become smaller with in-
creasing threshold for the higher-mass intermedi-
ate states.

It should be stressed that we have introduced no
ad hoc mixing angles or arbitrary small parame-
ters in our calculations. Although we are unable
to evaluate the exact strengths of the transitions
P-3«and f'-«, it is indeed gratifying that the
order of magnitude comes out correctly thus justi-
fying our basic premises.
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TABLE I. Contribution of the intermediate states KK, gg, and %*X+%*Kto the coupling f' fry based on various
models for the rescattering amplitudes KK, gg, and K*K 71'm. An overall factor g&~ multiplying the numer ical figures
1s understood.

Intermediate
state Pole model ~

Absorptive part of the coupling f'
Dual model with real Dual model with

tr a3ectorles' complex trajectories '
Dispersive part ~

of the coupling

f ~ 7("'ji'

nn
E K+FpK

1.56 x10 2

0.52 x10
0.46 x10 2

-1.1 x 10
1.04 x10 2

1.70 x10 2

1.05 x10 2

0.75 x10 2

1.00 x10 2

-7.84 x 10
4.3 x10-'

+7.75 x 10 2

Reference 10.
~Cf. Sec. IV.

' Cf. Appendix.
Cf. Sec. V.

has a zero in the physical region of interest unlike
the pole model used in Ref. 10. The argument of
the denominator I' function in Eq. (Al) can be
written as

a, (s) = n, + n's+ fa(s -s,), (A3)

where the constants a and 80 are fitted to the widths

of p and f via the formula

1 —n, (m~, ') —ar ~(t) = —1.03 —0.8', (A2)
Ima (s =m„„')= n'm„, I"„, (A4)

where z is the cosine of the center-of-mass scat-
tering angle. In arriving at Eq. (A2) we have used

a,'=a+~=i (GeV) ' and the values of the kaon and

pion c.m. momenta corxesponding to s = mf, '.
Since in evaluating the absorptive part [cf. Eq.
(4.8)] we integrate over s the presence of the zero,
which is at s = -0.03 according to Eq. (A2), pro-
duces a strong cancellation. Since this is some-
what artificial we have carried out the following
modification. %e have used the same expression
as in Eq. (Al) but with the s-channel Regge tra-
jectory now taken to be complex. That is, we as-
sume a, (s) to be given by"

a =9.8& 10"~ QeV~, so= -0.58 GeV . (A8)

%e can repeat our calculation of the imaginary
part Eq. (4.8) with T(s, f) now given by Eq. (A1)
and Eq. (A3), and the result is listed in the fourth
column of Table I. %e have performed similar
calculations for the qq and (K*I7+K*K) states con-
tributions also. It will be seen that the orders of
magnitude obtained with all three models, (a) pole
model, (b) dual model with real trajectories, and

(c) dual model with complex trajectories, are, the
sa Die.
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