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Dynamics and SU(3) violation in J/Q decays
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The strong-interaction part of the amplitude for J/Q decays into specific final hadronic states is computed

by evaluating corrections arising from unitarity to the Okubo-Zweig-Iizuka rule. Dispersion relations for the
relevant amplitudes are evaluated keeping only the contributions of charmed-hadron states to the absorptive

part and assuming Regge asymptotic behavior for charmed hadrons~ordinary hadrons. To obtain an estimate

of the absolute magnitude of an amplitude such as Q —~pm we use SU(4) symmetry for the connected vertices

and find a suppression factor of the order of 10 ' for g&,„as compared to g„~ . Assuming a mass splitting of
i

100 MeV for mF —mD and mF —mD. leads to dynamical breaking of SU(3) symmetry even if the couplings

characterizing connected vertices obey SU(3) symmetry. If the latter circumstance is true, wc estimate the

ratio of the amplitudes Q~p+n' and /~K~+K to be between 1.5 and 2. Such dynamical violation of
SU(3) arising from mass splitting between charmed hadrons in the same SU(3) multiplet tends to cancel in

Q~ KK. Related matters such as SU(3) symmetry in the decays of g states and comparison of Q'~Qq,
Q'~ pm, and Q ~ pm are also discussed.

I. INTRODUCTION

The discovery of the narrow resonances"'
J/$(3095) and g(3684) has lead to the introduction
of an additional quark (c) carrying a new quantum
number called charm, with the states $(3095}and

g(3684} themselves being interpreted as cc bound
states. Introduction of a new quark requires the
existence of a host of new hadrons' carrying the
new quantum number, for example a set of a trip-
let of pseudoscalars D'=cd, D'=cu, F'=cs, the
corresponding vectors D*', D*', I'*, charmed
baryons, etc. Among the experimental evidences
for this new quantum number are (a) observation
of charmed mesons in e'e annihilation, ' (b) ob-
servation of charmed baryons in a photoproduction
experiment, ' and (c}neutrino experiments involving
dileptons in the final state' which require the ex-
istence of at least one more new quantum number.
Further, experimental observation' of positive-
C-parity states in the radiative decay of g(3684)
can be regarded as additional support for the cc
bound-state picture of g(3095) and g(3684).

The narrow widths of g and g' = g(3684) are at-
tributed to the validity of the Okubo- Zweig-Iizuka
(OZI) rule, ' i.e. , since g and g' are pure cc states
while p, m, K, . . . are states made of u, d, s quarks,
there is no connected quark diagram describing
the transition g- ordinary hadrons (i.e. , hadrons
made of u, d, s quarks only). Even among the latter
this suppression of transitions involving discon-
nected quark diagrams is manifest in the pionic
decays of P(1019}and f'(1514). For example, the
coupling g@«computed from the partial width

I'(Q-KK) is in agreement with the SU(3) predic-
tion"

I'(f'- vw} = 550 keV

leads to

g~, „'(g~„,' = 2.1 x 10 ' .

(1 2)

(1 3)

In the case of decays of g and g' a large amount
of experimental information already exists. Al-
though numerous questions can be asked" about
them, we would like to single out the following
three features for our discussion.

(1) The narrow width itself, typified for example
by the smallness of the partial width" I'(g-p'v )
= 0.3 keV. Writing the transition matrix element
as

M(q(e„P)-p'(e„q, }+v (q,))

V=g&p-„+p}Ivt a6& 62P (1 4)

where e, is the polarization vector of g, P is its

1
Z$EK ~ Cpm m

where g~, „ is obtained from I'( p - vv). On the
other hand an estimate of the coupling constants

p@p and g p „using the model of Gell- Mann,
Sharp, and Wagner" for P 3v and sr - 3v and the
experimental values of the partial widths" gives

g@~,'(g ~, '=2.3x10 ' .

Similarly, while the couplings gf gfg'g and

gf gg are comparable, "the r ecently measured
value"
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momentum, and c„q, similarly denote those of p,
this lea.ds to a value

g~~, , '/4v=3xl0-' GeV "-, (1.5)

to be compared with" g p„'/4~ = 20 GeV '.
(2) The partia] width for the OZI-rule-forbidden

process" g'- 5q is relatively large compared to

g, g'-pm, which have identical Lorentz structure.
Writing for the transition matrix element an ex-
pression similar to Eq. (1.4) with g,,„~„replacing

pgp we have from the experimentally measured
partial width" r(q'- l{g)=10 keV a value

g&, , , „'(4m=3.6x10 ' GeV ' . (1 6)

(3) The apparent validity of SU(3) symmetry in
certain decay channels such as g-KLK~ is to be
contrasted with substantial violations of SU{3) as
indicated by comparison of g-pp and g- K*K.
Our discussion ean be made quantitative lf we

adopt the following procedure due to Okubo. " As-
sume that the matrix element for the transition
g- ordinary hadrons is described by an effective
Hamiltonian

X(„(x)= ~ j'„"(x)+pj'„"(x)

~(3) ~ + ~(8) ~ (1 7)

where g„(x) is the field of the g particle and j~~'{x)
(a = 0, 1, . . . , 8) are the nonet of U(3) vector cur-
r'ents. e, P, and y are assumed to be constants
and, respectively, represent the strengths of the
singlet part of the strong-interaction amplitude,
the octet or the SU(3)-breaking part of the strong-
interaction amplitude, and the photon-mediated
amplitudes, i.e. , g- photon- hadrons. The experi-
mentally measured branching ratios for the

pv, K*K modes are"""
g-p r .K* K-:K"'K'

= 0.43+ 0.10:0.16+ 0.03:0.135+ 0.03 . (1.8)

If in Eq. (1.7) y were absent we would expect the
amplitudes g- K*'K and g-K*'K' to be equal,
while if P were absent we would expect the ampli-
tudes g —K*'K and g -p'm to be equal or,

corr-

ectingg for phase space as usual, I'(g-K*+K )
=0.851'(g-p'v ). Comparing with the experimen-
tal data"'"" [Eq. {1.8)] we reach the conclusion
that the SU(3)-violating term P in Eq. (1.7) makes
a larger contribution to the a.mplitude than the one-
photon term y in g- vector plus pseudoscalar.

On the other hand, the branching ratios Rs (Ref.
19) for P-two pseudoscalars,

Rs(g-K&K~) (0.89 x10 ', (1.9c)

are consistent with p being zero in Eq. (1.7). As
explained in detail in Appendix A all the above
three numbers can be understood to a.rise from
g- photon- two pseudoscalars. The slight dif-
fer ence between the p

'
p and K'K branching

ratios can be attributed to the difference in the
electromagnetic form factors of n and K' at the

g mass. This suggests that, when the strong-in-
teraction part of the amplitude g-ordinary had-
rons is forbidden by SU(3}, it indeed vanishes.
This behavior is to be contrasted with substantial
SU(3) violation in the case of allowed decays.

In this paper we try to understand these features
from the phenomenological S-matrix point of view.
There are basically two questions to be answered.
(1) Why is the OZI rule operative at all in the first
instance'? (2) The OZI rule clearly violates uni-
tarity and therefore cannot be exact. What is the
magnitude of the unitarity corrections to the rule'P
There exists a partial answer to the first question
in literature. " It relates the approximate validity
of the OZI rule to the absence of low-lying exotic
states. For example using the absence of reso-
nances in v'p', p'K', and K'K' channels and dual-
ity, one can demonstrate" the decoupling of the f'
trajectory from the nm state. Such arguments can
be easily extended to show that the P trajectory
decouples from the pm state and the g trajectory
decouples from pions and kaons. %'e do not pursue
these points here. However, if we accept the
validity of the OZI rule as a first approximation
to the physical S-matrix element it becomes clear
that the rule violates unitarity. For example in
the case of P-3z, since both P-KK and KEY-3n
are allowed by the OZI rule, unitarity leads to an
effective coupling of g —3v. Since P(1019) lies
above the KK threshold, there is a contribution to
the absorptive part of the transition amplitude
P-3z coming from the real intermediate state
KA. . Using a simple pole model for theamplitude
KK -3~i, one of us" estimated the contribution to
the partial width I'(&j&-3v) coming from Im(P-3v)
= (P -KK - 3v} to be -150 keV, to be compared
with the experimental values" of 600 kev. Similar
calculations for the f'- mw width gave the value"
I'( f'- )=vv150 keV to be compared with the exper-
imental value' 550 keV.

There is no difficulty in extending the above pro-
cedure to a discussion of g decays. In a brief
communication one of us" ha.d estimated the ef-
fective coupling g&z„arising from unitarity cor-
rections, i.e., from

R,(4- v'w-) = (1.6+ 1.6) x10 ',
R (y-sK'K )=(2.0+ 1.6) x10 ', -

(1.9a.)

(1.9b)

cha, r'med hadrons- pn .
Writing the transition amplitude as
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=e„„z,e,"e",P q,'F(P', q, ', q, ') (1.10)

we see that the coupling constant g&z „ introduced
in Eq. (1.4) is the value of the function F when all
the momenta are on their mass sheD. Assuming
the validity of dispersion relations in the variable
P'=s we can write

The absorptive part ImF(s) occurring in (1.11) is
to be computed from unitarity. In the sum over
intermediate states we keep only the charmed-
hadron states, that is, we consider only the con-
nected amplitudes. In Ref. 25 it was stressed in
particular that the key factor that keeps correc-
tions to the OZI rule, in the case of g- pm, so
small is the smallness of the amplitude for charm-
ed hadrons —pn. Consider for example the con-
tllbutioQ to ImF arislQg from /ji) ~ D*D~pF ale
the vertex $D*3 ls expected to have a stl ength of
the same order of magnitude as upp, the ampli-
tude T(D'D- pv) essentially behaves as

T~ (nI s)aQ{t) (l.12)

where e~ =1 Geg 2 is the slope of the e trajectory
and s is the square of the center-of-mass energy
of the D*D state whose threshold begins at s =16
GeV'. We expect the D* trajectory to be below the

Q trajectory, and since n ~(0) =0 we expect
nDy(0) + 0. In factq reasonable estimates suggest
an intercept nD~(0) = —1, which means that T as
given by Eq. (1.12) is small and rapidly decreases
with increasing s. One of the purposes of the
present paper is to discuss in detail the procedure
outlined in Ref. 25.

The second feature of g, g' decays raised above,
namely relative strengths of P'- gq and g or {{'
—pm, has its origin in the fact that the amplitude
for charmed hadrons -gg is substantially differ-
ent from the amplitude for charmed hadrons -pm.
Consider for example D*D'-gg and D~D- pn. In
the former the direct channel is exotic. Further
there are three distinguishing features between
the two aInplltudes ~ Qne ls the weB known trnln

effect arising from the difference in the masses
of the final states, namely, m& a,nd m„ in the form-
er versus m~ and m„ in the. latter. The second dis-
tinguishing feature is that the asymptotic region
characterized by Begge behavior in D*D-~ sets
in for much larger values of s than in D*D-pm,
and finally the asymptotic scales governing the
two reactions can be different if the slopes of the
D* trajectory and + trajectory are different. For

example, unlike D*D- pm, whose asymptotic form
is given by Eq. (1.12), the amplitude for D'D

gg is given asymptotically a,s

with n~*& n'; the Iarge-s behavior of Eq. (1.12)
and Eq. (1.13) are different. One of us" has dis-
cussed elsewhere in detail, along with model cal-
culations, how these three differences can at least
in part account for the la,rge difference in the or-

rs of magQitudes between gypfI and ggcg q.
The SU(3) behavior of g can be understood as

follows. To see how the difference between the
effective couplings g~~~ and g~r~g arises we can
compare the contribution to the dispersion inte-
gral. Eq. (1.11) to the two couplings, from various
multiplets of charmed hadrons, i.e., pseudoscalar
pair, vector-pseudoscalar pair, charmed baryons,
etc. I et us compare the contribution of the pseu-
doscalar pairs DD and EF in p- pm and g-K*K.
The DD contribution to g&~, in Eq. (1.11) is given
essentially by (see Secs. III and IV)

(nl s)(xDW{f) 1

ZeaD&D'Dp&a*D. . I(&)ds .
475D

8 - PRII,

(1.14)

Here g~» is the pDD coupling constant, the product
pa+»pa*~, is the residue of the exchanged D*
Hegge pole 1Il DD pv, and f (8) ls a klllematlcal
factor which is derived later in Sec. III. The EE
intermediate state does not contribute to g- pm

in oux approximation since FE- pm involves a dis-
connected graph. Qn the other hand, in g-K*K
the contribution from the DD intermediate state is
analogous to that in g- pm except that the transition
DD-K*K involves an E* exchange. The EE inter-
mediate state also contributes to P-K*K with the
transition EE-K*K proceeding via D* exchange.
Analogous to Eq. (1.14) we have

(nI s) txP'4{0) I
Are*&7 ADD+i*m *~z*M

&fata 2 S ~ PPlg

( n I
& ) ~~ 4{t ) —1

4gsc*E ~gzX~a ~rsc*~o*y g 2
2 8 —P8y

(1.16)

The kinematical factors C,(s) and C,(s) are de-
rived in gec. III and are not significantly different
f."om L(s) in Eq. (1.14). If SU(3) were an exact
symmetry we would expect

~ ma=m~, nDg = n~~, 1.(s) = C,(s) = C,(s),
and with the use of appropriate Clebsch-Gordan
coefficients for the g's and P's we have
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and

DD FF
AIK +E AK +K

DD + FF +gt(P+ fr- 44K++K ~5K+ K +gtttK+ K

(1.17)

(1.18)

II. P ~ VECTOR + PSEUDOSCALAR

We write the S-matrix element for the decay
g —pseudoscalar +vector meson in the form

S =(q,q2e2 out (p(P, e,))

=t(2v)'5"'(P-q, —q, )
(

&(q,q, e2 out iJ„i0)e', , (2.1)

However, with the breakdown of SU(3) symmetry
we have ~D( ~F and aF*= nD*. Taking this into
account we find that the D& intermediate state
contribution is smaller" in P-K*K than in g- pm

since e~*(t) ( c2~*(t), as can be seen by comparing
Eq. (1.14) and (1.15) (whose values apart from the
coupling constants g's and P's are tabulated in

columns 2 and 4 of Table I). On the other hand, the
dispersion integral occurring in Eq. (1.16) giving
the FF intermediate-state contribution in g-K*K
is smaller than that in Eq. (1.14) since the FF
state has a higher threshold than the D& state, al-
though both FF-K*K and DD- pn involve D* ex-
change in the t channel. (See column 3 of Table
I.) It will be seen from Table I that the change in
the value of the dispersion integrals Eq. (1.15) and

Eq. (1.16}are approximately the same, and since
g«~g is the sum of the two contributions there is
substantial violation of SU(3) symmetry In the.

case of g-KK, however, the DD and FF contri-
butions to g«K come with opposite signs. Our cal-
culations indicate (see Table IV) that the magnitude
of the departures from the SU(3)-symmetric limit
for these two are nearly the same so that the DB
and FF state contributions almost cancel each
other to yield an apparently exact SU(3)-symme-
tric result. We can repeat the above procedure for
various multiplets of intermediate state D*D and
F*F, D*D* and F*F*, etc. with similar results.

The material of this paper is organized as fol-
lows. In Sec. II we write down the unitarity equa-
tions and the contributions from the various inter-
mediate states. In Sec. III we evaluate the disper-
sion integrals assuming Regge asymptotic behavi-
or for the amplitudes charmed hadrons - ordinary
hadrons. In Sec. IV we use the dual model to fix
the Regge residues, and estimates of the couplings
pp~ and /K*K are obtained. In Sec. 5 we compute
g-KK, and in the concluding section a discussion
of related questions such as the comparison of
((t'- pv and P pv and po—ssible tests of SU(3)
symmetry in the decays of the p states is given.

M=e"M
1

where

M„=(4q',q,')'t'(q, q, e, out iJ, i0)

(2.2)

wi.th

x (q, e, i[ j(x), J„(0)je(x)i0}, (2.3)

j(x) =( +n22) P(x) (2.4)

as the source of the pseudoscalar field Q(x) of
mass m. There is only one invariant amplitude
for the transition vector -vector +pseudoscalar
so that we can write

epv xaP e2 qlF(P q2 42 ) (2.5)

We shall assume" that F(P', q, ', q, '} satisfies a
standard dispersion relation in the variable P'
with no subtractions, i.e. ,

F( ) = — ' ' ' ' ' 'ds -=P' (2 6)
77 & S —S —SE

Writing

(2.7)

we obtain the absorptive part A& in the usual man-
ner by inserting a complete set of intermediate
states in Eq. (2.3}:

= (2q2')'t'v Q (q ji2~e2)( n~J„ni0)

x 5'" (P„—q, —q, ), (2.8)

where P„ is the momentum of the intermediate
state. The state in} must have the same quantum
number as g, i.e. , J =1 and I=O. In eval-
uating the absorptive part we shall keep only
those intermediate states such that both the mat-
rix elements occurring in Eq. (2.8) are of the type
allowed by the OZI rule, i.e., invoIve only con-
nected diagrams. This means that we keep only
charmed-hardon states in the sum over inter-
mediate states. Further, in the specific case of
g- pn consider the contribution coming from the
intermediate states consisting of charmed-psuedo-
scalar pairs D'D, D'D', and F+F . Since F'
=ps, the amplitude for F F —pw involves a dis-

where P is the four-momentum and e," is the po-
larization vector of the |JI particle, J„ is the source
of the g field, i.e., (0+2nt, ')p„=J~, q, and e2 refer
to the momentum and polarization vector of
the final vector meson (e.g. , p meson in the
case of ptr decay), and q, is the momentum of
the pseudoscalar meson. The transition matrix
element is therefore given by
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x GK((k, + k, )'), (2.9)

where G is the coupling constant and the vertex
function is normalized to unity at the g mass,
i.e., K(m„') = 1. The other matrix element ap-
pearing in Eq. (2.8) is the scattering amplitude
for charmed pseudoscalars going into the final
pseudoscalar and vector meson, for example

connected diagram and will be neglected in a
first approximation. We will be able to justify
this a posteriori. This is because for the example
under discussion, Il 'I' - pm, we can again write
dispersion relations and evaluate the amplitude

by keeping in the sum over intermediate states
contributing to the absorptive part only connected
terms, and show that the resulting amplitude is
smaller than D'D - pw. This point will become
clear later.

The contribution of the charmed-pseudoscalar
pairs to A„ in Eq. (2.8) can be evaluated as I'ol-

lows. Let the momenta of the charmed mesons be
k, and k, . We can write

1
(Ir,k, ~J, ~D) = (,„, (r.', —)', l,

H(s = m ~') = 1. (2.14)

and

6=k, —q„Q =k, +q, (2.16)

s = (k, + k,)' = (q, + q, )', t = (k, q, )' (2.17)

as before. The amplitudes A, B, C, D, and E
are free of kinematical singularities. It is clear
from Eq. (2.8) that they enter linearly in the com-
putation of 1mF(s). They are therefore easily
calculated separately and are listed below:
contribution of E(s, t)

dz zRe[H ~(s) E(s, t)], (2.18)G, 2k2

»~ ques

contribution of D(s, t)

The transition amplitude D~D- pr has five invari-
ant terms which can be chosen as follows:

T(D(k, ) iD+(z, k, )-7((q, )+p(z„q,)}
= T(z, k„k„z„q„q,)
=z, ~ zE(s, t)+z, he ~ M)(s, t)+z, t 4z ~ QC(s, t)

~z, ~ Qz ~ nB(s, t)~z, Qz QA(s, t), (2.15)

with

D'(k )+D (k ) z'(q ) p+(z q ).
We can write for the matrix element

(2.10)
dz(1 —z')Re[H~(s)D(s, t)],G, k'

32v vs

Qzz» ij ik,kz}= (Sko|kzoqz) i z„„„,kikzqz R(s, t),

(2.11)

where s=(k, +k,)' and t= (k, -q,)'. Using Eqs.
(2.5)-(2.11) the contribution of the DD pair to the
absorptive part is easily found to be

contribution of C(s, t)

dz(1 —z')Re[H*(s)C(s, t)],G, k'
32m Ws

(2.1&)

(2.20)

ImF(s) = dz(1 —z') Re[K*(s)R(s, z)],
G 2k x

3» Ws

(2.12)

(4k', k', )'I'(D~D id„ io}= &,z, „)„&"z"k2H(s),

where e" is the polarization vector of D~ with mo-
mentum k„G, is the PD~D coupling constant, and
H(s) is normalized to unity at the (I) mass as be-
fore:

(2.13)

where k= (s —4ms')'~'/2, is the center-of-mass
momentum of the D' and z = cos8, where 6} is the
scattering angle. To compute the integral in Eq.
(2.12) we must know the vertex function K(s) and
the scattering amplitude R(s, z); this will be dis-
cussed in the following sections. For the present
we turn our attention to the evaluation of the inter-
mediate state ccnsisting of a vector and pseudo-
scalar charmed-meson pair, for example DD~
and its charge conjugate D~D.

We can write for the gD*D vertex

G k'
1

32m
dz (1 —z') Re[H~ (s)A (s, t}].

(2.22)

In the above k is the D* momentum in the center-
of-mass frame, q is the final P momentum in the
same frame, and z =cos8 with 8 as the scattering
angle. The above procedure can be repeated for
any arbitra. ry intermediate state, D~D' or charm-
ed-baryon-antibaryon-pair state, etc. Instead
we now turn to the question of the magnitude of the
expressions (2.12) and (2.18)-(2.22) and their
contribution to /pm coupling via the dispersion
integral Eq. (2.6).

contribution of B(s, t)

G, k'
dz(1 —z'}Re[H"(s)B(s, t)],

327t Ws

(2.21}

contribution of A(s, t)
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III. REGGE ASYMPTOTIC BEHAVIOR

From the foregoing it is not evident that the
coupling Ppw would be orders of magnitude smaller
than (dpi'', as is the case experimentally. 'The key
element that makes it so is the smallness of the
scattering amplitude for charmed hadrons-gm.
Having agreed to keep only the charmed-hadron
states in the dispersion integral Eq. (2.6) the in-
tegral gets the first contribution from the DD
state with s ~ 4~a —14 GeV' corresponding to"

ma =1.87 GeV. Since we are considering only
connected amplitudes it is seen that the scattering
DD- pv proceeds through m-like, i.e. , (uu+d2)/
V2, composites in the s channel and ue states in
the t channel. It follows from considerations of
duality that the sum over s-channel resonances can
be represented by Regge poles in the t channel
and vice versa. We also know from discussion"
of mp scattering that the energy scale that deter-
mines the asymptotic region, where the scattering
amplitude is expected to have Regge behavior, is
set by the slope of the Regge trajectory in the s
channel, a~ = n'„= 1 GeV '. So even for values of
center-of-mass energies of 2 to 3 GeV Regge
representation is a good approximation to the
scattering amplitude. For the problem at hand,
namely DD-Pm, the asymptotic scale is set by
n„' = 1 GeV ', where co is the s-channel Regge
trajectory, and we can expect Hegge represen-
tation to be a good approximation to the true am-
plitude since the charm threshold starts at s =14
GeV'. We shall therefore write for the amplitude
DD-pv occurring in Eq. (2.11)

TABLE I. Values of the integrals I [see Eq. (3.4)j of
the contributions of the charmed-pseudoscalar-pair in-
termediate states to fI) —pm and p —K*K. The trajectory
equations are z D *(t)= 0.' (t —ma* )+ 1 and o. p ~(t) =
n'(t —m~*2)+ 1.

Slope of
exchanged
trajectory
~' (GeV')

I(FF'sK K) 1(DDiK K)
I(DD; p~) D* exchange F* exchange

(GeV') (GeV') (GeV')

0.45
0.5
0.55

0.63x 10 4

0.25x 10 4

1.0x10 5

0.40x 10 4

0.15x10 4

0.59x 10 ~

0.42 x10 4

0.16x10 4

0.6 x10 '

E(DD; pv) =, ds-PG Bk2 (a„'s)' ' 1
327I' 4«2 s S —m«R

sinhRx eoshR— (3.3)

(3.4)

nificantly alter the value of the dispersion integral
(2.6) (see Table I}. Therefore varia, tion in the val-
ue of the function F (s} due to uncertainty in the
determinations of @a~ more than offsets slight
changes in the vertex function A"(s). To evaluate
the contribution to Eq. (2.6) from the DD state
we have then set K(s) =K(m«2) = 1 and performed
the integration using Eq. (3.2) for R(s, t) and dif-
ferent values of an«(t) as described in Appendix

M(DD- pv) =& e2k;2k', q', R( ts),

R(s t) =p(n 's)™&«"''

(3.1)
The quantities a and R in Eq. (3.3) are defined by

s = nn«{0)+nD« —,'(t +t „)

Here nn«(t) is the D* Regge trajectory and the
extra minus one that appears in the exponent in
Eq. (3.2) reflects the fact that in the reaction
DD-Pn parity conservation requires p to have
helicity + 1. Although at present nD«(t) is unknown
experimentally, we definitely expect the D~ trajec-
tory to lie blow the P trajectory and since n«(0)
=0 we expect ns«(0) &0. The plausible values for
the D~ trajectory are discussed in Appendix B and
a value of ns«(0) = 1 does not seem unreasonable.
This mea. ns R(s, t) is a rapidly falling function of

To evaluate the DD intermediate-state con-
tribution to lmF(s) we need to know the vertex
function A(s) also. Although in principle we can
resort to dispersion relations to compute ff(s),
such an effort at present is unw'arranted since we
expect K(s) to be a slowly varying function of s
as compared to R(s, t), as given by Eq. (3.2}, which
is rapidly varying. Slight changes in n~(t) sig-

R =2an kqln(n'„s). (3.6)

Z(s, t) =p, (a I s)«s «&",

D(s, t) =p (a„'s) &«" ',
C{s t)-p (a' s) s«"' '

B(s, t)=p (a„'s) n«"' ',
g (s t) p (n I )a s( )n2«2

(3.V)

(3.8)

(3.9)

(3.10)

(3.11)

For reasons similar to the case of the DD inter-
mediate state, we shall ignore the variation of

The value of f(DD; pv) for various values of nz«
is tabulated in Table I.

For the evaluation of the contribution of the D~D
intermediate state we proceed similarly. We shall
assume Regge behavior for the five amplitudes
defined in Eq. (2.15). Standard Regge-pole ana-
lysis" leads us to write
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(&»s)a
s —m&~ R

sinhRcoshR—
R

, ' Zs(D»D; prr), (3.12)

the gD*D vertex function H(s), compared to the
variation with s of the D*D- pm amplitude, and
set H(s) =H(ms'} = 1. Using Eqs. (3.7)-(3.11) we
can carry out the evaluation of the dispersion in-
tegral Eq. (2.6) to get

(ms»ma» &&

Slope of the
exchanged
trajectory
~' (GeV')

JE(F*F;K*K) Jg(D D;K*K)
Jg(D*D' p~) D* exchange F* exchange

0.45
0.50
0.55

0.15 x 10 ~

0.62 x 10
0.26 x 10

0.11 x 10
0.45x10 '
0.18 x 10

0.92 x 10 3

0.36 x10 3

0.14 x 10 3

TABLE II. Values of the integrals Jz [see Eq. (3.12)]
of the contribution of the charmed vector-pseudoscalar
intermediate state to g —p7t and ft) K*K. The subscript
E denotes that these quantities are contributions of the
invariant amplitude E(s, t) [see Eq. (3.12)].

4k' (o.„'s}' 1

32K ( +)2 St5g+yftg)

sinhR
&& coshR—

3
n, ' Jn(D»D; prr), (3.13)

4k' (o.„'s)' ' 1

sinhRx coshR—
R

' Jc(D»D; prr), (3.14)

4k' (o."„s)' ' 1
32&' (~ +fg +) s s —m„' R

sinhRx coshR—

'
g
' da(D*Di p"}~32&a B (3.15)

P„G, 4k' (a'„s)' ' 1
F~(D*D; prr) =

~ ds ~ — ' R'
(m ~ *)' s s —me

the Pprr coupling F in Eq. (2.6) is even smaller be-
cause of the extra minus two in the exponent in Eq.
(3.11) and will be ignored in the following.

The calculation of the transition $-K*K pro-
ceeds along identical lines. Both DD and FF inter-
mediate states contribute in this case, the former
proceeding via F~ exchange while the latter with
D~ exchange. Although there is little doubt that
m. ~&m~ and m~+ & m~, their precise values will
be known only after the experimental identification
of these states. We have assumed uniformly m~

1.97 GeV and m~~=2. 12 GeV in our calculation
of the dispersion integrals. The hundred-MeV
mass difference between the F and D states,
which is not an unreasonable value, that we use
in our calculations illustrates how the breakdown
of SU(3) symmetry occurs dynamically in P de-
cays. This can be seen from Table I, where we
have tabulated the contribution of the integrals
analogous to I(D7); prr) in Eq. (3.4) for the case of
g-K»K The contr.ibution I(DD;K»K) is smaller
because the exchanged F* trajectory lies lower
than D» while I(F7;K»K) is smaller because the
threshold of the dispersion integral now starts a,t
4m+' instead of 4m'' [although the exchanged ob-
ject is the same as in I(D7); prr)].

sinhRcoshR—
R (3.16)

IV. DUAL MODEL AND ESTIMATES OF THE SUPPRESSION

FACTORS IN itr DECAYS

",' Z„(D*D; prr), (3.17)

where FB, for example, is the contribution to F
from the amplitude E in Eq. (2.15) and a and R are
as defined before in Eqs. (3.5) and (3.6). We have
tabulated JB and J~ in Table II for various values
of n~. The integral occurring in Eq. (3.15} is
apart from a factor 2 identical in structure with
I(DD; prr} in Eq. (3.4}. Numerically it is smaller
than I(D15; pw) because of the higher threshold for
the D~D state. The contribution of the A term to

To be able to obtain numerical estimates of the
effective coupling g- pm we must know the coupling
strengths /DE, $D*D, etc. , as well as the Regge
residues occurring in Eqs. (3.2), (3.7), and (3.8).
The former can be obtained using SU(4) sym-
metry. ' The residue of the D* Regge pole coupling
to the D and 7t states occurring in Eq. (3.2) can al-
so be obtained by using SU(4) symmetry and the
knowledge of the p-trajectory residue in mN

charge-exchange scattering. We shall instead use
a slightly different procedure which we believe
brings out the suppression factors involved in the
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effective /pe coupling more clearly. To this end
we write for the amplitude D3- pw, which is sim-
ilar in Lorentz structure to the amplitude mm- {d7t'

originally considered by Veneziano, " the analogous
expression

2g5 Dr g4DD gper ] 4
4n 2 4m

(4.6)

where I is tabulated in Table I. Now if SU(4) sym-
metry is used in the sense of Okubo's ansatz, ' then

T(D'(k, )+ D (k,) —v'(q, }+P (~„q,)
1

Rn+r)p = ~ 8'~pm ~ (4.7)

&).
= —2&D¹gD+gD gD¹pn. (4.2)

We can rewrite the I' functions in Eq. (4.1) in the
form

-sinv[nns(t)+ o.„(s)]I'1 —n~t)
sinvo „(s)
I'(o„(s)+ o.~(t) —1)

r{o.„(&))
(4.3)

Using the linear trajectory form n„(s}= a„(0)
+n'„s we see that even at the DD threshold
n„'s = 14 is large compared to unity. We can then
use the asymptotic form for the I' functions and
smooth out the poles of sinvn (s} by taking the
large-s limit slightly off the real axis with the re-
sult

T(D7)- pv) =2o~gs, g, -I'(I —n (t))e" n &"

xe, „„,e'k"k2q,'(ot'„s)"n" "'(-4 4)

This expression for the Dl)- pn is identical to Eq.
(3.1) and (3.2) except for the signature factor
e " &*& "I'( 1 —o.nq(t)). The dispersion integrals
Eq. (3.3) whose values [for different o~(t)] are
tabulated in Table I were evaluated without the sig-
nature factor. We have also carried out the dis-
persion integral with this factor included, that is,
with Eq. (4.4) instead of Eq. (3.2}, and find that the
value of the integral decreases by a factor of two
or three. As already pointed out in Sec. III, the
uncertainty in the value of the dispersion integrals
due to uncertainty in nn+(t) is larger than that due
to variation in the /DE) vertex function Z(s) or the
signature factor mentioned above. Therefore, to
obtain an estimate of the order of magnitude of the
gpv coupling we set P occurring in Eq. (3.2} equal
to y, as given by Eq. (4.2}. We can then write for
the contribution of the DI) state to the coupling (ad-
ding the contributions of D'D and D'D')

FDB 4 i gB+Dt +ADD f(D~9 pv)
apl' D¹

47t gD+Dp (4.5)

„k„„,, I'(1 —o.~(t))1'{I—o,„(s))
g vie 2~1 F(2 + (t) o (s))

(4.1)
There is only one term in Eq. (4.1) since the u
channel is exotic. We can fix the constant y, by
evaluating the residue at the D* pole in the t chan-
nel and relating it to the on-shell coupling con-
stant. We get

Since 2nn+= 1 GeV ~ it follows from Eqs. (4.5) and
(4.6) that the factor I/8v (in units of GeV') is a
measure of the magnitude of the unitarity correc-
tions to the OZI rule.

To estimate the contribution of D*3 intermediate
state we can proceed similarly and write for
E(s, t)

with

r(1 —o.n+(t))I'(1 —a„(s))
I'(1 —nn~(t) —n „(s)) (4.8)

n&~
I gD+5+p gB+Dg ~ (4.9)

TABLE III. Values of the integrals JD [see Eq. (3.13)]
of the contributions of the charmed-vector-pseudoscalar
intermediate state to g —p~ and fj[)—K*K. The subscript
D indicates that these quantities are the contribution of
the invariant amplitude D(s, t) [see Eq. (3.13)j.

Slope of the
exchange
trajectory
~' (Gev2)

JD(F*F;K*K) JD(D*D K*K)
JD(D*D; p7t) D* exchange F~ exchange

(GeV ) (GeV ) (GeV')

0.45
0.50
0.55

0.51 x 10 ~

0.19 x 10 3

0.73 x 10 4

0.36 x 10 3

0.15 x 10 3

0.49 x 10 4

0.31 x10 3

0.11 x 10 3

0.41 x 10 4

Identifying ps occurring in Eq. (3.7) with y, as gi-
ven by Eq. (4.9) we have

Fnon mac @~nap gnawn~ Ja(D*3 pv)-
4w " 8m

(4.10)

Usual universality arguments would suggest gD¹&~
=g~, so that we expect

2
gD ggpggeD~ 1 gp

4m 2 4w

From Eq. (4.10) then Zs/8v emerges as the mea-
sure of the unitarity correction factor. The large
difference between the contribution of the D*D
state as compared to the Dl) state is of course to
be traced to the difference between Eq. (3.2} and
Eq. (3.7). To obta. in the value of g„„we must add
the contribution of all the intermediate states. It
is evident from Tables I, II, and IQ that the D3 and
the D*D+3*D states alone contribute a unitarity
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correction factor or a suppression factor as com-
pared to OZI-ru16-allowed coupling (like (1)D*B) be-
tween 10 ' and 10 ' in the amplitude. This is to be
compared with the experimentally observed sup-
pression factor =10 ' in the amplitude [see E(I.
(1.5)]. We can easily extend our procedure to cal-
culate the contribution of the higher-mass
charmed-hadron states like D~B*, etc. However,
we have a prim. i some assurance that these higher-
mass states would make a smaller contxibution
compared to the D~B state because of their higher
thresholds, so that the order-of-magnitude estim-
ates of the corrections to the OZI rule by the low-
er-mass charmed-hadron states remain meaning-
ful.

To get an estimate of $-K~X coupling we can
repeat the above proceduxe for $- pm taking into
account this time both DB and I'F, D*E and I *7,
etc. for the intermediate states. If we assume that
coupling strengths ltjDD, JEST and the Regge res-
idues P's (which all involve connected vertices) re-
tain their SU(3)-symmetric values, there is still
RI1 SU(3) vlolR'tloll II1 tile effective coupllllg (I) K Z
induced by the mass splittings among the charmed
hadrons. If, for example, chaxmed pseudoscalars
were the sole intermediate state contributing to $
decay, then clearly the ratio of I(DD; p)l) to
,'[f(DB;K*Z)—+f(FF;K~X)]is the ratio of the ampli-
tudes |t)-pm and $-E~Z. Table I then suggests that
this ratio lies between 1.5 and 2. The relative con-
tribution of the D*l) and I'*7 states listed in Tables
Q and III also point to a similar value fox the ratio.
%e can clearly expect the higher-mass multiplets
such as D~D* and I I' also to maintain this be-
havior as the basic mechanism remains the same.
Summarizing then, if the hadron masses within a
charmed SU(3} multiplet are split by a hundred
MeV [m(cs) —m(cu) = 100 MeV] then our calcu-
lations indicate that the strong-interaction part of
the amplitudes $- p'm and g-E* K can have a
ratio between 1.5 and 2.

adopted for g -K*Z. The transition matrix element
is given by

3f=&~51„, (5.1)

M„= (4q', q', )'~'{q,q, out ~4„~0)

= (2q,')'~' d'x e"I *

(5.5)

Tile fllllctioll II11F(s ) is conlpll'ted fl'0111 tile absorp-
tive part A„of M, where

M„=B +iA„„

x 6«)(P„q, q, ). (5.6)

As befox'e we shall keep only the charmed-hadron
states in the sum over the intermediate states ~n)
in E(I. (5.6) and the lowest-mass state of interest
is then the DD state. The 4DD vertex function has
been defined previously in Eq. (2.9) and the other
factor that occurs in E(I. (5.6) is the scattering am-
plitude

D(k, ) +D(k, ) -K(q, ) + Z(q, ).
%'riting

x &q, ~
[j(x),Z„(0)]8(Ã)~0&, (5.3)

where J„ is the source of the g field with polar-
ization e, as in E(I. (2.1) and j(x) is the source of
the kaon field and q, and q, are the momenta of the
final kaons. There is only one invariant matrix
element for the transition for which we can wx'ite,
analogous to E(Is. (2.9) and (2.10),

M„= (q, —q )„F(P2, q, , q, ),

Among 'the stl'ollg-lll'tel'Rcti011 il'81181'tlolls $ two
pseudoscalars the only one that is allowed by
6-parity selection rule is the decay mode g-EZ.
If SU(3) symmetry were exact this decay would al-
so be forbidden, and the interesting feature of the
experimental data as pointed out in the Introduction
and in Appendix A is that the branching ratios for
P-K'E and $-%~X~ are consistent with the one-
photon term only, i.e. , no SU(3) violation in the
strong-interaction part of amplitude [P =o in E(I.
(I.V)] in contradistinction to (l) -K*K.

%'e can compute the strong-interaction part of the
transition Q -AZ by following the same procedure

we can insert EII. (5.7) and E(I. (2.9) in EII. (5.6) to
get the DD intermediate-state contx ibution to the
absorptive part as

ImF(s} =- dz He[K*(s}P,(s, t)]z,
32m q~g

(5-6)
where q is the center-of-mass momentum of the
kaons and z is the cosine of the c.m. Scattering an-
gle.

The contribution of the D*D intermediate state
can be evaluated by writing the scattex'ing ampli-
tude
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as

D'(e, k, ) +D(k, ) -K(q, }+K(q,}

T(&, k„k„q„q,) = e,„„,c'k",q",q', V(s, f) (5.10)

PeG' " k' (o~s)' 4
FFF (s me }

4 2 q s s-m& R

x cos~—

and using for the $D~D vertex function the expres-
sion given by Eq. (2.13). We get for the absorptive
part

t I

2 Jp(FF;KK)

(5.14')

(5.15')

lmF(s) = — ' ~ dz(l —z') Re[FI*(s)V(.". , t)].32~ i~s

(5.11)

'To proceed further we can assume, following
the arguments given in Sec. III, that the ampli-
tudes P, (s, I) and V(s, t) can be approximated by
their Regge asymptotic forms, i.e. ,

GPpFoo (s = m, ') =
327r

k' (n' s)" 4

qv's s —an~' R'

&& coshR' — - (5 14)R'

2r je(DD;KK),
327T'

(5.15)

where the quantities a' and P' differ from a and

R defined by Eqs. (3.5} and (3.6) in that on+ is to
be replaced by +F~. The value of the integral
Jp i s li sted in the fourth column. of Table IV for
diffe rent value s of the F* trajec tory.

In addition to the DD intermediate state we must
take into account the contribution of the FF state.
The calculation is identical to the DD case and we

obtain in place of Eqs. (5.14) and (5.15}

(5.13)

and approximate the vertex functions K(s) and H(s)
by their mass-shell value unity. 'The contribution
to F(s) of the DD intermediate state is then com-
puted from Eqs. (5.6), (5.7), (5.8), and (5.12) with
the result

These are obtained from Eqs. (5.14) and (5.15)
with the replacement m D-m~, n~*- n~~ with the
coupling strength G' referring to the gI'F vertex
and Pp to the square of the Regge residue of the
exchanged D* pole in the FF-KK amplitude.
Notice that there is an overall difference in sign
between Eq. (5.15) and Eq. (5.15').

Consider now the SU(3)-symmetric limit. We
then have G = O', Pp = P p, kg~ =re~, ~~* = ~~*, etc.
so that the dispersion integrals (5.15) and (5.15')
will be equal. In the tt)- KK amplitude then the
DD and FI' contributions cancel each other exactly.
But we have seen in the case of g- K*K the effect
of symmetry breakdown manifests itself dynami-
cally in the dispersion integrals if we take into
account the mass splittings among the charmed-
meson multiplets even if the vertex functions re-
tain their SU(3)-symmetric value. To illustrate
this point we have computed the dispersion in-
tegral (5.15) for the hypothetical SU(3)-symmetric
limit with ypgD =ypg~ = 1.87 GeV, n~+ = a~*, m~*
= ~~~+ = 2.02 GeV and listed it in the second column
of Tabl. e IV. It is seen from the table that the
values listed in columns 3 and 4 (which are cal-
culated with mz —mn =mz~ —mD* = 100 MeV) are
substantially different from those in column 2.
However, the difference between the dispersion
integrals J~(DD;KK) and Jp(FF; KK) is much
smaller than the difference between either of them
and column 2. Therefore, if we assume as we
did for g- K*K that the vertex functions retain
their SU(3)-symmetry values, the DD and FF
contributions (5.15) and (5.15') continue to cancel

TABLE IV. Values of the integral JF [cf. Fqs. (5.15) and (5.15')j for the contribution of the
charmed-pseudoscalar-pair interrrlediate states to g —KK. Column 2 gives the value of Jp in
the SU(3)- ymmetry limit m~=mz-—1.87 GeV, mD*=mz¹ ——2.02 GeV. Columns 3 and 4 gives
the values of Jp with a 100-MeV splitting (see text) between the masses, namely mD ——1.87
GeV, mz ——1.97 GeV and mD¹=2.02 GeV, mz¹—-2.12 GeV.

Slope of the
exchanged
trajectory
~' (Gev')

Jp
mD mFy mD¹ mg¹

Jp(FF;KK)
D* exchange

Jp(DD; KK)F¹exchange

0.45
0.50
0.55

0.34 x 10 3

1.7x10 4

0.87 x 10

0.21 x 10 3

1.0 x 10
0.49 x 10 4

0.19 x 10
0.89 x 10 4

0.42 x 10 4
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TABLE V. Values of the integral Jv fcf. Eqs. (5.1'7) and (5.17')] for the contribution of the
charmed vector-pseudoscalar intermediate states to g-KK. Column 2 gives the value of Jv
in the SU(3) limit, mz ——mz ——1.87 GeV, mD* —-mz* ——2.02 GeV. Columns 3 and 4 give the value
of Jv with mD=1. 87 GeV, mF ——1.97 GeV and mD* ——2.02 GeV, mz* ——2.12 GeV.

Slope of the
exchanged
trajectory
~' (GeV )

Jv
m D = m F m D+ = rrIF+

(Gev')

J (F*F;KK)
D* exchange

(Gev')

Jv(D D;KK)
F* exchange

(GeV")

0.45
0 ~ 50
0.55

0.53 x 10 3

0.20x 10 3

0.76 x 10 4

0.34 x 10 3

0.12 x10 '
0.45 x 10

0.29 x 10 '
0.10 x 10
0.36 x 10

each other nearly exactly.
To see whether this type of cancellation is oper-

ative for the D*D and E*p state contributions we

have first computed the D*D contributions using
Eqs. (5.10) and (5.13). We find

and F*F'~, charmed-baryon-antibaryon pairs,
etc. , so that pairwise cancellations take place
between contributions coming from members of
each charmed-hadron multiplet, thus explaining
the apparent absence of SU(3) violation in the
strong-interaction part of the amplitude P- KK.

k' (a' s)'„' ' 4

-Ws ~ —m

sinh R'
x coshR'—

' ' Z (D*D;KK) .2 V

(5.16)

(5.17)

The values of the integral J„(D*D;KI7)are listed
in the fourth column of Table V (for different
values of the F* trajectory). The F*F state con-
tribution analogous to Eqs. (5.16) and (5.17) is

VI. DISCUSSION

Following the arguments given in the previous
section we can expect the SU(3)-violating terms
in the strong-interaction part of the amplitudes
to be negligible in the decays for g -K*(892)K*(892)
and $-K*(1420)K. These two decays then pro-
ceed mostly through the one-photon term. Cur-
rent experimental upper limits" ~ on the branch-
ing ratios for these as well as on g- mA2 are
consistent with our expectation.

For the X states, charge-conjugation invariance
plus SU(3) forbids the decays"

GiP'v
FF~s (s =m

q ) =
"(mF+ m~+)2

X -KK*(892),

y —K*(892)K*(1420).
(6 1)

(6.2)

k' (ass)' ' 4
X

s -nzp' R'

x cosh R—

Q I QI" j (F*FKK'
32~'

(5.16')

(5.17')

with Q,' referring to the strength of the ttjF*F ver-
tex and Pv the product of the Regge residues of
the D* pole in F*I'-KK. We have listed the
values of J„(F~F—KK) in the third column of
Table V. We see again that the difference be-
tween the values listed in columns 3 and 4 is much
smaller than the difference between either one of
them and the hypothetical SU(3)-symmetric value
listed in column 2. We can expect this behavior
to be repeated with higher-mass multiplets D*D*

In analogy with our discussion of g-KK we can
once again expect that SU(3) symmetry is better
respected in (6.1) and (6.2) than in allowed de-
cays such as

y- pp, K*(892)K*(892),

X('F. ) ss KK.. -
(6.3)

(6.4)

Since there is no interference from the one-photon
terms as in the ease of g decays, comparison of
the decay rates for the reactions (6.1)-(6.4) should
provide tests of dynamics of ec decays as dis-
cussed in this paper. In the case of baryon-
antibaryon decays our considerations imply that
the decay amplitudes satisfy the relation

(6.5)

This inequality should hold also for the decay of
X states into BB pairs.

The calculations for the amplitude y'- pp pro-



802 J. PASUPATHY AND C. A. SINGH I8

TABLE VI. Values of the integrals of the contribution
of the DD and D*D intermediate states to g' —p~. I'(DD

pm) is defined by Eq. (3.4) by replacing |Ij by p'. Simi-
larly J'z(D~D —pm) is defined by Eq. (3.12) by replacing
0 by 4'.

Slope of the
exchanged
trajectory
n' (G V')

I'(DD; p~)
(C V')

0.45
0.50
0.55

1.09 x 10
0.43 x 10 4

1.7x10 5

0.20 x 10
0.84x 10 3

0.36x 10 '

ceed in an identical manner to that of g- prr. In

fact, in the expression for the absorptive part,
g'- charmed hadrons- pm, the term involving
the amplitude charmed hadrons- pm is identical
to that in P- pm. It may be thought at first sight
that since the dispersion denominator in Eq. (2.6)
is smaller in the case of g' decays, because of
the proximity of charm threshold, it may provide
an enhancement factor. Firstly, since the vertex
function g, p'- charmed hadrons as well as the
scattering amplitudes charmed hadrons- pw in
our calculations incorporate the correct angular
momentum factors, the effect of the denominator
is not as large as may be imagined. In Table VI
we have given the analogs of the integrals
I(DD; pw) [Eq. (3.4) ] and Zs(DD; pw) for the q' case.
It is seen that the enhancement factor is less than
two, in all cases. This slight enhancement is
more than offset by the difference in the
g'DD(g'D*D) vertex as compared to the qDD(yD*D)
vertex. We know from experiment" that, in the
case of the higher resonances, the coupling of
p(1250) and p(1600) to ww are much weaker than

p(770) to ww. Using SU(4) symmetry (in the sense
of generalized Okubo ansatz') we can therefore
analogously expect the g'DD coupling to be much
smaller than that of gDD. In other words, pro-
gressive decrease of the couplings of the excited
g states to the lowest charmed-meson multiplets,
such as DD, D*D, D*D*, should result in a pro-
gressive decrease of the effective couplings of
these g states to ordinary hadrons.

It is interesting to compare our phenomeno-
logical $-matrix approach to understand the
decays of g with the approach'4 based on quantum
chromodynamics (QCD), which is known to be
an asymptotically free theory. " In this latter
method the decays of g and g' are viewed as
proceeding via the annihilation of cc quarks into
3 gtuons which subsequently materialize into
ordinary hadrons. The narrow width of g and g'
is attributed to the smaQ. ness of the quark-gluon

coupling constant which asymptotically tends to
zero, while we have attributed it to the smallness
of the amplitude for charmed hadrons- ordinary
hadrons. If @CD is to be regarded as the funda-
mental theory of hadrons, one should, besides
deriving the spectrum of hadrons, be able to
derive Hegge asymptotic behavior of the various
physical scattering amplitudes. Thus, although
in principle one should derive the basic ingredient
of our calculation, namely asymptotic decrease
of the amplitude for charmed hadrons- ordinary
hadrons, from the asymptotic-freedom property
of the underlying theory, no practical calculation
exists at present. Our phenomenological approach
is somewhat closer to experiment; besides. the
asymptotic scale in our calculations is also clear-
ly set, namely by the slope of the u trajectory
which governs the high-energy behavior of the
reactions DD, D*D, D*D*, . . .- pm. We may al so
add that in the context of calculations'4 based on
@CD, the partial width for an exclusive channel
such as g- pw is quite difficult.

(Al)

where P~(x) is the field of the P particle and j'„"(x)
(a=0, 1, 2, . . . , 6) are the nonet of U(3) vector cur-
rents. In terms of quark fields the currents are

j' (x) = Qq((x)l'(g'~. qg(x), (A2)

a=0, 1, 2, . . . ) 8; s, g=u, d, s,

although for our purpose we shall not require this
specific form. In Eq. (Al) o. , P, and y are assum-
ed to be constants (the extra factors I/2v 2 and
W3/2 in front of n and y are introduced for con-
venience). The term proportional to y arises from
P-photon-hadrons. The first two terms repre-
sent the effect of pure strong interactions. If
SU(3) were an exact symmetry and P is an SU(3)
singlet then P would be zero. A nonvanishing P
can be taken to represent any of the following.
(a) There are dynamical violations of SU(3) in
P decay of the type discussed in the present
work but which need not be specified for a pure
group-theoretical analysis. (b) P is not a pure
SU(3) singlet but has admixtures of an octet wave

APPENDIX A: SU(3) IN Jjg(3095) DECAYS

lge shall assume that the transitions J/g-ordin-
ary hadrons is described by an effective Hamilton-
ian as suggested by Qkubo"
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function such as (Ns+ dd —2ss)/&6. (c}The
charmed quark is not an SU(3) singlet but is a
member of an SU(3) triplet of heavy quarks of the
kind as considered for example by Harari. "

%'e shall consider two-body or quasi-two-body
decays into states belonging to pseudoscalar (P),
vector (V}, and tensor (T) nonets. Because of
charge-conjugation invariance there is no contri-
bution of the singlet current in (Al) to decays of
the type $-PP, VV, I' T, while it is the dominant
term in g-I'V, VT. %hat the currently available
experimental data indicate is the following. Vfhen

a decay mode such as P-K'K is forbidden by
SU(3), its experimental magnitude can be solely
understood in terms of the one-photon contribu-
tion. On the other hand, in decay modes such as
P-p'v, K*'K, there is need to invoke a substan-
tial presence of the P term (octet part).

The various amplitude ratios in P-I'I', I'V,
etc. are straightforward to calculate from Eq.
(Ai). We take the vector and tensor nonets to
be ideally mixed, while for the pseudoscalar non-
et we make the identifications

q= cos8q + sining„,

q'=-sining, + cos8q„
(A3)

with 8=+ 10.4' as given by the Gell-Mann-Gkubo
mass formula. '7 The amplitude ratios are the

following:

v'w: KK:KRAK» =y: (y —P): -P (A4)

For the decay into a vector and pseudoscalar the
amplitudes are apart from an overall normaliza-
tion factor

P- p'v = p'»' = p a' = n+ 2P + y,

K+'K =K+ K'= & —P+7,
K*oKo K~K ~ P 2@~

2 '~' saney- yg= — - cos8 (& 4-p-2),y
(A5)

1P- yq' = —(v 2 sin8+ cos8)(n —4P —2y),
vS

1p- ~q = —(cos8+ &2 sm8)(u+ 2p+ y),
W3

1p- &uq'= —(W2 cos8 —sin8}(a+2p+ y),
vS

(d7t'o 3

Qf these, the first three require only SU(3) sym-
metry while the rest require nonet symmetry,
with ideal mixing for the vector nonet and with the
pseudoscalars mixing as in Eq. (A3). Equations
(A5) lead to the following relations for the branch-
ing ratios:

R (P-p'v ):R (g-K~K ):R (P-K*'K')

=
l
o+ 2p+ y I'. 0.86

I
o p+ y I'.0.86

I
o p

=0.43 ~0.10:0.16~0.03:0.13+0.035, (A7)

where the numerical values are proportional to
experimental branching ratios (see Refs. 19-21).
This has led the authors of Ref. 19 to suggest an
SU(3) violation of 10 to 20%. Comparison of Eqs.
(A6) and (Av) suggests that the SU(3)-violating
term P is larger than the one-photon term y.

A somewhat different picture emerges from
the two pseudoscalar modes. Experimentally we
have"

Rs(g-v'v }=(1.6+1.6) xlo»,

Ra($-K'K ) = (2.0 +1.6) x 10»,

Ra(p-K~K») &0 89 x 10.».

If SU(3) were exact, i.e., P=0, we expect, cor-
recting for phase space,

r(q-K'K-): r(y- v»-) = i:1.18. (A9)

If we take the median values in Eq. (A8) as the true
values of the branching ratio then the slight dis-
crepancy between Eqs. (A8) and (A9) can be ex-
plained as follows. Suppose there was no strong-
interaction contribution to g -K'K as in the case
of g-~+r, then

r(g-K'K-) E,(s =m, ') ' 1
r($-v'& ) E,(s=mqm) 1.16 ' (Alo)

E»o(s) —,P,+ ~P„+3P~
E»+(s) 2pp+ ~p„+ 3 pq

=0.25 at 8=m~2,

(Ai2)

(A13)

so that r(g-y-KRAK»)/r(g-y-K K )=6.2 x 10-'
is well below the experimental upper limit [Eq.
(A8)]. To summarize, then there is no evidence
for the presence of the P term in g-KK.

We know that, because of breakdown of SU(3) sym-
metry, E,WE~. Experimentally it is known3~ that
in e'e annihilation the following phenomenological
expression:

o(e'e -K'K ) P»'('oee»'w ) P,s IE~+I

p»' (2P.+ '6P + rPo}' (Ail)
p

3 2
r

with Pv=m»'/(s-mr'), fits the data for ~s be-
tween 1.2 and 1.V GeV. Using the right-hand side
(rhs) of Eq. (All) at s=m„' to evaluate the rhs of
Eq. (Alo) we get a value of 1.4, which is close to
the experimental ratio of the median values. Using
the same approximation we have
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It must be emphasized that we cannot explain
the difference between g- p& and g-K*K as due
to the difference between the form factors of the
currents j„orj"'. Such a procedure would

clearly make $-K*K larger than P pm.

APPEN D IX B COMMENTS ON THE CHOICE OF GD (t )
AND nF «(t)

It is known that the experimental masses" of
p, f, g, h as well as to, A„&o'(1670) lie approximately
on a straight line with slope (o.") '= 1.11 GeV2.
Similarly the 1,2', 3,K~ states" with masses
892, 1420, and 1776 MeV lie approximately on a
straight line with slope (o.') ' =1.2 GeV' a slightly
large value than (o.',') ' reflecting perhaps the ef-
fect of the larger s-quark mass. Encouraged by
this we try to approximate the D* trajectory by
a straight line connecting the 1 and 2' states.
There is good evidence that the vector D* state
has a mass =2.02 GeV. For the tensor D~ state
various theoretical calculations" indicate a value

&&=0.33 GeV '. (B1)

One of us has suggested elsewhere ' that the Regge
slope n,', &~~, and &~ factorize, that is

(tXDg) = QpQI, .
Equations (Bl) and (B2) then yield o'. D+ =0.54
GeV~.

(B2)

anywhere between 350 to 500 MeV above the vector
D* state. We have taken therefore three typical
values &DE =0.45 GeV', 0.50 GeV~, and 0.55 GeV
which put the tensor state mass, respectively, at
2.51 GeV, 2.47 GeV, and 2.43 GeV.

The pseudoscalar E meson has not yet been ex-
perimentally identified. Again theoretical esti-
mates" of the E-D splitting give m~ —m~=100
MeV. To determine the E* trajectory we have
taken m~4 =mD*+ 100 MeV=2. 12 MeV and used the
same slope as for D*.

For the P trajectory if we use a linear fit using
the 1 and 2' with masses~' 3.095 and 3.552 then
we have
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