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We investigate the consequences of the assumption that elastic reactions are described in a large domain of
energy and transfer momentum by an iteration model. We use a method which leads to a simple and general

approximation of the iteration-model amplitudes at intermediate momentum transfer (0.5 ( ~tI 5 10 GeV').
Using this approximation, we obtain a good description of the available data on hadron-hadron elastic
scattering at different energies. A study of the generating "Born term" of the iteration series can be
performed directly from the intermediate-momentum-transfer analysis. At low energy, it is compatible with

Regge-pole models with exchange-degenerate Regge trajectories. At very high energy, however, one has to
add to the Pomeron singularity a new real contribution. We study the implications of this real contribution
which will serve as a test for the iteration approach.

I. INTRODUCTION-MOTIVATION

As is well known, elastic scattering of two had-
rons gives rise to a diffraction peak in the differ-
ential cross section. This diffraction peak is re-
lated to the "shadow" contribution of the multi-
particle states through unitarity and is commonly
described by the exchange of a Regge singularity,
the Pomeron. Beyond the diffraction peak, a dif-
ferent behavior appears, with a flattening of the
momentum-transfer dependence and the existence
of structures in the differential cross sections.

It has long been thought that the diffraction peak
and the larger-momentum-transfer structures
might be related by an iteration procedure ~

' In
this appraoch, one starts with an amplitude Q de-
scribing the diffraction peak as a primary inter-
action, or Born term. Then one adds the contri-
butions corresponding to the multiple interactions,
which are commonly given by the repeated convol-
ution —or iteration —of the single-interaction am-
plitude

A = Pc„P*".

The amplitude is specified by an input term Q

and a set of c„coefficients which is expected to
be simple or derived from field-theoretical con-
siderations. '

However, this plan suffers from two main dif-
ficulties. First, phenomenologically, the at-
tempts made to date have not been completely con-
vincing. At very high energy (CERN ISR range),
the dip at t - 1.4 GeV in pp scattering has been
predicted correctly, but other expected structures
at larger momentum transfer are lacking. ' At
moderate energies [CERN Proton Synchrotron
(PS) range], the usual models do not extend to a
large domain in momentum transfer (for ~t

~
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FIG. 1. (a) Two successive interactions —no contribu-
tion to the two-Reggeon cut. (b) Two simultaneous in-
teractions.

than 1-2 GeV' there are problems).
Second, a more fundamental question has been

raised about the multiple-interaction contribution.
In a space-time picture of the interaction' process
they do not correspond to successive interaction
but to simultaneous ones. In terms of Reggeon
graphs, the difference is depicted in Fig. 1. The
incoming particles dissociate themselves into
their constituents, which then interact and finally
recombine. The overall result is to give a more
complicated contribution than the simple convol-
ution. ' Many iteration models are possible,
though none can claim any strong theoretical
justif ication.

Our aim is to discuss phenomenologically the
validity of this approach. We first look for some
general features, common to the various iteration
models. The general features are then compared
with the experimental data in their range of valid-
ity. For instance, for a large class of input Born
terms P and different sets of coefficients c„,we
find a general approximation, valid in the large-
momentum-transfer region. This is shown in
Sec. II, where we review the general features of
this approximation. The phenomenological study
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of the data, performed in Sec. III, allows a tho-
rough discussion of the applicability of iteration
models. Pursuing this approach, we discuss the
properties of the Born term, as revealed by the
large- momentum- transfer behavior and compare
them to the properties already known from the
usual low-momentum-transfer models. In Sec.
IV, we draw the general conclusions of our work,
under the form of a status of the iteration models
as used in elastic scattering. This discussion is
completed by a comparison of these models with
the geometrical and constituent approaches.
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II. A LARGE-MOMENTUM-TRANSFER APPROXIMATION

TO ITERATION-MODEL AMPLITUDES

Let us first consider a simple model of iteration,
defined by the following formula:

A= P (-1)"e "'Q*"(s,t).

FIG. 2. The complex-impact-parameter plane and the
deformation of the integration contour. Continuous line:
the original contour C. Dashed line: the pieces of the
deformed contour C'. C& corresponds to the contour
at infinity.

bt, b) fbdb=b(, b)d, (bd-b)
0

b(, b) = f d-bdd-bb(, b)d, (b~t
0

Then, Q is the profile function of Q, and Q" is the
profile function of Q*". We write

b*'(, t)=f bdbg(, b)]"d,(b~t
0

Inserting formula (3) in the amplitude (1) and in-
verting summation and integration, we get

OO

A(s, t) = g(- )"Ie "' bdb[/(s, b)]"J,(b~t
nD 0

with

bdbA s, b2)J0 b -t,
0

dtb(s, b)e '
1+P(s, b)e-~

We may replace the integration over the real
axis by a contour in the complex b' plane. We
note that the Hankel function H, (z) is analytic with
a cut on the real axis, the discontinuity across
this cut being given by J,(z). Thus we may re-
write the amplitude as an integral over the con-
tour C (see Fig. 2):

A(s, t) = —. db' iHn(b~t).
Qe-a

c 1+ (f)e ~

In this formula one may recognize the usual al-
ternating sign and the strength parameter (e ') of
the Regge-cut models. The convolution is defined
as follows:

The amplitude can thus be represented as a sum
of residues of the poles arising from the zeros of
the denominator. This continuation into the corn-
plex b' plane, with resulting exploitation of the
poles, has been used by Dean, ~ though from a dif-
ferent point of view. This author was principally
interested in impact-parameter poles in the
crossed channel (t &0). We will be concerned
strictly with the s- channel impact-parameter
poles, which as we shall see below is the proper
tool for investigating two-body scattering outside
the very forward region.

Closing the contour at infinity' and assuming
that P is meromorphic in b', we get

A(s, t) = P iH, (b,v-t ) x (residue at pole k),

with the b, given by the solutions of

1+ dtb(s, bn')e '=0.

(6)

btb(s, t) =2R'e" ' btb(s, b) =e ' ~~

2
2

jn(S t) e nb -yn (S t) — e jn

The iteration series then has the form

2 e-naeR g/n( 1)"
n

(6)

At small momentum transfer, one can check that

The physical content of formula (6) may be il-
lustrated by considering a simple but realistic ex-
ample, that of an input Born term consisting of an
exponential. 'The relevant convolution formulas
(2) and (3) give in this case
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the iteration is a good perturbative approach to the

amplitude. The first term (n = 1) describes the
diffraction peak and the other terms give only
small contributions, provided the parameter a is
large enough (a is of order 1 in all types of fits).
At large momentum transfer, the situation is quite
different. A large number of terms of the itera-
tion contribute, since the smallness of the term
e "' is compensated by the smaller slope of the

Rexponential e" 't" in formula (8).
Now in this case, let us apply our method of

approximating the amplitude. The poles b,',
solutions of Eq. (7), are easily obtained

e-b /4R -a- 1 e~ir+2kfr

or

b~, =-4R'(a+i w+ 2ki w).

We get a series of poles(b~, ', with increasing
imaginary part. Noting that at large momentum
transfer

1
Ho(bp) =„.„(,e' a*,

j~wzbpj

one obtains

ie 'b~'

2, (zwib, z)'~'

( -a~2/~2
x]~Residue at b'=b, ' of, ,)1+e-a-b~ /R 2 ]

tb g
4R~2~ (-,'wib, z)'~' (10)

This characteristic form of a sum of exponentials
in the variable v-t will be the basis of our sub-
sequent phenomenological investivation in Sec. III.

The validity of our approximation method is con-
firmed by the direct estimation of the iteration sum
given by Anselm and Dyatlov in a series of ar-
ticles. ' Their method leads to the following qual-
itative picture: At finite t there is a balance be-
tween the damping in n provided by the strength
factor e "' and the growth of the e R ' " factor.
There exitst thus a value of n (in fact two com-
plex values n, because of the alternating charact-
er of the series) which dominates the sum for a
given, nonzero, value of t. These values are giv-
en by

R~i
n

(a +iw)1/2

leading to the approximation

g ~y e2R t/n+ y e2R t/n
+ 7

with ~, being slowly varying functions of t. One
readily recognizes that these are but the first
two terms (k=0) of Eq. (10). A direct check of

the exponential behavior yields

2R t =-2Rv —t (a+iw)'~ =ib ~t.
Furthermore, one can verify that the Anselm-

Dyatlov method leads to the same coefficients
&, as found in Eq. (10). There is thus a perfect
identity in this case between the impact-param-
eter-pole approximation and the asymptotic esti-
mate given by the Anselm-Dyatlov method.

The complex-impact-parameter method offers
the advantage that it can be extended to more gen-
eral interactions than can be treated by the method
of Anselm and Dyatlov. In particular we can con-
sider a sum of two exponentials in t, represent-
ing a Pomeron plus a secondary Regge contribu-
tion, as we know must be the case for low to mod-
erately high energies. This justifies the applica-
tion of our method to a large domain in energy in
the phenomenological analysis of the next section.

Another desirable generalization consists in
introducing a set of coefficients c„into the iterative
series. In fact, our method of approximation can
indeed be generalized to other iteration series
than (1), though the nature of the singularities in
the complex b' plane may change. Let us con-
sider, for instance, the important example of the
eikonal series. Instead of formulas (1) and (5)
we have

bdb [exp(- &f&e ') —1]iH (b v t)-1
4i 0

Instead of poles in the complex plane, the integral
is dominated by saddle points. (Note that the con-
stant -1 in the integrand does not contribute out-
side the forward direction. ) In the large-momen-
tum-transfer region, the amplitude is thus re-
duced to a simple expression, considering the ap-
proximation of the Hankel function in the same re-
gion (H, (bz) - [I/(ibz)' ]e' ')

A(s, t) =-,' ~, . ,&, exp[-P(b', s)e '+ibv-t ].bdb

Qwl z

This integral is dominated by saddle points b~~,

which are easily derived once the function P(b, s)
is given. This leads to results very similar to the
previous ones: Up to logarithms, the functions
which appear are again exponentials in ~t

A last extension of our approximation method
concerns spin. For helicity amplitudes with a
net helicity flip v, one has to use in all formulas
Hankel functions with index v. Since all these
functions possess the same asymptotic approxima-
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tion up to phases, one gets the same expression.
Moreover, the location of the singularities in the
complex b' plane is the same. Indeed in most it-
eration models, the flip amplitudes are defined

by the convolution of a flip Born term times the
nonf lip kernel.

tic reactions can be described by a small number
(2 at most) of exponentials in the variable v t-
Let us look at the data.

The cross section is given by the sum over the
different helicity amplitudes. As shown previous-
ly, it is legitimate to consider the same exponen-
tials for all amplitudes. We then write

The singularities contained in the nonf lip ampli-
tudes dominate also the flip amplitudes. Only the
residues differ in formula I7). This rieans that
the exponential behavior will also be the same.
Note that the new contributions one has to con-
sider in the nonf lip term (such as flip-flip contri-
butions) can be absorbed in the nonf lip Born term
a.nd do not change our conclusions.

III. EXPERIMENTAL CHECKS AND DISCUSSION

A. Parametrization and fits

The results of the preceding section suggest that
the mode rate- momentum- transf e r region of elas-

» =hei i city
indices

g+eg+e y eg e (12)

where p, ', p, are independent of v. We shall from
now on assume that the ~ are constant at nonzero
transfer, focusing our attention upon the exponen-
tial behavior.

Collecting the terms with different exponents,
we get

da/dt= V' i&'i'e' '"'"+V' i& I'e' ""-2Re
V v

A. ""X
v v 7 (13)

where the bar stands for complex conjugation.
One can rewrite formula (13), taking into account the real and imaginary parts of the complex numbers

p.', p.'=R'+iI',
&t2 &t2, -

(Q~ I ).'„I2)'t2 E»&„
Q~y+I2 Q (y-I2 e&R +n & + v e(R R'&z Pfte-el&I+I-

dt ', " '

I. (I I&„I')' ' (QI»-IRAQI» I=')'"
V V V

Then, we get a seven-parameter formula

da—= 2Ge' ' [cosh(2 M + 2 &I&) —p cos(2Iz + 2&p) ],

with

g+ 2 g- 2

R,-R
2

I,-I
1

Zl &„'I'

)~I»„I' ' (QIx„I'QI».+I')'t'

do'

dt
—= 4Ge' '[sinh'(Rz + &t&) + sin'(Iz + &t&) ]. (14)

For each value of the incident energy, one has

Note that p» 1, owing to the Schwarz inequality.
The equality is obtained only if X /X„'=constant.
We shall make this assumption in order to con-
sider the simplest parametrization, and thus we
get a six-parameter formula

to use formula (14) with different parameters.
This means that the experimental checks will be
meaningless unless an extended-momentum-trans-
fer region can be considered. This leads us to
consider the following data (see Table I):

(a) pp scatteying at I'S' and ISR' energies. One

has results up to 10 GeV'.
(t&) Low energy»'p, K'p-, and pp scattering. We

will concentrate on the data at 5 G V/ec, ' which
cover al. l these two-body elastic reactions for all
angles .

The curves of Fig. 3 show the resulting fits for
pp scattering. Those of Fig. 4 show the reactions
at 5 G V/ecAll fits are satisfactory in a momen-
tum-transfer interval from 0.5 GeV' to 8-10 GeV'.
At this point. the data available are compatible
with the hypothesis of an iteration mechanism.
Concerning the possibility of a, more complete
study, we point out that in both cases, the re-
sults from Ferrnilab or SPS are needed to cover
satisfactorily the entire range of reactions arid en-
ergy available.

Note that pp and K'p cross sections —the exotic
channels —differ qualitatively from the others.
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TABLE I. Parameters of the fits to elastic scattering at large momentum-transfer values.

ters
(mb GeV" ~) (GeV ~)

R
(GeV ')

I
(GeV-') (rad) (rad)

PP 10 GQV

pp 19 and 24 GeV

pp 1.500 Ge V

1470
1142
1960

(a) pp scattering
5 ~ 1 2.9
4.97 1.86
5.39 1.65

3.4
2.95
1.19

-1.62
—1.96

2.1
2.81
1.63

(b) 5-GeV reactions

7r p
x p
K p
K+p

pp

170
150
166
170.7
116

3.46 0.6 1 4
3.45 1.6 5 3.34
3.73 0.27 4.27
2.98 1.0 1 -0
3.18 0.18 5.25

—1.3
—2.5

0.54
—1.64

0.36

—0.51
0

—0 ~ 15
—0.88

This well-known difference" can be understood in

our approach, as we shall discuss now.

B. The physical interpretation: the properties of the Born term

In the discussion of the difference between exotic
and nonexotic channels in the moderate-momentum-
transfer region, it is natural to look for a physical
interpretation using the usual models for the Born
term, namely the Reggeon exchanges: Pomeron
and secondary Regge trajectories. The properties
at moderate or large momentum transfer would
then be related to those at low momentum trans-
fer. In this respect, one is led to separate the
discussion of the low-energy cross sections which
mainly depend on the secondary Regge exchanges
from that of the high-energy ones, where one can
study the Pomeron singularity alone.

=0.5+0.9t. The + factor gives the rules for Reg-
geon phases (+ for exotic channels, —for the
s-u crossed nonexotic channels such as, respec-
tively, pp and pp elastic scattering). We fix the
parameters ~,t„t„g,b through consistency with
the data at 5 GeV/c (se Table II).

The results are shown in Fig. 5 for a set of typ-
ical energies (5 GeV/c, 10, 24, 100, 200, and
2000). As expected, one obtains oscillations for
the nonexotic reaction and a break for the exotic
one. This is in agreement with the gross features
of the data. Changing its position with energy, the
break in the exotic cross section is transferred to
larger momentum transfer and the second dip of
the nonexotic one disappears. Note the profound
first dip for which it could be interesting to look

1. Low-energy cross sections

If we include Regge poles in the input Born term,
we know that there exists a difference at the level
of the secondary Begge poles (p, A„P',co) between
exotic and nonexotic channels. These poles give
a mainly real contribution in the former case and
one with a rotating phase in the latter one. The
question is whether the iteration of such a Born
term w ill give the observed effee ts. For its study,
w consider a standard realization of an iteration
model, based on tPe eikonal series with a Born
term consisting of a dipole Pomeron'" and a pair
of strongly degenerate Regge poles

da(mb GeV )

dt

10

10

10

'l0

LAB(GeV /c)

10

/c

eV/c

(&5)
g7+ ~ eQ 0(+p)ot(t)-& —p+ g+(+ t)

(t —t.)(t —t, )

with a=0 (pure eikonal model') and n(t):—n(0)+n't

l0
-9

0
I

ltl 8 GeV

FIG. 3. Results of the fits with the approximation
formula: pp scattering. The data are from Refs. 9
(PS range) and 2 (ISR range).
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~O0

10"

~00

jugate poles 5~,', in order to be consistent with a
purely real equation. One then obtains oscillations
in the cross sections since the poles give two com-
plex-conjugate contributions [ft = it

= 0 in formula
(14); only the sin' term remainsj.

In exotic channels, Pomeron and Reggeons are
no longer in phase, the Pomeron being real and
the Reggeon contribution imaginary. Assuming
for simplicity the Pomeron contribution to be
real and constant in the region where we look
for 5' singularities, we write

1+ [const+6t'(b', e)]e '=0,
and in the simple example of formula (15), we get

sS(0)-1 b2

The phase shift between the Reggeon contribution
and the Pomeron prevents Eq. (7) from being real,
and the solutions are no longer complex conjugate
leading to two different contributions [ft, g o0 in
formula (14), with a damping or a suppression of
the oscillations due to the sinh' term].

2. High-energy cross section

In low-energy checks, the model for the Pomeron
is not properly tested. In order to discuss the
Pomeron singularity in isolation, one has to con-
sider the ISR data for pp scattering. At these en-
ergies, the usual iteration models of the Pomer-
on—including the dipole Pomeron, see Fig. 6—
are inadequate. They predict a second dip not
seen in the data. This general result" can easily
be understood from our approximation formulas.

3 (Gev~)

FIG. 4. Results of tile fits with the approximation
formula: elastic reactions at 5 GeV/e. The data are
from Ref. 11.

in pp experiments between 15 and 50 GeV/c.
Confirming this phenomenological analysis, the

featuxes of exotic and nonexotic reactions can be
related to the location of the singularities b~ in
the complex plane (see Sec. 11). Rewriting the
formula (7), one gets the equation for the singular-
ities (assuming poles for simplicity):

1+ [(P(b 2, s ) + 6t ~ (b ', s) ]e ' = 0. (15)

Since the intercept of the Reggeons is e, =0.5,
the Reggeon amplitude for nonexotic reactions
6t (e, t =0) is real, like the Pomeron (with our
conventions), in the forward direction. Then their
profile functions are also essentially real, and the
solution of (18) consists of pairs of complex-con-

Pomeron parameters
Beggeons or
other secondary
contributions

(a) Eikonal model + Reggeons
t~ tg, g

(b) Eikonal model. for ISR data" classical"
t~

Q.466

(c) Eikonal model for ISR data "modified"
t~ 0

Q.36 2.0 74 Q.71 1.37

TABLE II. Parameters of the eikonal models of PP
and PP scattering vrith a dipole Pomeron.
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The nature of this new contribution —a "core"
term as we call it—has to be elucidated, but its
introduction seems unavoidable in the framework
of the iteration models.

It is important to look for other possible effects
of the core term. In our model, it is predicted
that there is no additional dip beyond the first one
at ~f

~

=1.4 (GeV/c)' and that at sufficiently large
momentum transfer the cross section will behave
as an exponential in ~t. This flattening, which is
apparent in our calculated curve (Fig. 6), appears
to be seen in Fermilab" and ISR recent data. "
More work is needed to clarify completely this
important question.

IV. CONCLUSIONS AND OU'rLOOK

10 1O
'

1O
4 1O-s

1O
' .1O-'

10-s 10-s

1 2 3 4

FIG. 5. Qualitative description and predictions for
pp and pp scattering at various energies in a model
with exchange-degenerate Regge poles.

(t t.)(t - t,)-

Using an approximately real Pomeron, one gets
large oscillations, corresponding to two complex-
conjugate poles.

These oscillations cannot be arbitrary since the
lower-momentum-transfer data (~t ~&3 GeV ) fix
their period and imply a second dip in a specific
momentum-transfer region (t =4-6 GeV').

One can verify that secondary Regge poles can-
not provide us with a solution to this problem.
Their rapid decrease with the energy leads to
very small contributions at ISR energies, and
the slope of the input Regge terms (a'=0.9 GeV~)
gives too much peaking to be of relevance at large
momentum transfer. Thus the only possibility is
to modify the Pomeron singularity itself.

The physical idea is to introduce in the Born
term a new contribution, out of phase with the
Pomeron. We already know that this way we avoid
the oscillations (low-energy exotic reaction), the
problem then being to describe the dip at 1.4 GeV'
(instead of a break). We propose the following
parametrization [the values of the parameters are
in Table II(c)]:

We have shown that it is possible to describe
approximately a large family of iteration models
by two exponentials in the variable ~t, or equi-
valently by the contribution of two singularities
in the complex plane of the impact parameter.

Using the property, we are led to a first con-
clusion: The large-momentum-transfer data of
elastic scattering are compatible with the itera-
tion- model approach.

In order to apply a realistic model, one has to
investigate the properties of the input Born term
as given by Regge-exchange models. We are led
to the following conclusions:

(i) At low energy, one clearly identifies the ef-
fects of the exchange-degenerate Regge poles
(p-A., or P'-&u).

(ii) At very high energy, one has to add a new
"core" contribution to the usual models of the
Pomeron. The core is responsible for the ab-
sence of additional dips in pp scattering and the
flattening of the cross section after t = 8 GeV. The
introduction of a core contribution appears to be
essential if one wants to use iteration models for
the description of the data we have considered.

The approximation we have proposed is ab-
stracted from the iteration-model approach, and
its success as a description of large-t elastic
scattering in all its variety should be considered
as a hint for this kind of approach. We see that
the structure of the differential cross section de-
pends rather weakly on the details of the primary
interaction assumed and on the specific form of
the iteration. This structure is characteristic
of geometrical models, e.g. , that of Schrempp
and Schrempp" in which the exponentials in v-t
have their origin in surface waves creeping along
the interaction interface.

The energy dependence should come from the
input Born term. In the absence of a detailed mod-
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mb GeV

10

10

P = 1480 GeVzc

10

C HOV
--- dipole

dlpOLB+ COt 8

10

10'
0

FIG. 6. Comparison of an eikonal model with (continuous line) and without (dashed line) an additive real contribution.
The data are from Ref. 12.

el for the Pomeron and secondary Reggeons which
would constitute this input, it is hard to give more
than a qualitative discussion of the s dependence.
In particular, we would like to compare our re-
sults with those of Dean and of the parton model,
both of which look at the fixed-angle energy behav-
ior.

First let us look at 90' pp scattering which has
been studied by Dean, using a technique formally
similar to ours, but working in the t channel.
Freely parametrizing the motion of the t channel
impact-parameter pole, Dean was able to fit the
energy dependence below and above s -17 GeV'.
Now it has been pointed out since that these data
(including the "break" at s -17) lend themselves
quite naturally to a description by Eq. (14), as we
might expect if the b'-pole parameters vary slow-
ly with energy.

Parton models" predict a power law in energy
at fixed angle

—= s f(cos8),
dg'

(18)

with N-8 for incident mesons and N-10 for bary-
ons incident. These predictions are generally in
accord with existing data. Iteration models can
simulate a power law over a finite energy range,
though asymptotically, as the influence of the sec-
ondary Regge poles vanishes, one will arrive at a
form of the type of Eq. (14) independently of ener-
gy. Thus we expect eventually an exponential be-
havior in the center-of-mass energy. Experimen-
tal data at higher energies should allow us to de-
cide on this point.

There is a possibility that both processes, Reg-
ge-pole iteration and hard-parton collisions, con-
tribute to elastic scattering. In that case, the
parton processes will eventually dominate fixed-
angle scattering. However, we can define a trans-
ition t, such that for jt j& jt, j

the iterative pro-
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cess dominates. Equating the two contributions.

g
-N w +&=to

7

we obtain

N-t ~ —lns -ln's
2Z

(20)

since for baryons we have N-B, Z-4, and for
mesons N-10, Z -5. Taking ~to ~=4 GeV' at p~
= 5 GeV/c leads to t, 36 -GeV' at p~ = 500 GeV/c.

The experimentally accessible domain should be
considerably enlarged before we can decide on
these issues.
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