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Beautiful interference phenomena should be seen in many spin-dependent observables for the collision of
spin-half hadrons. The phenomena occur both in the collision of charged particles and in the collision of
neutral particles with charged particles. Of most direct interest are the reactions pp ~pp, np ~ np, and

Ap ~Ap. Much information about the phases of the helicity-flip amplitudes near the forward direction can
be obtained from the measurement of the interference. Detailed expressions are given for many experimental
observables in the interference region, and the extraction of the hadronic amplitudes is discussed in depth.
The existence of a new type of "enhanced" order-a correction to the hadronic amplitudes is exhibited and its
consequences are explored, In particular the role of electromagnetically induced helicity flip outside the
interference regions is stressed and shown to complicate the interpretation of the small measured values of
the polarization at Fermilab energies.

I. INTRODUCTION

The interference at very small angles between
electromagnetic and hadronic contributions to the
scattering amplitude has long been a valuable tool
in the study of the phase of the hadronic amplitude.
The latter is, of course, of great interest on ac-
count of its connection via dispersion relations
with the asymptotic behavior of the total cross sec-
tion. An accurate determination of the real part
of the forward scattering amplitude is of value both
in testing the assumed analyticity of scattering
amplitudes and in constraining the possible behav-
ior of &t t, at high energies.

The usual measurements only probe the inter-
ference between the hadronic forces and the clas-
sical, longest-range part of the electromagnetic
interaction, namely, the Coulomb force. Qn quite
general grounds, as indicated for exampl. e by the
expression for the Lorentz force acting on a
charged particle,

F =e(E +vx B),
one would expect the relative importance of mag-
netic effects to grow with energy. These effects
will be associated with the magnetic moments of
the particles and will thus contribute to spin-flip
amplitudes rather than to the nonf lip amplitudes
affected by the Coulomb force.

Thus at high energies we expect to see a whole
range of new interference phenomena appearing
most prominently in those experimental qualities
that are sensitive to spin flip. Moreover, they

will be seen not only in the elastic scattering of
charged particles, e.g. , inPP-PP, but also in re-
actions such as +P +P andhP-~. The new in-
terference measurements will provide us for the
first time with a direct and absolute determination
of the phases of certain spin-flip amplitudes.

It is the long-range character of the Coulomb in-
teraction, namely, that the Coulomb potential drops
off with distance like e/&, that is responsible for
the extremely singular e'/t behavior of the scat-
tering amplitude as t-0. For a charge interacting
with the magnetic field of a magnetic dipole p, the
magnetic potential drops off as g/&' and the singu-
larity i.n the amplitude will be less severe and of
the form ep/(-&) '. It will nonetheless give rise to
quite dramatic experimental effects at very small
& values. (The effective potential for the interac-
tion of two magnetic dipoles drops off as g, p,,/r.
The corresponding amplitude is nonsingular at
& =0, and no dramatic interference effects arise. )

The detection and measurement of such interfer-
ence effects is a great experimental challenge.
With the development of polarized gas-jet targets
it may be possible to extend measurements down
to the range ~

& (
-10 ' (GeV/&)' and to monitor the

polarization of the recoil particle, in which case
the magnetic interference effects will be easily
visible.

The possibility of electromagnetically induced
spin flip is also of particular importance at present
in view of the very smallPP polarizations reported
from Fermilab. Indeed, it is possible at high en-
ergies to produce polarizations of the size mea-
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sured at moderately large t values, zeell outside
the interference region, even if the hadronic spin
flip is zero and the electromagnetic interaction
alone is responsible for the spin flip in the reac-
tion.

A point of special interest is the peculiarly asym-
metric behavior of the spin-dependent observables
in reactions such as &P-&P. We are so used to
thinking of both neutrons and protons as "nucleons"
with almost identical dynamical properties that it
may come as a surprise to learn that the polariza-
tion P„ofthe neutron and the polarization P~ of the
proton in the reaction +P -+P are totally different
in magnitude at small t—indeed differ by a factor
of 20. There is nothing mysterious in this asym-
metry. The spin flip is induced by the motion of
the magnetic moment of one particle in the Cou-
lomb field of the other. If only one of the particles
is charged this is an obviously asymmetric situa-
tion, and the most dramatic effects will always ap-
pear in observables that are sensitive to the spin
flip of the neutral particle.

Although the origin of the asymmetry is perfectly
simple, it is nevertheless a great nuisance tech-
nically since one must obviously give up the qimpli-
fications of isospin invariance when dealing with
such effects. As one consequence we are forced to
use six independent-helicity amplitudes in &P -&P

rather than the customary five.
A second point of special interest in generalizing

previous results to the case of spin-2-spin-~ scat-
tering is the question of the so called Coulomb
phase. Corrections to the bare Coulomb amplitude
o./& coming from higher-order electromagnetic
corrections modify it to the form, roughly,
(a/t)e'" '"d'~", where b is a typical hadronic slope.
It must be remembered that in the region of inter-
ference, the values of &, measured in (GeV/c)',
are such as to make a/(&(&1. Thus the higher-or-
der terms actually provide a correction of order
aln(&(&), which for ultrasmall &, say ~&( ~10 ',
is as large as 10m. A contribution of this size is
considered to be an enhanced O(o!) term and is
usually included in the treatment of electromag-
netic-hadronic interference. Indeed it is claimed
that measurements on the reaction m P - & P re-
quire the inclusion of the Coulomb phase in order
to get agreement between the measured hadronic
real part and dispersion relations; and this despite
the fact that for the range of & actually used in the
experiments, o.'1n((&(&) is never larger than about
30.

Intuitively, because of the classical nature of the
Coulomb force, one would expect the Coulomb
phase to be insensitive to the spin of the particles
involved. We show that this is indeed so by proving
in detail that each helicity amplitude picks up the

same form of Coulomb phase. At the same time
we find new, enhanced 0 (o.') corrections which
arise specifically through the spin structure, and
which will become important in the problem of
disentangling hadronic amplitudes from the experi-
mentally measured ones at high energies. Indeed
we shall show that certain amplitudes that we mea-
sure experimentally and refer to as "hadronic"
amplitudes are seriously contaminated by electro-
magnetic corrections, and that these are important
at all values of momentum transfer. A prescrip-
tionis given for estimating the "pure" hadronic
amplitudes from the measurements of the "contam-
inated" hadronic amplitudes.

Historically, the first consideration of magnetic
interference effects is due to Schwinger, ' who, as
early as 1948, discovered that these effects could
produce an almost 100fp polarized beam of neu-
trons in +P elastic scattering at very small mo-
mentum transfers. The importance of magnetic
effects in a more modern context has been re-
peatedly stressed by Lapidus and co-workers. '
The general question of electromagnetic-hadronic
interference, in particular the calculation of the
Coulomb phase, has been investigated by several
authors, notably, Bethe, ' Solov'ev, ' Locher, ' and
most comprehensively by West and Yennie. '

The present work overlaps all these studies to
some extent, but our treatment is more general
and our results more detailed. Insofar as the Cou-
lomb phase is concerned, our calculation supports
the results obtained by West and Yennie. ' In gen-
eral, our main emphasis is on the spin-dependent
phenomena and our results are expressed in the
modern language of helicity amplitudes. The prin-
cipal aim of this paper is a comprehensive study
of elastic spin-2-spin-2 scattering at high energies
in the electromagnetic-hadronic interference re-
gion.

Because of the complexity of the calculations we
have tried to keep the main body of the paper free
from technical detail. Thus all mathematical mani-
pulations are relegated to the appendices.

We summarize our main results:
(a) We give expressions valid for small & for all

experimental quantities of interest, including po-
larizations, spin-correlations parameter, etc. , in
the form

(where X denotes the relevant experimental quan-
tity), and relations expressing the coefficients
X ' ', X jn terms of the hadronjc amplitudes
and electromagnetic corrections to them. These
results will enable us to determine the absolute
phases of certain spin-flip amplitudes. There are
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cases where it is of particular interest to have this
information so as to be able to test theoretical
models of high-energy scattering.

(b) We discuss the Coulomb phase in the presence
of spin and show the existence of new enhanced
0(n) corrections that could significantly affect the
determination of "pure" hadronic amplitudes at
high energies.

(c) We present detailed numerical results for the
polar izations and spin-correlation parameters
which result from magnetic effects even when a«
hadronic helicity-flip amplitudes axe put equal to

Although the resulting magnitudes are small
outside of the interference region they are, for
example, in the case of the polarization, compar-
able to values measured at Fermilab recently.
These magnetic contributions can clearly have a
profound effect upon our interpretation of very
high-energy measurements.

(d) We calculate the electromagnetic corrections
to the hadronic amplitudes using a technique that
can easily be adapted to the solution of a totally
different problem, namely, the correct t eatment
of absorptive corrections in nucleon-nucleon scat-
tering.

Table I shows which hadronic amplitudes are in-
volved in the interference terms of the most in-
teresting experimental observables.

A work about the notation used for the experi-
mental observables is needed. Since the advent of
polarized-beam-polarized-target experiments the
emphasis has switched from observables which
depend upon the final spins to those which depend
upon the initial spins. Physicists have been ex-
tremely careless about the symbols used to denote
the currently popular observables. Therefore to
avoid confusion we have referred all our observ-
ables to the fundamental experimental quantity
l(Q, b; 0, d ), in which the unit vectors are given in
the order (beam, target; scattered, recoil). and

in which the possible directions of these vectors
are shown in Fig. 9. (A more detailed description
is given in Sec. IIID.}

In Sec. II we discuss the theoretical structure of
electromagnetic-hadronic interference at a general
and qualitative level. The detailed results and ex-
pressions for the experimental observables in
PP-PP, +P-+P, and A&-A&, where A and & are
any spin-& fermions, A neutral, & charged, are
presented in Sec. III. It is shown how measure-
ments of these observables yield information on
the "contaminated" hadronic amplitudes. Section
IV discusses the extraction of a "pure" hadronic
amplitude from the "contaminated" hadronic am-
plitudes.

In Appendix A we list the exact one-photon-ex-
change amplitudes for the general process AB-AB.

TABLE I. Hadronic amplitudes involved in interfer
ence terms of the most interesting experimental observ-
ables.

Observable
Main hadronic amplitudes
involved in interference

do

dt

Proton-proton elastic scattering

Re(C, Ni C, N)

Awe, Ass

AsL

ALL

(DLL S l.nO~ i DL s COSOR)

Im@'2 and Imc'q

Re@N

Re(@,N+ 4, N @N)

Be(@)—4 3)

Re@ 5 and Re4
&

AB AB; A neutral, B charged

Pg

AsL

ALs

(DLL s&n0L —DLs cosOL)(A) . (A)

or

(DLL s inoR DL s cos 0R)
(A) . (A)

the reaction BA -BA

Im@ N

Re(+, -C, )

Re@

Re(@N+ + N)

The impact-parameter-space transforms of the
electromagnetic a.nd hadronic amplitudes are cal-
culated in Appendix B. Appendices C and D sum-
marize the long and complex calcul. ation of the
"contaminated" hadronic and "corrected" electro-
magnetic amplitudes, respectively, in terms of the
"pure" hadronic and the one-photon-exchange am-
plitudes. Complete calculational details and re-
sults are available from the authors upon request.

II. THEORETICAL STRUCTURE
OF THE ELECTROMAGNETIC-HADRONIC INTERFERENCE

This section is devoted to a general discussion
of the theoretical structure of the electromagnetic-
hadronic interference terms, and we describe our
method of calculating them. For clarity we will
initially illustrate our approach for the case of
spinless particles.

A. General theoretical approach

At a fundamental level it is clear that combined
hadronic and electromagnetic effects should be de-
scribed by adding together the electromagnetic and
hadronic Hamiltonians. However, there is no hope
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is replaced by

e&x (a)
E(b) = (2)

where X(t)), the eikonal, depends on the impact-
parameter & related to the angular momentum L by
L =&&; & is the momentum. The eikonal is simply
related to the potential, viz,

with

V =Vem V

where V' denotes the electromagnetic (Coulomb)
potential and V" is the hadronic or nuclear poten-
tial. Thus we obtain

x(b) =x' (b)+x"(b). (4)

For the fixed impact-parameter amplitude F(b),
one then has

2&P(f)) e|(x' +x )

=[2iE' (b)+1][2if "(b)+1]—1

or

F (b ) =E' (1)) +f"(f)) + 2i F™(b)f "(b ) .
(5)

of utilizing such an approach in practice, and we

are forced to look elsewhere for guidance. In the
context of nonrelativistic quantum mechanics, it
is clear that one should add the Coulomb potential
to the hadronic potential appearing in the Schro-
dinger equation. The ensuing structure is particu-
larly simple and appealing in an eikonal treatment
which would be expected to be valid at small scat-
tering angles and high energies. In this case the
usual partial-wave amplitude

e24 61

E(l) =

FIG. 2. Expansion of the complete electromagnetic
amplitude E~ in powers of n.

Here E' and f "are the comPlete electromagnetic
and pure nuclear amplitudes, respectively. Equa-
tion (5), written in a symmetrized form, can be
interpreted as the impact-parameter projection of
the diagrammatic relation given in Fig. 1, where
the internal nucleon lines are on the mass shell.
The complete electromagnetic amplitude +' can
be expanded in powers of n as shown in Fig. 2.
To the desired order in o.'we shall then have the
following relation:

~em gN.

where +' is given by Fig. 2 and +" is defined by
the diagrams appearing in Fig. 3.

The set of relations appearing in Figs. 1—3, al-
though motivated by an eikonal treatment of non-
relativistic potential theory, transcends its deri-
vation and would seem to offer a very reasonable
prescription for calculating electromagnetic-had-
ronic interference effects, provided, of course,
that the diagrams are interpreted as Feynman dia-
grams. In this context it is important to stress
two points:

(i) Although the last two diagrams in Fig. 3 are
considered as Feynman diagrams, they are evalu-
ated with the two internal lines on their mass
shells. This is not the same as evaluating the
imaginary part of the diagram shown in Fig. 4. In-
deed the imaginary part would have many other
contributions in addition to the contribution given
by the two boxlike diagrams in Fig. 3, resulting
from also cutting the f"blob in all possible ways. '
The prescription we use should be valid at high
energies and small momentum transfers.

(ii) Although we have called f the pure nuclear
amplitude, it is clear from a more general dia-

II
I~

FIG. 1. Relationship between the pure nuclear, elec-
tromagnetic, and complete amplitudes in the eikonal
approximation. Primed lines are on the mass shell.

FIG. 3. Definition of the "contaminated" nuclear am-
plitude FN.
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N

FIG. 4. Feynman-diagram analog of a correction term
in FN

grammatic point of view that it must include inside
itself all manner of electromagnetic contributions.
For example, it could contain terms as shown in

Fig. 5, in which a photon begins but does not tend
on an external line, or is not attached at all to any
external lines. As such terms are far beyond our
capabilities of calculation at present and will prob-
ably remain so for a long time to come, we have
no choice but to assume that these effects alter
the pure nuclear amplitude only marginally. We
shall ignore the fact that what we call the "pure
nuclear amplitude" f" is slightly contaminated by
electromagnetic effects.

B. Structure of the results in the spinless case

It is well known that the boxlike diagrams ap-
pearing in Figs. 2 and 3 diverge as a result of the
masslessness of the photon. We formally give the
photon a mass ~ and we denote by f™the electro-
magnetic amplitude in the one-photon-exchange ap-
proximation, as shown in the middle diagram of
Fig. 2 in which allowance is made for a form fac-
tor F (q') (q' =-t) in the photon-particle coupling.
One then finds that (displaying explicitly only terms
which are singular as ~-0) F' and F"are of the'
form

=[I+taF 'inn'/~t ~+0(a)]f™,
F"'=[1 +i aF 21n&~+0 (a)]f",

where F, is shorthand for F, (g' =0). Correct to
the same order in e these can be written as

F' =[exp(iaF, 21nh2)) [1 +0 (a)]f' exp(-iaF, 21n~t ~),

F =[exp(iaF, ' ln&'}] [1 +0 (a)]f", (8)

where aF, '1n~ t
~

is relevant to the Coulomb phase
mentioned in Sec. I. Hence the total amplitudeI=I" +&"possesses the common phase factor

or

FIG. 5. Examples of electromagnetic corrections not
taken into account.

exp(i aF, ' 1n&'} which then cancels out in the bi-
linear expression for any physically measurable
quantity. A detailed treatment of the infinite-phase
problem is given by Yennie, Frautschi, and Suura. e

The infinite phase is irrelevant for us and from
now on we shall indicate by F and F the ampli-
tude remaining after factoring out the infinite
phase.

The terms 0(a} in Eq. 8 are all nonsingular in t,
so that +' and I""have basically the same ~ de-
pendence as t-0 asf' andf"', respectively, aside
that is from the explicit ln( t

~
term in F' .

A measurement of

= [F/2 =[F-+F'[2

will therefore show the characteristic interference
between +' and E . We stress that in principle it
is the interference between &' and I" that is mea-
sured directly and not that between f' and f"as
is often stated. It so happens that in the sPinless
case F" f" up to terms of order a and that

=f ' exp(-& aF,' ln( t ( )

up to terms of order e', so that aside from the
enhanced order-a term a In~ t ~, the interference is
for all practical purposes between f' andf".

When we come to deal with the full effects of spin
we shall find that there exist other enhanced order-
s terms. We shall therefore insist upon the dis-
tinction between f" and F" Moreo.ver, we claim
that it is really ~ that is measured in normal
hadronic experiments even well outside the inter-
ference region, e.g. , that

and that &t„asmeasured in an attenuation experi-
ment is related to ImF and not Imf . Corrections
should therefore be applied to &" to extract from
it the nuclear amplitude f". These corrections are
strictly of order + in the spinless case and are
therefore ignored, but as we shall see, this cannot
be done in the case of spin-~-spin-2 scattering.

C. General effects of magnetic moment and spin

We now consider the elastic scattering of two
spin-& particles. We wish to study processes such
as pp-pp, &p —+p, and Ap-Ap. Only the general
theoretical structure is discussed here, while the
details are confined to the Appendices.

Usually both pp-pp and &p-&p are described
within the single framework of nucleon-nucleon
scattering, by making use of isotopic-spin invari-
ance. The nucleon-nucleon process requires five
independent helicity amplitudes for its complete
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specification. If, however, we are considering
electromagnetic corrections, then, a priori, it is
clear that we may not invoke invariance under iso-
topic spin. Consequently, one of the symmetries
of the nucleon-nucleon amplitude under the ex-
change of particles, which is based upon the gen-
eralized Pauli principle, no longer holds, and it
becomes necessary to use six independent helicity
amplitudes for np-np. Since for Ap-Ap it is in

any case necessary to use six amplitudes, it will
be convenient to divide our treatment into two sec-
tions, the first dealing with PP -PP and the second
with the process A. +8-A. +&, where' and & are
nonidentical spin-~ fermions.

In the spinless case we were able to motivate
our approach from the eikonal approximation in

potential scattering. In the case of spin-g-spin-~
scattering, there does not exist a simple generali-
zation of the relation (3) between the eikonal and
the potential because of the noncommutativity of
the different pieces of the spin-dependent poten-
tials. Nevertheless the diagrammatic interpreta-
tion of the eikonal results seems so reasonable
that we shall simply adopt the same prescription,
with due allowance, of course, for the spin degrees
of freedom, and evaluate the diagrams using im-
pact-parameter techniques.

In practice, this means that we generalize the
symmetrized form of Eq. (5), which is the fixed-
impact-parameter projection of the diagrammatic
Eqs. given in Fig. I, and which now read as fol-
lows

A em AN
4&'»»" &»»(s b) = 4' &'»»': &»»(s b)+»bi »» x»»(s,.b)

+ —Q [4' i»«, ~+»e(s b)»l»~+»»'e »»»(s .b)+ g&»i ~imp(s b)4[+»»+ q»»(s b.)]

where 4q.„i,„»»(s,b) is the fixed-impact-parameter
analog of the partial-wave helicity amplitude. In
fact, we have

4,„,„,„„(s,b)-. (~'I»'I ~'l~a&. (10)

The factor ~ in (9) occurs because & is defined in
terms of the S matrix as in Jacob andWick'o by

(Note that for the spinless case Zacoh and Wick's
&' actually corresponds to twice the usual partial-
wave amplitude used in the Schrodinger equation. )

D. Proton-proton scattering

Our five helicity amplitudes are defined analo-
gously to those introduced by Goldberger, Grisaru,
Macoowell, and Kong" except for normalization.
We shall take

60' 2g
([4,I' +I 4,I '+I ~.l'

+I 4,I'+4I 4,i'), (12)

so that our 4 &, which are dimensionless, satisfy

where 4
&

is given by the diagrams like those in

Fig. 2, and 4& by the diagrams listed in Fig. 6„
where»b» are the p»»~e nuclear amplitudes. We
We shall always refer to the 4& as the "contami-
nated" nuclear amP/i tudes.

As in the spinless case we find that for all &,

both 4~ and 4& pick up infinite phases &eE,Bin~2.

Now &, (»f') denotes the Dirac charge form factor
defined by the usual expression for the electromag-
netic current:

(p'~'
I J„lp~)

=~;0 ') ~,(4')~, +iq "o, , ~.(4')]s.(p),

with g =P' -P, and & =@—1 the anomalous magnetic
moment of the proton. The infinite phase is again
irrelevant and will be ignored, so that 4& and 4&
represent what is left after factoring it out.

If Qq denotes the one-photon approximation to
the electromagnetic interaction, then we find for
all & that

4» =[1 +0 (»». )]»b» exp( inE, ' »It -I) ~

and the optical theorem becomes

[s (s —4m')]~~
lm(4, +4,)l»=0 ——

4m
+tot o (14)

~I~ 1~

For each 4; we write, in analogy with the spinless
case, the following:

(15)
FIG. 6. Definition of the "contaminated" nuclear am-

plitudes for spin~I particles.
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The corrections of order 0(n} are given for com-
pleteness in Appendix D. They are, however, un-
enhanced and may therefore be neglected. We
thus use

——[exp( i-o. lnlt I)]It, (i =1, .. . 5 ). (18)

It should be noted that the Coulomb phase is indeed
independent of i as expected from the intuitive dis-
cussion in Sec. I.

For the corrected nuclear amplitudes it is sim-
pler to state our results if we first exhibit expli-
citly the inherent kinematic factors in some of the
amplitudes, after removing a factor s for conve-
nience: For i =1,2, 3 we put

4 I (s, t ) = s[C; (s, t ) + 2A, (s, t)];
For i =4 we put

C, (s, t) =, [C (s, t)+iA, (s, t)];

and for i = 5 we put

( t)~2s-
4, (s, t) = [C, (s, t)+2A, (s, t)].

The C, , A, for all i are in general smooth and non-

zero at t =0.
For the P&re nuclear amplitudes we define anal-

ogously as follows:

E. Scattering of nonidentical spin-~ particles

In nucleon-nucleon scattering the amplitude 4,
corresponds to the helicity transition (++I+-}. We
can consider a sixth amplitude C 6 corresponding to
the transition (++I -+) . When the particles are
identical, one can show that for the partial-wave
helicity amplitudes

&++IT'I+-& =&++I&'I-+} (23)

as a result of the generalized Pauli principle.
Using the properties of the d~q„(d) functions it fol-
io|vs from Eq. (23) that for nucleon-nucleon scat-
tering, if isospin is conserved,

@,(s, t) =-4,(s, t). (24)

When the particles are strictly nonidentical or if
in»P —»P isospin is not conserved, we are forced
to include 46 as an independent amplitude.

The expression for da/dt becomes

,)(,)
(I@,l'+I C.I'+I 4',I'

taminated" nuclear amplitude 4& that are measured
both in normal hadronic experiments and in speci-
fically interference type experiments. In Sec. III
we present detailed formulas for all the interesting
experimental quantities in the interference region.

P,". (s, t) = s[c, (s, t) + i a, (s, t)] , i = 1,2, 3

g (s, t) = 2 [c (s, t) + ia (s, t)],-ts
(20)

+I 4,I'+2I 4,I'+21 4,I'),
(25)

PN(s, t) = [c,(s, t)+ia, (s, t)] .( t)1/2S

We then find that for all i we obtain

C, (s, t) =c, (s, t)- o.&, (s, t),

A, (s, t)=a, (s, t}+n (ss, t).
(21}

As there are sums over spins involved in the eval-
uation of the diagrams shown in Fig. 6, the ~&, e,
for a given i depend upon the a; and c,. for all j. In
fact one has

5( (s, t) =M(qa)(s, t),
e,.(s, t) =M„.c&(s, t),

(22}

where M&~, M;& are 5 x 5 matrices that are smooth
functions of t. The exact results for &;, && are
given in Appendix C.

Since in proton-proton scattering some ampli-
tudes are much larger than others, it can easily
happen that a no»diagonal correction to a small
amplitude, although multiplied by n, can be of con-
siderable significance. Such terms are regarded
as new enhanced order-n terms.

Just as in the spinless case it is really the "con-

where & =m„—m~ and ~ =m„+m~.
The general expressions for the experimental

observables for a process A+&-A+B, A &B, are
not well known. We present in Sec. IIID the for-
mulas for the most important observables.

In calculating the 4& and 4; in terms of Q& and

Qq, respectively, it is essential to use the correct
and indeed totally different expressions for /&5m

and $6em. However, when calculating the diagrams
shown in Fig. 6 for np-»p it is sufficient to put
Q~~ =-Q, inside the diagram, since in this case QN6

will differ from -Q," by terms of order n only.
The structure of the results for the general pro-

cess A+&-A+B is essentially the same as in the
pp-pp case. There emerges an infinite phase
i nF", FslnX2 and a Coulomb phase iaF,"F, inlt I,

which are the same in each of the six amplitudes.
Here +,",+, are the Dirac form factors for par-
ticles A and B, respectively, evaluated at &'=0.
In the event that one of the particles, say A is un-

charged, we would have E,"=0 and both the infinite
phase and the Coulomb phase would disappear.
There will, nonetheless, still be enhanced order-a
corrections as a result of the spin structure.

If we slightly modify and extend the definitions
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(19), (20), and (21) by the replacements

f z/2s
C,", (s, i) = [C,(s, t) + iA, (s, t)],

mg

i x/2s
(b", (s, t) = [c,(s, t)+i a ,(s., t)],N J

CN, (s, f) = [C,(s, t)+ iA, (s, i)],
mgmp

(26)

perimental measurements. Point (ii) is discussed
in Sec. IV.

A. The general structure in proton-proton scattering

The interference region for proton-proton
scattering is defined roughly by the requirement
Itl —o (GeV/c)', i.e .. Itl -0.01 (GeV/c)'.

If we denote by X a typical experimental
observable

y, (s, t)= [c,(s, t)+ia, (s, f)],
fPl pm g

and we include the new amplitudes

f X/2

@,(s, t) = [C,(s, t)+ iA, (s, i)],
mg

i X/2

y", (s, i) = [c,(s, t) + i a, (s, i)],
mA

then we find, in addition to (21), that

C,(s, i) = c,(s, t) —o 5,(s, i),

A, (s, t) =a,(s, i)+ ae, (s, t),

(27)

and the 6„e;are now given in terms of the a, , c
by 6x6 matrices M;, , M;, analogous to (22).

Note that if A= Bwe will -have C,(s, t)=-C,(s, i),
etc. In Sec. III we give formulas valid in the in-
terference region for all the experimental quan-
tities of interest for the reactions nP-nP and

AP -Ap.

III. PHENOMENOLOGICAL STRUCTURE

OF THE INTERFERENCE

In this section we first discuss the general
structure of the interesting experimental ob-
servables in the interference region. We then
provide a detailed list of those observables which
might become accessible to measurement at small
t in the near future, and consider what information
concerning the hadronic amplitudes, can be ex-
tracted from them.

As mentioned earlier the interference really
occurs between the corrected electromagnetic
amplitudes 4~™and the "contaminated" nuclear
amplitudes 4; . Thus the experimental measure-
ments give information most directly about the
"contaminated" nuclear amplitudes 4; . It is
therefore simpler to break up our study of the
Pure nuclear amplitudes into two steps:

(i) experiment- "contaminated" nuclear am-
plitud

(ii) "contaminated" nuclear amplitude C";- "pure"
nuclear amplitude Q, .

In this section we shall be concerned solely
with point (i), i.e. , with the extra, ction of the
"contaminated" nuclear amplitudes from the ex-

~ ~ ~

dg dg 4x""dt''''

x(i) =x'"+x"" i, (29)

a.nd thus determine the parameters X') and X
With these known and fixed, one could then pro-
ceed to determine the parameters X'", X" using
(28) in the interference region. Should the in-
terference-region fit still fail to reasonably fix
the parameters, it would be necessary to ignore
the t variation of the 1n~t~ term in (28). One
could then a.ttempt to fit the interference region
using

2 a) i}
x(t) =, + + x'0),t' t (30)

we find that generally the structure it can have
for small t is

2 2)

X(t)=, + —[X ' —ux '1n~]+X'+X' t (28)
t t

where all the coefficients X '), X ') are independent
of f . Note th. at Eq. (28) is also va.lid well out-
side the interference region.

The coefficient X") is given purely by electro-
magnetic effects and depends only on the charges
of the particles and on the observables under
study. Naturally, not all observables are as
singular as 1/t' for small i.

In principle, if the data were accurate enough,
we could hope to extract all the coefficients X'),
X' in Eq. (28), from a, fit to the experimental
points in the interference region. In some cases
the fit could be complemented by the fact that
one or more of the coefficients are known or
approximately known from oth er sources, e.g. ,
from total-cross-section measurements, etc.

In practice it is most unlikely that all the co-
efficients can be well determined from measure-
ments in the interference region, and we must
consider how to supplement information from this
region in a consistent fa, shion. When X(t) is
measured over a wide range of t spanning both the
interference region ~t~

~ o. and the "usual small-
(" region, say m'» ~t(» n, it might be preferable
to do separate fits to the two regions.

In the "usual small-t" region one would put
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and the average coefficients X" would be given
approximately by 0; =0; = —

t F, (-t)F, (-t),
(34)

X"=X ' —oX ' lnl t I, (31)

x&0~ =x"+ ~y'", (32)

where X" is the observable X(t) evaluated at t = 0
using only the "contaminated" nuclear amplitudes,
and y" is a quantity of hadronic magnitude. If
the observable X(t) has a typical hadronic mag-
nitude and if we plan to work to an accuracy of
5-10o/0 then we can clearly neglect the O(u) term.
Indeed, up to the present, fits of type (29) to the
"usus. l small-t" region have always been in-
terpreted as giving directly the hadronic con-
tribution X" to X(t) Howev. er, it seems very
likely (as is indicated by the very small proton-
proton polarization found at Fermilab") that at
high energies some observables will be extremely
small, on a hadronic scale. When this is so,
it can happen that the coefficient Yo~ in Eq. (32)
is so much larger than X" that the Y"' term is
crucial in interpreting the measured value of
X oi. We shall demonstrate this phenomenon in
the case of the polarization and the spin-cor-
relation parameter C» in proton-proton scat-
tering. We emphasise that a'though these effects
are electromagnetic, they are not the usual in-
terference effects and they also influence the
measurements completely outside the interference
region. We now turn to a detailed consideration
of the interference effects.

B. Parametrization of the amplitudes

To the accuracy required, we have the following
for all i for the process A+B-A+B:

where lnlt I is the mean Value of Inltl over the
region of the fit. [If this region is defined by

- ltl - ltl
„

t en It I =(ltl ltl )'"].
In what follows we shall assume that X '~ and

X'l have been determined from measurements
in the "usual small t" region. We shall also
usually assume that the coefficients X"~, X'" can
be determined from the interference region, and
shall be concerned with relating these coefficients
to the contaminated" nuclear amplitudes.

In general the coefficients are given by a mix-
ture of hadronic and electromagnetic contributions.
For example,

gem 4
em A B Fs( t}FB( )

mQ

B
(35)

(36)

where ~ refers to the anomalous magnetic mo-
ment of the particles, and F,(q'), F,(q') are the
Dirac form factors. The form factors are nor-
malized to 1 at q'=0 unless they actually vanish
a.t this point, and the signs in Eqs. (34) —(36) cor-
respond to positively-charged particles. Two
important points should be noted:

(i) For PP-PP we have A mB and we simply
ignore Q, . The amplitudes (I},', Q, , and Q,'"
are all singular as t- 0.

(ii) If one particle is neutral as in Ap-Ap and

nP -nP we have F", (0) = 0. In this case we put

F", (q') = q'F", (q'), (37)

~1(q') =F",exp( P",q'), -
F', (q') = F", exp( P",q')-

When, for example, F", (0) =F", =0 we use

F", (q') = F", pe(x-P", q')

(38)

(39)

In practice, we are only interested in the first
two terms in the expansion about q'=0; thus the
exponential forms are not to be taken seriously.

For the contaminated" nuclear amplitudes
we have al ready introduced a param et riz ati on

in terms of C, (s, t}, A;(s, t) [see Eqs. (19) and
(26)] which exposes essential kinematic factors.
We now write the following;

A, (s, t) =A; exp(b;t),

C, (s, t) = C, exp(b; t),
(40}

in which we allow for a possible difference of
slope of the real and imaginary parts.

In terms of A;; the optical theorems become

and we see that neither Q,' nor Q, nor Q,
' are

singular as t- 0. In this case only P,' remains
singular as t-0.

For very small t we parameterize the form fac-
tors as

4,™= P; exp(-t aF, F, lnltl) . (33)

The one-photon amplitudes Q, are given exactly
in Appendix A. We are only interested in their
leading terms at high energies; these are, with

2

g „,= 4v(A, +A,),

~~=g& & -~&, --8'»
m~ -=&r -v = 8v(A, -A,),
(r) )

= 4v(A, +A, +A3),

(41)
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where the latter three cross sections refer to the
initial protons being in definite spin states. "

C. Interference measurements in proton-proton scattering

%e list those experimental obsexvables which
show interesting structure in the interference
region and we indicate which "contaminated"
nuclear amplitudes are probed by a measurement
of the interference terms. Electromagnetic
quantities without labels ln this section of course
refer to the proton.

(i) The spin-averaged invariant differential
cross section provides a knowledge of the Re(4",
+4, ) at t=0. For one has that

value of do "/df at t=0 to a high degreeof accuracy
However, it would be meaningless to use the
value of I('~ to probe ver& small helicity-flip
amplitudes while neglecting the O(a) corrections
in (46).

(ii) The polarization gives a great deal of in-
formation about the helieity-flip amplitudes near
)=0. %'e have

(48)

and we find that

(-f)'" df
I —= 4v —(8&" —~'"In)f ()+a'"

(49)

The B' are given to O(o.) in terms of the "con-
taminated" nuclear amplitudes as follows:

B RA5 0$)y(~) K~ (50)
where, correct to O(o,), the coefficients are given
in terms of the "contaminated" nuclear amplitudes
as follows:

KI'"=C,+C,+a 4P, —",
where@~ is the total cross section for the col-
lision of protons polarized perpendicular to the
reaction plane.

IT"&=-a{C +C +C ) -3C

with &x„,measured in (GeV/c) ', and

1(0) da"
4m df;

K
+ n C,(2P, +5,)+C,(2P, +t,)+ ', (C, -ac,)

4m

(45)

in which dc "/dt is the expression for dg/dt ob-
tained using the "contaminated" nuclear am-
plitudes 4~ Thus we arrive at

(I+ p )+z(C, —C,)
1 acr" g~ '

4m dg , , 0 8n

K~~~„cia(il,+P.)

+~ Q,b~+A. 2+& 3+

2Pl+ 55+ 4m'

in which

1 m @y~
( f)u2fdf =&s(C, +C, +C,)

—C,(A, +A, +A.,).

(52)

(53)

+-,' (A, -A,)'+ ~ (C,'+A, '), (46)
In the event that a ~ ~ is not measured, it ean

be replaced in (50) by

Re(4,N+ 4,N) C, + C,
lm(4N+ 4N) ~=0 & i+&. {4V)

Since P, and e~ are known, Eq. (43) allows the
evaluation of C, +C, or p. The O(n) corrections
in (43) are negligible unless it happens that p is
very small, as is indeed the case at Fermilab
energies.

In Eq. (45) the corrections are negligible, given
that der "/dt is dominated by the imaginary parts
of the nonflip amplitudes. Thus I ~ gives the

& 'f f 4~~ 2+ & tot. (54}

Vfe assume that B( ~ is known from the "usual
small-t" region measurements. If then B~'~ and
B~'~ could be determined from the data, they
would pxovide two equations for the four unknowns

A2, A„C2,C,.
However„since real paxts ax"e expected to be

fairly small at high energies, it is unlikely that
the B~'~ terms can be determined from the t
dependence of the data. But, this does not mean
that one can simply neglect this term. In very
many high-energy models ohe would expect A,
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«C, in proton-proton scattering (e.g. , A. ,=0 in
exchange-degenera, te Regge models) so that the
enhanced contribution o.B~o ln~t~ could easily
be as large as the contribution of 2, to 8 '.

In practice then, one should try to disentangle
B"' and B ' from the data. If, however, this
/rovides impossible, it might be a.dvisabie to
find the overall coefficient of 4m'cy/ t,, call it B ',
and to interpret this using the mean value of
ln ~t~l over the region of the data, fit. Thus wc
might use

B"& =B'" —~a"'in~{ l

as discussed in Sec. HIA.
In this case, C, + C3 i.s known from ikx, , dj in-

terference measurements; 8 ' provides only me
equation for the real and imaginary parts of

and +5 ~

The known value ofi" can. provide us with "

further equation for the hadronic amplitudes, but
care must be taken with the O(o) "orrections fn

Eq. (52).
Indeed, if P is fairly smaLL, say less than 10%

at t = —0.1, then the O(o.) corrections in Eq. (52)
are substantial and it would be quite incorrect
to take the measured B ' as the value of {1/4v)
[~n/( t)"'t (f'd /-dt)' at t =0-

To estimate the importance of the O(rx) cor-
rections in Eq. (52), we may put A,, =-A„b,=b.,
=b, where 2b i=- the logarithmic slope of cks /dt
at t =0, and neglect. 4,.

Then we obtain

—~o„,(P, +P, +b).

If v e approximate rhx //dt t t =0 by its optical
value g, '/'&6m we obtain

hadronic polarization is actually zero. In this
calculation we used the exact one-photon-exchange
electromagnetic amplitudes (Appendix A) rather
than their expansion for small t in order to be
able to reach reasonably large values of t. For
the hadronic amplitudes we put 4, =- 4; =4", =0,
and 4; =- C,:- was obtained from the dispersionN

theoretic analysis of Grein, Guigas, and KroLl. "
The values used for @, = C, provide an excellent
fit to the Pp dg/dt over a range of 0 = —t =0.7
(GeV/c) .

The results of our caLculation are shown in
Fig. 7 where P is plotted for several values of
the energy. It is seen from this figure that mea-
sured value. . of P == 3'-/~, as reported from Fermi-
lab 'nust no'. be interpreted lit.erally as the values
of the hadronic polarization.

Returning to the problem of determining the
nadronic amplitudes, we see that Eq (56)., to-
gether with Eq. (53) provides one further con-
straint on @2 and @„.

To summarize, a determination of all the co-
efficients B ", E ', 8"wouid, to a good ap-
proximation, provide three equations for A„C„
A., C, . More realistically, a knowledge of just
B ' and B~" will provide two equations for the
four amplitudes.

(iii) The spin-correla. tion parameter A» (= C«)
provides information on Bec'., at t=0. This is
of great interest since the isotopic spin-1 ex-
change contribution to Be 4,, is supposed to be
well known from studies of neutron-proton charge-
exchange scattering. It is often conceived that
the isospin-0 exchange contribution to Re 4, is
neg'Ligible. If this is so, then the value of Re@,
in pp-'pp is k:~own from its value in np —Pn. A
direct measurement of Be@, in pp-PP is
therefore of great value.

647)' (-t,)' '
{57)

Using ~~-1.8, 2b- 10, vr-100 (GeVqc) -, {.;, - {1,
—7.8 and putting P"=[(-i)' /tm]A' for small t the.
curly bracket becomes roughly 10' —4. If P~
is of the order of 6~/o or less at t=- —0.1 then
6' -- 18/0 and the correction terms are sizable,
~ 25%.

Because the O(o) terms a.re relatively large in

(52), the contribution to the polarization coming
from electromagnetically induced spin flip could
be of importance at Fermilab energies„even
outside the interference region. "

To illustrate this, we have calculated the po-
Larization produced electromagnetically wh r.. the

.03

.02

-t f(GeVic )']

FIG. 7. Electromagnetically indu". ed pola r''zation in

proton-proton scattering at laboratory D)ornenta of 6
and l.oo GeV/'c.
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One has '"

A„„—= I(X, X; 0, 0)
6kf

dt

4 —...[«(4,*4.—4,*e.)+2I4-.I']
(c '4

-t [{GeV/c } 1

= 4v —(Dt" —od" In)t~)+D'" PiG. 8. E lect, roma~etically induced @pm correlation
paran)teter C,~„atp, „,b =6, 12, and 24 GeV/g.

D(~) A
~& T

Bm

cfAX

f-Q

and in which we have

~ j~p C,.9
+

'M PL

(59)
taminated" nuc1.ear amplitudes have been ex-
tracted from the data, there may be quite sub-
stantial corrections involved in extracting the
pul e hadronlc amplitude $2 fr om @p ~

(iv) The correLation pa, rameter A~~ gives es-
sentially the same type of information a,s A~„
does, although 4, no longer participates.

We have

:I~ ~
—= I (S, S; 0, 0)"dt

acr
~

A Qpf 6, ]C,2+A. ]A2 ~

71 f o

As usual, we assume D ~ known from measure-
ments in the "usual small-t" region. If the other
coefficients D~" and D~' can be fixed in the in-
terference region, then an enormous amount of
information becomes available.

Eqs. (59) and (60) give the real and ima, ginary
paris of 4, directly.

Turning now to D ', we see from (61) that it is
unlikely that the O(n) correction terms will be
important at high energies unless A.» is ex-
ceedingly small, say = l~j~. Nevertheless, the
terms most likely to be important in Eq. (61) are
those involving C„C,and C, which should be
incorporated, with a reasonable guess at the slope
b„in the extraction of 8» do "/'dt at f = 0 from
ihe measurement value of D'".

At low energies, where p is not so sI~all, the
elect"omegneti cally induced A

„„

is surprisingly
large outside the interference region. Using the
method described in subsection (ii) above, we have
calculated A» for a range of energies as shown

in Fig. 8. These values are not small compared
with measured values of A„„at6 and 12 GeV/c
at t= —0.1, which suggests that some care is
necessary in interpreting the usual A~„measure-
ments.

In pra. ctice, a realistic strategy might involve
neglecting C„C,in Eq. (61), putting', =A„C,
= C, so that both A, and C, are then known, and
then doing the interference fit and a fit to the
known D~o~ in terms of just the two parameters
A~ and C,.

In Sec. IV we shall see that even when. the "con-

4n'

2)
@e(4 J. 42 4 3 4'1)s(s —4@i'

==4v -(D"'- O'"In(t~)+d",
t

where D ' and D ' are the same as written in
Eqs. (59) and (60), but

4,„-(';—,)+ .( .+:)—K C~

In (64) we have used the fact that%»=A«
t =O.

Essentially the sante comments apply to A. ~s
as were made abouts» in subsection (iii) above.

(v) The correlation parameter A~ & determines
the real part of 4, + @, —4, . Assuming that
Re@, is known from subsections (iii) or (iv) we
derive information about the differences between
the real parts of the nonf lip amplitudes 4, and

It has long been ta.ken for granted that C,
=4'3, but recent measurements'" of Ao& =a.

which depend upon Im4, —ImC'., have yielded
aniazingly large values at moderate energies. A

check on the real parts is therefore of great in-
terest.

Qne has

~„—,= f(S, r. ;0, 0)
du.

4'
( z) Ret @".(@i+C'2 —43+ 44H

(65)
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P

( t)z/2 sL dt
—=4v -(G'"- ~G'"»Itl)+d"

where,

G(')= m» (C, + C —C )

(66)

(67)

with

a&')= C, —C„
H~"=A -A = —60

1
8m

() 1 da

(74}

(75)

G(")=~ (A, +A~-A3),

and,

( ) 1 m der

4(( (-t)'i' dt

+ ' Cibi+CP'-CP3

(68) K
+o 2p, (C, —C,)+C,b, —C3b, +

4 a C,4m'

in which
/ —[A -A + p(C —C )]

(to

4~ "dt 4~E=O

(76)

+ (C, +C, —C,)(p, + p,) —;. (69)C, + C,'+A, ' (77)

Here

1 m = c,(c,+c,-c,)
4m (-t) dt to

+A, (A, +A, A3)

——[c,G"+A,d "].
Kp

(70)

Assuming G", known from the "usual small-t"
measurements, a determination of G " and G '
immediately gives the value of C, —C, andA,

f4 3 If total -eros s -section measurements for
protons in definite longitudinal spin states ate
available, then G' is fixed by

G(&). ~ A + L
2 '

8m
(71)

ln Eq. (69) one might attempt to neglect C, and to
take b, = b, = b3=b for some reasonable value of

b, and thereby obtain a further constraint on

A, and C,. One would then have, instead of (69)
and (70),

(78)

do'—D~~ =I(0, L; 0, L), (79)

Assuming H ' is known, the interference fit
directly tells us about Re (4, —4, ) which could
then be compared with the value obtained in
subsection (v).

lt is unlikely that the correction terms in (77)
could be important. If we try to neglect them,
then (76) and (77) can be simplified to

H(o) ~ [II(i)+ H(i)]+C 2+A a
2 4

A fit only to the A« interference still has four
parameters. If we assume that C, and A, are
known from the other interference measurements
and that H ) is known, then (51) could be used as
a constraint on H ' and 5 in the search.

(vii) The linear combination of target depolar-
ization parameters DLL sinoR+DL~ cos8~, where
9„is the laboratory recoil angle, gives direct
information on Re@"„.We have"

—D~s
—=I(0, L;O, Q, (80)

le'

G =—G ' C, + (P, +P, +b) +~G'A, . (72)
lao

If the overall fit is not feasible, we would then
be forced to work with the mean coefficient G '
as discussed in Sec. IIIA.

(vi) The measurement of the correlation para, m-
eter Azr provides direct information on Re(C,
-4, ). We have

A i~ —= I (L,I;0, 0)
elf

and
do

(D~ sin()((+Dr, cos()s)—L dt

Re [4,*(C,—C, +4, —44) ] . (81)s(s —4m'

Then we find

m
~(~ (D sin es +Dg s cos t)s }

4 .(I e,l' +
I e.l' - I 4 .I' - l4 .I')

I

= 4(( —
(H

' -g H1(ltnl) +H, (78)

=4(r — -"~ + —(K ' —og ' lnltl)+K '
2t' t

(82)
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where

(83)

I7 ('i = —~ (A, —A, + A~) —2A,
2

K K+~A -2Atot 2 2 57 (84)

—a —~2C, + ~Pe... P, +P

~K C4+ C,b, —C2b2+ C3b32 m

where

2

+ 2C5 2P~ + b5+ 4m' (85)

m Qg„/,(D~~ sin8„+Dzz cos8s)—
4~ (-~) 8

K
4 f (/2 (Dz~ sin 6„+D/,cos8„)

df
(o)

4m - t~o

results for a particular reaction can then be read
off quite simply. However, care must be taken
in specifying the experimental observables since
they are no longer symmetric between A and B.

We shall adopt the new "experimental" notation
for the observables, I((),b;8, d), in which the unit
direction vectors are given in the order (beam,
target; scattered, recoil) and in which each unit
vector can lie along three possible directions: N
for "normal" to the reaction plane, L for "longi-
tudinal, " i.e. , along the particle's motion, and S
for N x L. The directions N, L, and S are sPeci-
fied differently for each I/article as can be seen
in Fig. 9, and all refer to directions in the labor-
atory reference frame, i.e. , the target rest frame.
The normalization is defined so that I(0, 0; 0, 0)
= d(7/df

The formulas we list apply to the case where the
beam and scattered particles, i.e., particles A,
are uncharged. Examples are the reactions np
-np or Ap-Ap.

Because particle A has a zero charge, we have

= C,(C, —C, + C, ) +A, (A, -A, +A, )
FA(q2 —P) —P (8'f)

'" (A, + pC, ) —(C,C, +A, A, ). (86)

If K"' is known, then an interference-region
fit yields further constraints on the real and imag-
inary parts of 4", and 42". The extraction of the
nuclear part of K"' is straightforward since the
O(a) corrections in Eq. (85) are negligible.

(viii) ln the above, we have focused upon the
measurement of individual observables and we
have discussed these measurements more or less
in isolation. It is of interest to survey the overall
picture assuming that all the above measurements
have been carried out.

The interference measurement on

do/dt, Pdo/dt, A~+o/dt, A~~do/dt,

x(f) = x "'+ ( t)'/'x"' .-
( f)1/2 (88)

The coefficients X' ' and X' ' are mixtures of
hadronic and electromagnetic quantities.

and thus the infinite phase term iaF",F, ln~' and
the enhanced terms iaF,"Fs ln It

~

no longer appear.
The structure of the interference is therefore
much simpler than in the proton-proton case. On
the other hand, the interference is harder to de-
tect because of the absence of a'/t' terms.

The most general structure we shall encounter
for an observable X is now [compare with (28)]

A do/dt, D sin8 +D cose„,and A do/dt
yield, in principle, nineteen coefficients which
are expressed in terms of seventeen hadronic
parameters; the ten t = 0 values A(, C, (i = 1;5)
and the slopes b„b„b„b„b„b„and5, . In
addition there is also the constraint from 0„,.
Thus, in principle at least, the parameters are
constrained and can be determined from a con-
sistent set of experiments.

The principal results are summarized in Table

TARGET

N~

BEAM

L, g $ Lb

OIL

D. The general structure for np ~ np and hp ~ Ap

We shall discuss the general case A+B -A+B,
where A and B are nonidentical fermions. The

FIG. 9. Definition of the polarization directions N, L,
S for the various particles in the reaction A +B A'
+ B', all in the laboratory frame.
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An immediate and important distinction between
the present case and proton-proton scattering is
the specification of the interference region. In
the present case this is not always the region It
& n (GeV/c)'; but sometimes, depending on the
observables, is (-t)'/'& o. (GeV/c), i.e. , It I&10 '
(GeV/c)'. The measurements of such tiny recoil
energies is a great challenge but appears to be
feasible with the development of gas-jet targets.

A second, and perhaps surprising difference,
is that the measurement of p, the ratio uf real
to imaginary parts of the nonflip amplitudes, is
exceedingly difficult, whereas in pp -pp it is the
simplest of all phases to determine.

We turn now to the detailed formulas.

1 dg Oz (1+p')+ —,'(C, —C,)'+ —,'(A, -A, )'

+ —'. (C,'+A, '). (91)

The difficulties of normalization involved in the
use of neutral beams make it unlikely that a pre-
cise value of p could be obtained from Eq (91).

(ii) The polarization&A of the fast forward-
scattered particle A for an unpolarized beam and

target has the most dramatic behavior of all the
observables. This remarkable phenomenon was
discovered by Schwinger as early as 1948 and was
suggested by him as a method for producing an
almost 100% polarized beam of neutrons.

We find

E. Interference measurements for A + B ~ A + B

We stress again that the interference measure-
ments give direct information about the "contam-
inated nuclear arnP/itudes parametrized as in Eqs.
(19), (26), and (40).

(i) The invariant differential cross section gives
no information about the hadronic amplitudes from
interference. But it does diverge as t -0, though

only as 1/t with a known coefficient.

We have

dv 4m" dt (s —42)(s —Z2)

x 1m [4,*(C, + 4, ) —C,*(4,—4,) ]

mA da Q (~) (o)
( ~)&/" A dt t A A

where

+ (j) 0 tot
A A

and

(92)

(98)

(94)

Cfg 2'
dt. (s g2}(s g2} (I+, I

+ I+. I

+

+ 4 I'+2IC I'+2I4 I'}

(o) m A da
A 4 ( t)I/2 A

where

=4m —,—+I"', (89)
+

2m ' 2m '
B 8

(96)

1
+n -FA1(Ci+C3)+ -, C2+ . ~ Ce

4'PH AMB PEA

(90)

We recall that 4 and Z were defined in Sec. IIE.
The region of interference is It I-a2 (GeV/c)',

and we should be able to detect the sharp rise in
the measured do/dt in this region. The detection
of the rise does not provide any hadronic informa-
tion, but would be a beautiful phenomenon to ob-
serve as a general test of the technical feasibility
of probing such small values of momentum trans-
fer.

The O(a) connections in (90) are quite negligible
so that the measurement of I"' provides informa-
tion on

«A o ~6~ (-t)'"
m 86 m's '/4m ' —tl'"

(97)

has a maximum at

O. 'I(A' 14 — 2 1(o)
A

(98)

in which

(
mA dv 0. „,

4 ( t)1/2 A dt 4 ( 6 P 6}

A (A,C, A,C,). (96}
mB

First, we shall consider the region of very small
t, i.e. , ~t~

—o' (GeV/c)' and suppose that there is
zero hadronic polarization, namely zero hadronic
helicity flip, so that only the BA'» term need be
kept in Eq. (93). Using (89} for dc/dt we see that



18 SPIN-DEPENDENT PHENOMENA INDUCED BY.. . 709

which is also the point of maximum interference
in do/dt. At this point

P Pmax
A

+ tot ~ tot

8w(I )
' 8&([(1/4v)do/dt],

(99)

Thus, the Schwinger polarization is gigantic. If
we approximate the nuclear differential cross sec-
tion by its optical value a „,'/16m, we arrive at

P max
A

(iii) The polarization Ps of particle B, which
could be measured for np- np and Ap- Ap by use
of a polarized proton target (it should strictly be
called the "asymmetry" in this type of experi-
ment), gives direct information on the imaginary
part of C, .

A comparison of 4," for np- np and pp- pp
would be of great interest. We have

i.e. , 100% polarization at t= t„=-06x10 ' (GeV/
c)'.

The correction terms to t„and P„'"arising from
the B„term in (93) are quite negligible. On the
other hand, hadronic real part effects, nonzero
values of the amplitudes 4", (t =0), and the pos-
sible nonequality of C", and 4," at t =0 will reduce
PA

'" to below the 100% optical value, and might
even serve as a rough measure of p.

Considering that the electromagnetically induced
polarization is so much larger in np- np than it is
in pp- pP, it is all the more necessary to exercise
care when interpreting measurements of the polar-
ization outside the interference region if the mea-
sured polarizations are small. We have repeated,
for the case of np- np, the calculation described
in Sec. I1IC (ii), and the resulting polarization
P„is shown in Fig. 10.

In order to extricate the nuclear polarization
from the measured value of B„outside the inter-
ference region, it is probably adequate to ap-
proximate (95) by [see (57) and discussion pre-
ceding it]

(0) m A
do' N

A 4~ ] 1/2 A

and we find

B(1) A 2
B 2

and

(0) mA da'
B 4 ( t)1/2 8

tot
1 5

Bm

+ —' A (Ps+PA+b )+
A

2 '' ' ' mmA B

in which

KAKB A+ 6
2mA mB

m„1 do

4v ( t) I' dt-

fP2A do' Q ( ~) (0)
( t)' ' -dt t

where

(101}

(102)

(103)

(104)

"'
g~(P, +P,"+b),

Bn'
(100}

-Lo-

-0.8
-0.7

z
2 -oe
I-

-0.5

-0.4

-0.3
Q.

-0.2
-0, I

where 2b is the logarithmic slope of (do'/dt)" at
1=0.

[C,(A, +A, ) —A, (C, + C, )]+C,A, —A,C,
B

(C, —p A, ) + C,A, —A,C, .
mB 47]

(105)

As usual, caution is necessary in extracting the
nuclear part of the polarization from a knowledge
of Bs' and (104). An adequate approximation to
(104) would be provided by taking

N ~~AB(ol A P + 1 soto& (106)

0}0' }0-5 (0 ' I

}0'
I

}02

-t [( Gev/c ) j
FIG. 10. Electromagnetically induced polarization P„

of the neutron in the reactions —&p at several lab-
oratory momenta.

(iv} Neither A„+o/dt nor A~do/dt show any
interference effects. However, Asia/dt providee
us with a direct measurement of the real part of
4N, —4,". We have
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A„=—I(S, I.; 0, 0)'~ dt
G(x) —A C8 2 2 (114)

and find

-4m

(S —S'}(8—Z2)

x Re[4 22'(4, —4 2) —4 2*(C 2+4,)], (107}
{o) 1 re do

48 (-f)''/

pB+pA+y 4

SPICA d(X & {1) ( )
{ t}1/2 Sldf , 8 G A +G A

where

(109)
in which

A A
1 PISA

do'

( f)1/2 I S

(115)

g (p)
A 4 ( t)1/2 SI

+o —"[C,(P', +P,'+I, )

in which

ZmEA
( pB +Ap+ 5)]

8 A 1 C (110)
2 /pig

(
1 PSA 4V",/, As/, — =(C, —C,)C, +(A -A, )A

4n (-t t=p

+ " (C,C, +A, A, ) .
Pl@

A~s —=(L, S;0,0)~' dt

4m

(S —~')(S —Z')

and f1nd

x Re[4,*(e,-e,) -C,*(C,+4,!], (112)

ISA da Q ( j) {p)
( f)1/2 I S df f 8 8

Assuming G„)is known, the interference mea-
surement should provide a. reliable value of {„'
and thus of the real part difference C, —C, . The
O(o. ) correction terms in (110) are almost cer-
tainly negligible when extracting the nuclear
(As1dII/dt)", 2 from the value of GtA2).

(v) Because the particles A and B are noniden-
t1cal, we have Aqq NAqL and, indeed, AI ~ gives
us new information on the real part of 42. This
complements the measurement of Im4," in sub-
section (iii) above.

We have

" [c,(c,-c,)+A, (A, -A, )]

-(C,C, +ASA2) . (116)

The O(ts) correction terms in (115) are almost
certainly negligible.

(vi) The correlation parameter A» does not
show interference effects. However, its value at
small t is interesting, being a direct measure of
[4)N [2 [4)8[2

(vii) In total we see that feasible interference
measurements on A + B-A+ B, A neutral, B
charged, yield information about the "contamin-
ated" nuclear 'amplitudes C 2N (real and imaginary
parts) and Re(48 —4NS). The measurement of PA
at maximum would help to evaluate Re(C", +C)2"),
which is otherwise difficult to measure, but this
would not be an accurate determination.

It appears that the most direct way to measure
p, at least for np- np, is to study the depolariza-
tion parameters of the neutron. As we shall see,
this can be done in two ways, neither of which is
simple experimentally.

It has to be remembered that in a reaction AB
-AB we can define two independent depolarization
parameters D, &

and D~& . Moreover, the labels
(I,j ), say, for particle A have a quite different
meaning in the reaction AB-AB, where A is the
beam particle, and in the reaction BA- BA, where
A is the target particle.

In the "experimental notation"" we consider the
following parameters for A:

PI s'(AB- A—B)-=I(I., 0; L„0)A8

4T—D,'A&(AB-AB) =-f(L„0;S,0)„,„,,

relevant to experiments 1n which particle A is the
beam particle, and
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—
D~~l (BA- BA) —=I(0, L; 0, L)s„

—Dl ~ (BA- BA) —=I(0, L; O, S)s„

relevant when particle A is the target particle.
In the case of the neutron-proton reaction one

could use a polarized neutron beam and then have
the difficulty of analyzing the polarization of the
fast-scattered neutron, or one could use a polar-
ized deuterium target and then face the difficulty
of analyzing the polarization of the recoil neutron.
For A-proton reactions, however, it might be
feasible to measure D' using a polarized A beam
on an unpolarized proton target.

In either experimental approach, the useful
combination of experimental quantities is

S=— DI, I, sin8~+D s cos8~
ax-ax

Dii sin 8i —Di s cos 8
AB Aa

g) 4 L& 1) L(o)
( f)1/2

where

(118)

(C, +C, )2
(119}

and

NL" =
4 —t'

&x Px+C32+&x

= (,)(,)
Re[4((4~+4~)+4~(42 —cb~)],

(117)

in which, as always, the actual helicity ampli-
tudes refer to the process AB-AB. As usual,
8~ and 8~ refer to the laboratory scattering and
recoil angles, respectively.

One finds

Thus the coefficient of o./t directly measures
Qg + Q3 It is re markab le that the dete rmination of
Re(4~+43 } for the collision of neutral and charged
particles should prove such a difficult task experi-
mentally.

'The main results are summarized in Table I.

IV. EXTRACTION OF THE "PURE" NUCLEAR

AMPLITUDES

In the previous section we saw how measure-
ments made in the interference region can provide
us with information about the "contaminated nu-
clear amplitude" 4", which corresponds to the sum
of diagrams shown in Fig. 6. The difference be-
tween the 4", and the "pure nuclear amplitude"
Q", is of the order cy in general, but, due to the
spin structure and the fact that some helicity am-
plitudes are much smaller than others, it can be
relatively enhanced in certain cases. For the sake
of completeness, we discuss the derivation of the
exact results in Appendix C. Here we shall only
be concerned with the dominant, "enhanced 0(o)"
corrections to the measured combinations of 4", .

The logarithmic slopes, b„b,of the contamin-
ated nuclear amplitude C~ differ only negligibly
from those of the pure nuclear amplitudes. There-
fore, we shall not distinguish between them in
this section.

The method which we have used in calculating
the 4", from the P", was explained in Sec. II, and
is valid at high energies and moderate momentum
transfers. The parametrization of the P& and Q,

"
required in this calculation is given in Eqs. (19},
(20), (26), and (34)-(39). Inaccuracies in this
parametrization at large t will be reflected in
growing uncertainty in the C ",. for large t.

We treat the cases pp- pp and AB- AB sepa-
rately.

A. Proton-proton scattering

Corrections to the sum of the imaginary parts
of the nonflip amplitudes are negligible and, thus
we find

Aj +A3 = a~ + a3 . (122}

+ C~(p i + p 2+ b~) — — Cs
PPlg ma

If the real parts are small, then the corrections
could be moderately important. We have

in which

+~A g + 8 A (120) C, = c, —aa, [y+ ln(2P, + b, )]

C, = c, —o,a [y+ln(2P, +b,)], (123)

,I, Q =C,(C, +C,}+A,(A, +A, )4v (-t)'I'

where y =0.5772 is Euler's constant. Taking
5

y 53 b where 2b is roughly the logarithmic
slope of (do/dt)", we have

+ " (C,C, +A, A,}. (121)
ma

c, +cs=C, +C, + "t [y+ln(2P, +b)] . (124)
4p
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For the difference between 4, and 4,"we have,
to a good approximation,

QK C2 C4

4m' b, +2p, m3(b, +2p)3

which could be important at Fermilab energies.
Corrections to A4 are negligible.

For 4, only the correction to C, might be im-
portant. The dominant term is approximately

a, a,
4m3 b + 2P m3(b + 2P )3

QK0't tb
16m(P, + P, + b)

(130)

(125)

The correction terms are unenhanced so that
only if the differences A, —A„C,—C, are ex-
ceedingly small is it necessary to use (125) to
estimate a, —a3 or cy c3.

One of the most interesting cases is the ampli-
tude 4,". We have

A, = a, + Q c, y+ln 2p, +b, +
4

',
4m2 b, +2P,

(126)

and

8. A + B ~ A + B;A neutral

For the nonf lip amplitudes we get

Ay +A3 ay + a3

and, keeping the dominant term only,

~W

)e3 43 8v(pA pB b)1 2+
(lsl)

For the differences between 4", and 4", we have

QKAK C2A, -A, =a, —a, +
„ nB
4mA mB b2+ P2 + p2

K ai
C =c —Q a y+ln 2p, +b +

4m ] +

Ka5

*((),+P.+ )Il' (127)

Let us estimate the correction to C, by keeping
only the term involving a, in (127). If we take a,
=A, = o „t(8v,b, = b, we have

a4
4m m b P P"

A B 2 2 2

(ls2)

QK 0't t 1
4m2 8?t b+2P (128) (Iss)

It is instructive to compare the correction term
to the usual pion contribution to C, . In PP -PP,

2 2
N &+& g r e55t

2 4~ (f m')-
T

theref ore,

so that the correction is negligible unless the
differences are exceedingly small.

The corrections to Im4," and Im44 are neg-
ligible, but for Be 4," and Re 44 the dominant
terms are analogous to the proton-proton case,
x.e.,

1 g2
c(w+v )= ———

cut 2~ 4„r
QKAKB +tot

4mAms 8v(b + Pl) + PA)
(134}

whereas the correction term has the same sign
as c3(v+ v,„t)and

correction term Qp~
c3(m+ m, „t} b+2P3

at pi=300 GeV/c. This correction is perhaps
important in elastic pp scattering if measure-
ments of CNN become possible at Fermilab. At
higher energies the correction could actually
dominate.

In a similar approximation, the correction to
C4 is

QKAKB Vtpt b

64m(pA + ps + b)'

Finally' for Re45N we have

QKBF j 0'tot b

16m(b 4-P +P )'

and for Re4N

QKA 0't

32v(b+P', +P", )

(135)

(136)

QK20 b2
4 64v(2p3+ b)3 ' (129) A tot (137)

32v(b+P, +P, )
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Thus C, W-C, and similarly A, c-A„and the
differences could be relatively significant if the
amplitudes are very small.

V. CONCLUSIONS

The interference between electromagnetic and

hadronic forces in the collision of spin- —, hadrons
gives rise to remarkable spin-dependent phenom-
ena at very small values of momentum transfer.
These phenomena occur both in the collision of
charged particles and in the collision between
neutral and charged particles. 'The detection arid

measurement of such effects is technically dif-
ficult and presents a great challenge to the ex-
perimenter.

We have shown that the successful measurement
of the interference effects will yield much infor-
mation about the real and imaginary parts of the
helicity-flip amplitudes near the forward direc-
tion. For the case of neutral-charged collisions
one will, in addition, be able to measure the real
part of the nonf lip amplitude, a quantity that
cannot be determined from classical Coulomb
inte rfe rene e expe r iment.

We have also pointed out tha. t electromagnet-
ically induced spin-flip transitions can give rise,
even in the absence of hadronic spin flip to not-
unsubstantial values of polariza. tion parameters

and spin-correlation parameters well outside
the interference region. This fact will strongly
influence the interpretation of the small measured
polarization values at Fermilab energies.

We have demonstrated that the Coulomb phase
is insensitive to the spin of the particles involved
a, nd is therefore the same in all helicity ampli-
tudes. On the other hand, we have found new
"enhanced" order-a corrections resulting ex-
plicitly from the spin structure that could be im-
portant in determining the "pure" hadronic am-
plitudes from the experimentally measured ones.

Our treatment of the electromagnetic correc-
tions appears to be a consistent one a.nd the gen-
era. l techniques involved can also be used for
calculating absorptive corrections in nucleon-
nucleon scattering.
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APPENDIX A: ONE-PHOTON-EXCHANGE AMPLITUDES

Using the normalization convention described in Eq. (13), the exact one-photon-exchange contributions
to the process A+B-A+B, with allowances for form factors, a.re

s — ' —,' »„'~ », ' ~(,' — „)'/
)

r,"tq')r', tq*) —,r'(e lr "te ) — ',*"*r',,". (q'*)F',"tq*)(t—,),
K Plat-t gem(s () ) {q ' t {() A B A B yA( 2)y B(q2) B A FB{ 2}FA( 2}

A B FA(q2)y B(q2) s 222
2

222
2 + s B AK K ~ ')' ~

4A)7 yp7 s

em( ) A( 2) B( 2)
' A B A B 2{q ) 2{qn P, s, t=F, qF, q +

2 4A'

Q; {s,t) =-Q; (s, t),
e

n~ 2 —rn 2

Q iy (S t) = (4y2 t) i/2 i (q I i (q I A y
A B B FA(q2)I, B(q2)

)

a 'Q', (s, t) =

WAWBFA(q2)FB (q2)

4mB

(4&. ),i. -r, (e )r, (e ),
(t

*')
m 2 n7 2 r

B A A FA( 2)FB( 2)
s 217'I ~

K~KBF2 (q )F (q ) t &&g —~'1B
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where q2= -t, and k is the c.m. momentum, so
that

4k2s = [s —(m„+mB)'][s —(m„—mB)'] . (A2)

In the case that A and B are the same particle
we find, as expected, that

(A3)

The leading terms at high energy are displayed
in Eqs. (34)-(36). For the calculation of the di-
agrams in Fig. 6 we use only the high-energy
approximation, but for the numerical estimate
of the polarization and C» in Sec. III C, we have
used the exact results.

We note that the crossed one-photon diagram,
corresponding to the exchange of a photon in the
u channel, gives contributions that are totally
negligible in the small-t region at high energies,
as a consequence of the rapid falloff of the form
factors.

APPENDIX B: THE b-SPACE TRANSFORMS

The fixed-impact-parameter amplitudes P;(s, b)
are described in Sec. II. Here we write down the
relations between a given (b, (s, t) a.nd its transform

$,.(s, b)
The Jacob-Wick partial-wave expansion is mod-

ified as follows.
(i) For M=—max[A. q p] -0,

d,„(8)—(-1)""Z(, ,((bq), (al)

where N = min[A, p}b b =(J'+2)/b, and q = ( t)' ';-
t ) E - fdd bfdb;=

J

The one-photon amplitudes

The (t}; (s, f) are parametrized as in Eqs. (34}-
(36), and the form factors are para. metrized as
in Eqs. (38). We sha. ll assume that neither
F", (q') nor FB(q') = 0 at q' = 0, i.e., we shall in

fact pretend that bothy and B are charged.
Since, for example, we parametrize

Fb(q ) =Fb exp(-P) q ) (as)

when F", WO, and we use Eqs. (37}and (39)

F", (q'} = q'F", p( P",-q'-}

when F, (q'=0) =0, it is clear that we ca,n deduce
results relevant to (B6), i.e., when say A is a
neutral particle from those using (Bs) by

(B6}

(i) taking the derivative -s/sPAb

(ii} replacing F", —F",
(BS}

-x(q +)t ) ~

q +X
(B8}

which then allows a simple evaluation of the b-
space transforms.

In order to express the results succintly, we
define the following integra. l operator I„(P) For.
any reasonably behaved function f (x), and for
p&Q,

Because of the masslessness of the photon,
some of the b-space transforms diverge. It is
thus necessary to give the photon a mass X which
is allowed to go to zero at the end of the calcu-
lation.

A very useful trick' is to use the identity

().n) (X'p, '~T ~l}.p. )-p„,~.„„(s,b).

Bearing in mind our normalization, we have,
at high energies, for i = 1, . . . , 5

f,(P ) (f(x)] —= —e " '" "f(x) .
B

We then find, using (B2) and (B3)

(B9)

b,(,b) —fd. (bq)b;tqt}q=d.q. ,, ,

, t) —f d~, „~(bq}2,.(,=b}b db,

whereas, for i = 6,

b,(, )= ——fbd[bq)b, (, t}qd, q,

b„(,t}=— f d(bq}b,(, b—)bd,b.

We note that if A =B we will have

4.( b) s= 4,( b)s

in contrast to Eq. (A3).

(B2)

(B3}

(B4)

ytb}2(s b) j M(s b) +F F f (P PB)Ie-() /d2I

-az v F"F b2/ 4x

/EM(s b) A B 2 2 b2f (PA PB)
4 ' &6m ~ x 2+

A B

e-b2/4x
PM(s b) — B ' 2 bf (PA PB)

B

F&F~ e-b2/ 4x
gEM(B b) A 2 t bf (PB PA)

4m r 1 2
A

(B10)

The "pure" nuclear amplitudes

Using the parametrization (20), as modified in

(26), and taking
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c,(s, t) =c& exp(b, t),
a,(s, t) = a; exp(b, t),

(811)

Re Q", (s, b) = =' exp(-b'/4b, ),
b,

which is reasonable for a moderate range of t,
we find for the b-space transforms of the
&f&, (s, t),

t ~N i(gem yN gem yN ~em ~N gem ~N)

~~N t(~em j N ~em ~N gem ~N ~em ~N)

d ~N ig em yN gem yN gem yN gem ~N)

~yN t(gem yN gem yN gem yN gem yN)

ayN [(gem gem) yN gem(yN yN)
(c4)

Re Q,"(s, b) = —' exp(-b'/45, ),
b, gyN

'
[(gem gem) ~N ~em(~N ~N)

Re Q", (s, b) = =' exp(-b'/4b, ),
b,

Re Q,"(s, b} =

Re P", (s, b) =

Re PeN(s, b) =

b2
exp(-b'/4b, },4m„ms (b )'

,, exp(-b'/4b, ),c b

2ms (b )'

exp( b'/4b, -) .
b

2m„(b }e

(812)

c.-a.i t

b,.-bi.
(813)

Note that if particles A and B are identical,
we would have c, = -c, and b, =b, .

Analogous expressions hold for the 1m'", (s, b)
which can be read off from (812}with the re-
placements

C,(s, t) =c,.(s, t) —nb, (s, t),
A, (s, t) =a, (s, t)+ ne,.(s, t) .

(c5)

It emerges that the infrared-singular term ink'
always occurs in the same form, namely,

(i;-.0; }8",.i; (i.".i,")].
The b space transforms P; (s, b), and $,"(s,b)

are substituted into (C3) from Eqs. (810), (812),
and (813), and the actual correction amplitude
AQN (s, t) is then found using the transformation
Eqs. (82) and (83).

The calculation is a massive one, so we shall
only outline the ma. in results. (Details are avail-
able upon request to the authors. )

The "contaminated" nuclear amplitudes 4 ",. are
defined by Eq. (Cl). Remembering the definitions
of C,(s, t), A, (s, t), etc give.n in Eqs. (19), (20),
(26), and (27), we express the corrections coming
from EPN(s, t) by setting

APPENDIX C: CALCULATION OF THE "CONTAMINATED"

NUCLEAR AMPLITUDES

The "contaminated" nuclear amplitudes a, re
defined diagrammatically in Fig. 6. ~e write

5, (s, t) =a;(s, t)F", F, 1M',

&,(s, t) =c,(s, t)F", Fs ink'.

Thus, for this term, for every i,

P,"(s, t) = P", (s, t) (1+i n F~~ F, ln y') .

(c6)

(C7)
CN (s, t) =yN(s, t)+&@N(s, t}, (cl)

C", (s, b) =P(s, b) p ti, jN(s, b},

where, as explained in Sec. IIC,

ay,",„,.„„(s,b)

(c2)

gI yI }t / y gt ttI }tg(s y )
)tlat pter

y„",.„,„(s,b)p;„„„.„„(s,b)] . (C3)

Evaluating (C3) in detail, we find for the
&y, (s, b}

where 4Q", corresponds to the boxlike diagrams.
Analogously, for the fixed impact parameter am-
plitudes, we will have

To the given order in n we may extract the fac-
tor (1+in F,"F~s ink') from the complete expres-
sions for the 4", (s, t) and we then assume that it
represents the O(n) approximation to the phase
factor exp(inF,"F, ink'). We have not proved
that the exponentiation really takes place but shall
assume it on the basis of Ref. 9.

The ln X' term cancels out from all observables.
We have derived expressions for 5,(s, t), e, (s, t)

valid for all t. Since, however, the parametriza-
tion of the nuclear amplitudes cannot be expected
to hold at large t, our results cannot be trusted
for large t. However, we are primarily interested
in the region of small t, where the results are
reliable, and detailed expressions for the 5,(s, t)
and e,(s, t), valid for small t, can be obtained
from the authors.
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The dominant, "enhanced O(o.)"terms are given
in Sec. IV.

APPENDIX D: CALCULATION OF THE CORRECTED

ELECTROMAGNETIC AMPLITUDES

The corrected electromagnetic amplitudes are
defined diagramatically in Fig. 2. We shall onl. y
evaluate them for proton-proton scattering.

We write for these

4; (s, t) = (t); (s, t) + n', (s, t),

and, analogously, at fixed impact parameter,

4', (s, t))=4); (s, t))+ a4)',. (s, b), (D2)

where

4 „'.„.(s, t)) =
2 ~I tt II

x Q„'„,„.„„(s,t)) . (D3)

Note that, in contrast to (C3), there is only
one diagram contributing to &Q'~. In detail one
has

0

~4™=1
[(4; )'+ (0l )'+2(&i ) ], ~4: =t [4; 0™+(i; )'],

(D4)

Our approach is similar to that used in Appendix

C, though the calculation is much more subtle.
Again, the results are very cumbersome, and

details may be obtained from the authors.
Examination of the final results shows that each

4', is of the form

g2a;-(, t)=(; (, t)(( ~ & —, ~ o( *), (D))

which to the given order in n can be written as
g2

4)( (s, t) = (t); (s, t) exp io(in~ [1+ O(o(j] (D6)

We thus see that, independently of i, each
helicity amplitude picks up the same phase factor.
The infinite phase is dealt with as discussed
in Appendix C and the phase exp( —in in q') is kept
as the major correction factor, the enhanced
order o( correction, to the (t); (s, t)

In contrast to the corrections &Q";, where the
large inequalities of magnitude between different
nuclear helicity amplitudes could lead to relatively
enhanced O(o) corrections, here the O(u) terms
in (D6) are never enhanced and can be neglect-
ed.
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