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Interior dispersion relations are applied in the boundary limit to the determination of certain threshold and
subthreshold quantities for pion photoproduction, viz., the threshold s-wave multipole amplitudes E),, and
the amplitudes involved in the current-algebra theorems of Fubini and Furlan, and of Adler and others.
Where comparisons are possible, our results are consistent with determinations by other methods. We also
find further substantiation for conclusions reached elsewhere concerning the continuation of soft-pion

theorems to their on-shell versions.

I. INTRODUCTION

The effectiveness of interior dispersion relations
(IDR)! in examining the near-threshold and sub-
threshold behavior of pion-nucleon scattering am-
plitudes has been demonstrated recently in sev-
eral applications. In particular, IDR have been
used to obtain values of low-energy scattering
parameters? and the pion-nucleon coupling con-
stant® and ¢ term, #* and to investigate the ¢ depen-
dence of subthreshold amplitudes for information
regarding ¢-channel resonance contributions®® and
the validity of PCAC (partial conservation of axial-
vector current) results.”

In addition to elastic reactions, IDR are also ap-
plicable to semielastic reactions, i.e., those of the
form a+b-c+d, m,=m,, and m,#m,, as long as
the amplitudes for which the dispersion relations
are written are symmetric in the kinematic vari-
able v=s —u. In this paper we apply IDR on the
boundary limit of the pion photoproduction phys-
ical region, where they have been called boundary
dispersion relations (BDR),® to evaluate the thres-
hold values of the E,, multipoles and to examine
certain current-algebra theorems, to wit, the
Breit-threshold sum rules of Fubini and Furlan,®
and the PCAC theorems of Adler! and others.'!

The multipoles and Breit-threshold sum rules
are obtainable directly by the on-shell procedures
of IDR, and represent no difficulties in interpret-
ation; our results are consistent with other deter-
minations. As we shall see, however, the PCAC
theorems are expressed for zero-mass pions, and
their substantiation through IDR is subject to the
selection of a procedure for extrapolating the
mass to its physical value, which extrapolation if
performed correctly should, according to PCAC,
result in small variations. If, as has recently
been argued by Hite, Jacob, and Scadron’ for elas-
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tic pion-nucleon scattering, the proper procedure
is to fix the variables v and ¢, as opposed to v
and vg, the on-shell versions of the PCAC theor-
ems are unfortunately not within the reach of eval-
uation by IDR. On the other hand, the point in the
space of kinematical variables which is reached
by fixing v and vy and bringing the pion mass to
its physical value is accessible to IDR, and our
analysis is performed at this point. In pion-nu-
cleon scattering, this is the point at which, for
the appropriate amplitude, the on-shell 7N ¢ term
is calculated, the value of which is by now gener-
ally agreed to be large by PCAC variational stan-
dards.’? However, as argued by HJS, since this
is not the proper quantity to which to refer the off-
shell pion-nucleon PCAC theorem,!®no inconsis-
tency between PCAC and a large o term is seen.
We find a similar circumstance for pion photo-
production. Evaluations of the amplitudes in the
PCAC theorems by others, using fixed-¢ disper-
sion-relation methods at what we would call the
proper on-shell point, yield results which vary
only slightly (10-15%) from the predicted off-shell
values. However, our determinations of the ampli-
tudes at the “improper” point results in larger
variations (~50%) resembling those in the analo-
gous pion-nucleon situation.

II. INTERIOR DISPERSION RELATIONS
FOR PION PHOTOPRODUCTION

The advantages of IDR, relative to other disper-
sion-theoretic techniques, have been discussed
previously in detail!® and we only summarize them
here: 1. The s-channel integrals converge rapidly
for the amplitudes considered, and there is no
need for subtractions of high-energy parametri-
zations. 2. The s-channel contributions are eval-
uated at intermediate laboratory-frame angles and
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represent generally a more reliable application of
original scattering data in the multipole determin-
ations; effects of final state Coulomb interactions
are also thereby reduced. 3. The smoothness of
the discrepancy function permits a relatively cred-
ible extrapolation to near-threshold and subthres-
hold points. 4. In certain types of calculations,
such as those presented here, the effects of trun-
cation errors in the s-channel integral are signif-
icantly reduced by their own smoothness as a func-
tion of ¢ at small ¢ values, and are further offset

—

-~ - - A ’
ReA(t,a)=A8 _(t,a)+ %pf_ %ﬂdﬂ + '11FP
: -

where A is an invariant amplitude which is sym-
metric, or has been symmetrized, in v,

s' +A(=v,1)

A
A- { if A(v,?)=
Alv l-A(-v,1). 2.2)
.Zﬁm is the gauge-invariant Born-term contribu-
tion, #,=4u?% u being the pion mass, and A, and
T are defined for general a in the Appendix.

As we shall see in Sec. III, our interest in this
paper is in IDR with the path parameter a=0,
where the integration path includes the entire s-
channel physical-region boundary and the 6,=7
portion of the ¢-channel physical-region boundary,
in addition to the nonphysical segment extending
from t=t, to £=4my® In this case we have A, =0,
§=s,=(L+my)?, and T =—p2(1 — u/my). Identifying
the {-channel integral as the discrepancy function
D(t,a), and introducing a self-explanatory notation
for the s-channel integrals, we have for a=0,

D(t,0)=ReA(t,0)- A5, (¢,0)
~I(t,0)-I3(t, 0). (2.3)

III. THE CURRENT-ALGEBRA THEOREMS
The current-algebra commutation relation
[Q4,V.2(0)]=i€,,,AK(0), 3.1)

where Vf‘(x) and A,‘, (x)are the vector and axial-
vector hadronic current operators, and

Q= [ arat,

has been reduced to sum rules for pion photopro-
duction by various techniques. Invoking the PCAC
hypothesis,

8,A% (%)= [V2 1myg, (0)/g,(0)]9; (x), (3.2)

several authors!®!! have deduced soft-pion rela-

0 Imli‘(t', a)

in the process of recovering the amplitude at the
extrapolation point. Typically, integration errors,
due to truncation at high energies, of 10% or so
yield uncertainties of less than 1% in the final re-
sult. A significant disadvantage of IDR for semi-
elastic processes is the inaccessibility of most of
the near subthreshold region (real v and ¢) to di-
rect analysis.

A detailed discussion of IDR for semielastic re-
actions is given in the Appendix. The IDR for pion
photoproduction amplitudes has the form

® Im At (¢, a)

1
dt’' +8,(t,a) + =P e

4
T . ar, (2.1)

tions for electroproduction amplitudes, of which
the following survive in the photoproduction limit:

A (v=0,v5=0; g>=0)= (e,g,(0)/2my)F¥(0),
(3.3a)

A(v=0,v5=0; ¢*=0)=(e,g,(0)/2my)F3(0),
(3.3b)

where F: (%) and F5(¢?) are the isovector and iso-
scalar nucleon Pauli form factors, respectively,
as functions of the photon invariant mass?® k? with
normalization FY(0) = 3.70/2my and F3 (0)=-0.12/
2my; q° is the pion invariant mass?, v=s -« and
vp=t—-g® ApP°are the non-Born real parts of the
Chew-Goldberger-Low-Nambu (CGLN) invariant
amplitudes’® (we use the notation of Ball'®). Fin-
ally, e,2/4m=1/131, g,(¢?) is the pion-nucleon
coupling form factor with g,%(n2)/47~14.7, and
£4(0)=1.25. Under the assumption g,(0)~ g,(u?),
the PCAC theorems, Eqgs. (3.3), become

Z:(0,0;0)=0.083 32,
Z°(0, 0;0) = ~0.002 73u"2,

The IDR evaluations of these amplitudes will be
for physical photoproduction, i.e., on-shell pions;
consequently, comparison with the PCAC predic-
tions will require accounting for the method by
which the on-shell versions of Eqs. (3.4) are writ-
ten. The two commonly used nonequivalent meth-
ods"” involve holding v at the symmetry point v=0,
and bringing ¢* from 0 to p? by varying either vy
or ¢, respectively. In a discussion of this problem
as it relates to pion-nucleon scattering, HJS argue
from IDR and other results that, of the two alter-
natives, fixing ¢ and allowing vy to vary is to be
preferred, inasmuch as it results in a variation of
only 10-15% of the PCAC predictions, whereas the
variations encountered by fixing vy and allowing ¢
to vary are significantly greater.

The values of the pertinent photoproduction vari-

(3.4a)
(3.4b)
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ables are as follows:

v vg t ¢ a
Off-shell 0 0 0 0 my?
(I) On-shell, fixed ? 0 —-u2 0 [T

(II) On-shell, fixed vy 0 0 w2 u? o0

We see that only case II is amenable to IDR tech-
niques, a having to be <0 in order for the integra-
tion paths to be contained within the physical reg-
ions. Our calculation will be carried out at this
point, which is analogous to the o-term point'® of
pion-nucleon scattering. Our results will be used
in connection with estimates by other authors of
the amplitudes at point I to compare the relative
variations of the PCAC amplitudes under the two
alternative continuation schemes.

Questions of extrapolation in the pion mass do
not occur in evaluating the relationships derived
by Fubini and Furlan,® who started from the com-
mutator, Eq. (3.1), saturated the one-nucleon ma-
trix elements with a complete set of intermediate
states, and evaluated them in the Breit frame,
keeping the pion on the mass shell. At the Breit
threshold, givenby P, +P,=0, =0, the following
sum rules were obtained:

T}(BT) = (L/4f,E)GL(t)g,(0) +d}, (3.5a)

TS(BT) = (b/4f.E)G3(t)g4(0) +d;, (3.5b)

T;(BT) = (=1/2f,)[ga(t) + (t/4E*)G ] (t)g4(0)] + d; ,
(3.5¢)

where, in terms of the CGLN amplitudes,
e, T = —(my/EYAY - p?ALD & (ut/2E)ALP
(3.6)

E = (my® - t/4)*'?, G4% are the Sachs electromag-
netic form factors, and the d! are correction in-
tegrals. f, and g,(0) are related through the Gold-
berger-Treiman relation, f, =myg4(0)/g,(0).

The Breit threshold corresponds to the point
t=-u? a=0[v=2p@dmy® - pn?'? vy=0] and is
therefore accessible to evaluation by the boundary
version of IDR.

1IV. EVALUATION OF THE DISPERSION RELATIONS

Our technique in general is to evaluate the dis-
crepancy function for physical values of ¢ from Eq.
(2.3), using the (pseudoscalar) Born terms and s-
channel multipoles as fitted to photoproduction
data. The discrepancy function is then extrapol-
ated, using a polynomial fitting function, to the de-
sired point #,, at which the real part of the ampli-
tude is recovered using Eq. (2.3) in the form [in

evaluating 4 for the PCAC theorem, the ordinary
fixed-t dispersion-relation Born term A, is sub-
tracted from the right-hand side of Eq. (4.1).]

ReA(te, a)=D(t,, a) +AIBDR(tc’ a)
1 I;(t,, a) +I,(t,, a) . (4.1)

To evaluate the s-channel integrals and real
parts of the amplitudes at physical ¢ values, we
use the multipole analysis of Moorhouse, Oberlack,
and Rosenfeld, !° supplemented at low energies
within the integrals by the imaginary parts of the
multipoles of Berends, Donnachie, and Weaver.?
The MOR analysis used a K-matrix technique to
parametrize resonance and background contribu-
tions to the imaginary parts of the amplitudes.
The real parts were then calculated from fixed-¢
dispersion relations., This resulted in relatively
smooth real parts and smooth discrepancy func-
tions in the photon energy range (270-1200 MeV)
of the analysis. Real parts obtained from the BDW
multipoles at low energies yielded variations in the
discrepancy functions which contributed nothing to
our confidence in the extrapolations, and were
therefore not included in the analysis. Moreover,
since multipole fits are least reliable at far-for-
ward angles, the discrepancy functions calculated
at very small negative values of £, in the region
where the contributions are primarily evaluated at
6,=0, are also not reliable constraints on the ex-
trapolations. We therefore have included only
those values of D(¢,0) for t< —-0.16 GeV?, corres-
ponding to 6, =7 and E, >270 MeV. The range of ¢
values used was taken to be as large as possible
while still requiring only a quadratic parametri-
zation of D(¢, 0) for a best fit.

The Born terms are calculated from the usual
gauge-invariant pseudoscalar-pole diagrams. In
general, for fixed physical a, there are two im-
ages of the nucleon poles in the complex ¢ plane.
At a=0, however, they coincide at ty = u%. Their
contributions to the Cauchy integral formula re-
sult in the following:

AP0 e==-nl (), ADBr=-nL(),

(A;'O)fnn =2nL(t), (A;)IBDR =2nl,(t),

(A58 R = (1/2my) (1, F uy)L(2),
; 4.2)
(ADfor = (/2my) 1y =y, (),

A20)Bon = (/2my ), ¥ py ), (8)

A)Bn = (/2my)(ky — ky)L(E),

where
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FIG. 1. s-channel physical-region contributions and discrepancy function for A . Dashed line indicates combined
Aﬁm and I; , dotted line indicates Iy, xxx indicates ReAI , +++ indicates D(t, 0).
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n=e,g,/2, Kk,=1.79, and py=-1.91.

The contributions to the discrepancy function
from the integrals, Born term, and real part are
shown for the typical case of A] in Fig. 1. The in-
tegrals were performed using a data-point inte-
gration routine which requires knowledge of the
imaginary parts only at energies for which they
are provided in the multipole analysis. Integration
is truncated at the end of the MOR energy range,
but convergence for I;(, 0) was tested by adding a
high energy u-channel Regge parametrization,?
and the truncation error estimated to be less than
10% of the integral. Since the value of the trunca-
tion loss varies slowly for small £, and is at any
rate a smooth function of £, its contribution to the
final error estimate is small.?> The arguments

pertinent to the case of I, do not apply to I, how-
ever. The forward integral is relatively small in
the range of ¢ values for which D(¢, 0) is calculated
from the data, but is not insignificant at the ex-
trapolation points; neither is the truncation loss
slowly varying. The uncertainties given in our
final results include, therefore, an estimated 20%
truncation error in the forward integrals.

The nearest singularity of the discrepancy func-
tion to the region of interest in this paper is a cut
beginning at the two-pion threshold, i.e., at the
lower limit of the t-channel integral in Eq. 2.1.
The effect of this branch point on the smoothness
of the discrepancy function is believed to be small
since the character of D(¢) is governed primarily
by the much stronger resonance singularities at
larger values of . One expects that at most there
is a small cusp in D(f) at t=#,. That this cusp is
indeed small and that it introduces no severe vari-
ations in the curvature of the discrepancy function
as one approaches it from £<?, can be substantia-
ted by fitting the data with a power series in the
variable 7= (1 — t/4u?)'/2, as a function of which
the discrepancy function has no branch point at
t - t,, or by fitting the data to {-channel resonance
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FIG. 2. Discrepancy functions forZ'i , showing the
best quadratic fit and extrapolation to {= p?. Other
extrapolations in this paper are tof=-— u2 (Breit
threshold) and £=— u2(l — u/my) (physical threshold),
D(t,0) is shown in GeV units appropriate to the ampli-
tudes (see Table I).

model forms for D(¢) which incorporate the two-
pion threshold behavior. We find that variations in
the extrapolation results obtained from these
methods as compared to the fits to polynomials in
t are comparable to or less than the uncertainties
from other sources as described below. Indeed,
on the scales as given in Figs. 1-4, the cusp as
calculated from J =1 resonance plus background
models is imperfceptible. In order to investigate
the detailed nature of this cusp, multipole ampli-
tudes at lower energies and of greater precision
are required.

We have incorporated in our error estimates a
contribution representing this variance from the
smoothness assumption as estimated by compar-
ing the results of using polynomials in ¢ and in 7.
We prefer, however, to select and display the fits
to polynomials in ¢ for the following reasons: (a)
Once it has been justified to fit data to a polynom-

2.0
D(t,0)

0.0 1 L

-zot

0.5

0.4

0.0 1 1 1 1

50~ o

201

1.0~

0o 1 1 1
0.0 0.2 0.4 0.6

| ]
08 -tGeV?) 10

FIG. 3. Same as Fig. 2 for A}. Large fluctuations
near t=— 0.2 GeV? in some amplitudes are due to large
cancelations of imperfectly matched and rapidly vary-
ing real parts and “backward” integrals near the posi-
tion of the A(1236) resonance.

ial of finite order, the reliability of the extrapola-
tion is governed in part by the relative length of
the extrapolation distance to that of the data reg-
ion. The variable £ has the distinct advantage
here. (b) In terms of the variable ¢, the discrep-
ancy function clearly displays the resonance-tail
behavior one expects for all amplitudes except
Ag‘”, to which no known J =1 resonance couples.
The discrepancy function for A{”’ is due to back-
ground, higher-order singularities, and is quite
flat. As can be seen from Tables I and III, the
results given in this paper are insensitive to the
extrapolations of the discrepancy function for this
amplitude.

The discrepancy functions for all amplitudes
considered are shown along with the best fits and
extrapolations in Figs. 2—4. Over the range of ¢
values shown, the discrepancy functions were all
fit best by quadratic polynomials. Due to the diffi-
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FIG. 4. Same as Figs. 2 and 3 for A}.

culty of obtaining reliable data-related uncertain-
ties in D(¢, 0) at each value of ¢, all points were
weighted equally. Error estimates given here in-
clude: (1) the statistical extrapolation uncertainty,
as obtained from the ¥? error matrix, (2) a 20%
uncertainty in the value of I, (3) a 1% uncertainty
in the value of g,,* and a 1% effect on the recovered
amplitude of a 10% error inI;. The integral-trun-
cation errors are believed to have been generously
overestimated, but the statistical uncertainties in
the extrapolation are quite small, owing to the
smoothness of the discrepancy functions. As dis-
cussed earlier, this smoothness reflects the fixed-
t dispersion relation constraints on the multipole
analysis; our error estimates do not include any
systematic errors which may exist in the multi-
poles.

V. RESULTS AND DISCUSSION

A. s-wave electric multipoles

At threshold, the s-wave electric multipole am-
plitude is related to the invariant amplitudes ac-
cording to

87(my + )2
pw@my + w)m ym y+ p) /2

i
o+

A #(2mu+#) i W2 4
=Al, ony 1) AL+ Z(mN+u)A4. (5.1)

The values in Table I yield

TABLE I. Contributions and recovered real parts from Eq. (4.1) at t = £.

~B - . B ~N
D Aipr I I Total = Re A
o+
A, (GeV™?) 2.99 +0.48 1.24 0.60 1.80 6.63 + 0.60
2’? (GeV?) -2.84 +0.34 1.24 -0.03 0.12 -1.51+0.35
A’\I; (GeV™*) -2.20+0.29 30.00 0.14 0.79 .28.73 £ 0.45
o+
A; (GeV™) -0.86 +0.34 -58.81 -1.35 -15.47 -78.49 +3.16
~n,
A;’ (GeV3) 0.21 £0.02 2.08 -0.01 -0.23 2.05 £ 0.06
-
A; (GeV™3) 3.07+0.34 -2.44 0.78 7.36 8.77 £ 1.51
2: (GeV3) 17.10 £ 0.68 -2.44 2.96 30.25 47.87 £ 6.09
o
As (GeV3) 1.50+0.11 -0.09 -0.01 -0.16 1.24 £0.11
-
Ag (GeVS) 041030 -58.81 -1.30 -15.20 ~-7490+3.11
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TABLE II. Charge-state threshold multipoles Eq, (0). Units are 1072 u !

yp->'n ym->mp o > 7%
Mullensienfen, et al. Ref. 29 cee R 0.17
Adamovich, et al. Ref. 30 2.83+0.05 -3.18+0.20 tee
Nolle Ref. 31 2.98 ~3.52 -0.19
Present calculation 2.75+0.12 -3.27+0.12 0.066 £ 0.164
E;,=(0.25+0.16) X1072u" | predicted values of the amplitudes and computed
E, = (~0.18+ 0.05) X 10°2°1 , (5.2) Breit-threshold differential cross sections which

E;, =(2.13+0.09) X10"2u"!

There have been numerous evaluations of the
threshold multipoles over the past two decades.
Here we offer for comparison in Table II those
listed in the most recent edition of the compilation
of coupling constants and low-energy parameters
(Nagels et al.?®) for pion charge states.

B. Fubini-Furlan sum rules

The values of the various contributions to the
amplitudes in Eq. (3.6) at the Breit threshold are
given in Table III, and our results given in Table
IV, along with those of Furlan, Paver, and Verz-
egnassi®** and von Gehlen and Schmidt.?®> FPV eval-
uated the sum rules, Egs. (3.5), by assuming rea-
sonable dipole models for the electromagnetic
form factors and estimating the correction inte-
grals using threshold behavior, N* isobaric mod-
els, and vector-meson contributions. They then

were in reasonable agreement with the nearly
physical threshold cross sections for charged-pion
photoproduction.

Rather than evaluate the correction integrals, GS
determined the amplitude T at the Breit thres-
hold directly with fixed-¢ dispersion relations, us-
ing as input s- and p-wave multipoles as given by
von Gehlen,?® and a resonance model for d-wave
multipoles. Their result allowed a prediction of
the correction term, dj, which is consistent with
our prediction, although significantly less than
that calculated explicitly by FPV. The variations
in the respective values of T;, can be accounted
for entirely by those in the values of dj.

Our values of T{ and d; are consistent with those
of FPV, and the uncertainties in our values of T}
and d] do not preclude agreement there as well.
The experimental situation, however, is still not
adequately known to be able to compare predic-
tions for the threshold cross sections for 7 pro-
duction.

TABLE III. Contributions and recovered real parts from Eq. (4.1) at ¢t = tgr = -u?.

D X r I Total = Re A
A7 Gev) 2.98 +0.48 1.16 0.49 1.94 6.58 + 0.60
A7 Gev?) -2.83£0.34 1.16 -0.02 0.12 -1.57£035
4, Gev) -220%0.29 30.14 0.10 0.87 28.90 + 0.45
45 Gev) -1.00£0.34 ~59.09 -1.17 -15.76 ~77.02 £ 3.16
A2 Gev) -0.21£0.02 2.09 -0.01 -0.24 2.05 + 0.06
4, Gev) 308034 -2.28 0.66 7.53 8.99 % 1.51
4, Gev) 17.07 £ 0.68 -2.28 2.53 30.85 48.17 + 6.09
42 Gev=) 150 £ 0.11 0.08 0.01 -0.16 1.42+0.11
A, (Gev) 0.41£0.30 -59.09 -1.12 -15.49 -75.30 £ 3.11
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TABLE IV. Values for the Fubini-Furlan sum-rule amplitudes and predicted values for the correction terms. Units are u™

Ty di d9 T; d;
FPV 0.010 -0.019 0.081 0.056 -1.20 -0.26
GS -1.05 -0.09
Present
calculation -0.093 £ 0.206 -0.160 £ 0.206 0.090 £ 0.060 0.063 £ 0.060 -1.02+0.12 -0.056 £ 0.11

C. The PCAC theorems

Quantities relevant to the determination of 71{'0
at the point indicated as case II in Sec. III are
given in Table V. Z{" at the case-I point has been
calculated by Adler and Gilman® and by von Gehlen
and Schmidt,? while both A{*) and A!" at the same
point were calculated by Gensini et al.,*® all using
various fixed-¢ dispersion-relation approaches.
Their results (see Table VI) are all consistent
with small variations from the soft-pion predic-
tions. The IDR determinations at the case-I point,
on the other hand, are of somewhat greater vari-
ation from the off-shell values, although the
smallness of A{® along with the relatively large
uncertainty discourages the drawing of any firm
conclusions regarding it. Nevertheless, the in-
dicated trend of variations, i.e., greater and in
the opposite direction for case II than for case I,
is consistent with that found by HJS for pion-nu-
cleon scattering, and supports their conclusion
regarding the proper prescription for continuing
PCAC theorems from the soft-pion to the on-shell
point.

ACKNOWLEDGMENT

We wish to acknowledge helpful communications
from Dr. E. Borie.

APPENDIX: INTERIOR DISPERSION RELATIONS
FOR SEMIELASTIC REACTIONS

We categorize as semielastic any reaction of the
type
a+b-c+d, (A1)

where the mass of one of the initial particles
equals that of one of the final particles. For def-
initeness, we take m,=my=m, m,# m,., refer to
(A1) as the s-channel process and adopt the con-
ventional Mandelstam variables s =(p, +p,)?, t

= (py =), and u=(p, -p,)* with their interrela-
tionship s +¢+u=2m?+m2+m,>=2. We also de-
fine the invariant v=s —u, and introduce the Kibble
boundary function, which vanishes along the boun
daries of the physical region of process (A1) and
its crossing-associated reactions,

b (v, t) =4t(p,p; sinb,)? = 4s (p,p] sinb,)?. (A2)

Here, p, p’, and 0 are the initial and final three-
momenta and scattering angle in the center-of-
mass system of the indicated reaction channel.
We have, in particular,

4p,pi= %{t(t - 4m®)t - (my +m ) {t - (mg, — m,)?|P/

= v, (A3)
and
cosb, =-v/v;. (A4)

For elastic and semielastic processes, the sand
u channels are kinematically equivalent, and the
invariant amplitudes are either symmetric or anti-
symmetric in v. As a function of v and ¢, an in-
variant amplitude presumably has only dynamica
singularities, but if one fixes a variable which is
itself a nonanalytic function of v and ¢, spurious
“kinematical” singularities are introduced which
must be included in any dispersion relation writen
in the remaining free variable. The discontinuity

v
TABLE V. Contributions and recovered real parts at ¢ = u? for the PCAC-theorem amplitudes. A, is the

usual fixed-t dispersion-relation Born term.

- . ~p ~ B ~
D A I A - Ay Total = Re A

s+

Ay (GeV?) 3.16 £ 048 -0.33 1.07 233 (6.23 +0.526)

Y

A7 (Gev?) -292+034 0.13 0.14 233 (-0.43 + 0.34)
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TABLE VI. PCAC-theorem amplitudes as predicted and calculated in cases I and II.

43 A9
Theoretical (off shell) 0.083 3u? -0.002 73u2
Calculated (on shell, case I)
AG 0.0715
GS 0.0800

GKPV

Present calculation (on shell, case II)

0.0797 £ 0.0299
0.120

0.00032 + 0.00034

or residue of the amplitude at this singularity be-
ing generally unknown and unobtainable from the
dynamics of the interaction, the dispersion rela-
tion so obtained has little value. For amplitudes
symmetric in v, however, a variable which can
be fixed to obtain kinematical-singularity-free
dispersion relations is the path parameter

a=-¢(v,1)/t?, (A5)
as can be seen from the relationship
=v?+4at. (A6)

Interior dispersion relations (IDR) are written for
v-symmetric amplitudes (antisymmetric ampli-
tudes can be symmetrized by dividing by v) by fix-
ing a and writing the Cauchy integral formula for
the amplitude in the complex ¢ plane.

From (A6), we see that the mapping v(t, a) re-
quires a two-sheeted ¢ plane. On the sheet for
which v=+ (v,2 +4at)V?, we have

2s(t,a)=3 - t+ (v, +4at)*? |
2ut,a)=2 —t - (v,2 +4at)"/ 2.

(ATa)
(ATb)

It is this sheet upon which are found the images of
the s-channel singularities, while the #-channel
singularities are mapped onto the second sheet.
The ¢-channel singularities are found, of course,
on both sheets.

To examine the mapping of the s-channel singu-
larities we find the roots of the quadratic equation
for ¢t which is obtained from Eq. (A7a):

-b+[b?—4c(s —a)]/?
2(s —a) ’

t,(s,a)= (A8)

where

b=[(4sppy)* +4sc]/?,

c=m?*(m,% - mJj2)>.
In general, s-channel singularities will have two
images. Fixing a at a value <0 results in the im-

age of the s-channel unitarity cut being a path which
lies for the most part within the s-channel phys-

+0.010 -0.0083 +0.0066
=
t(s,)
i . 00! 1(s)
o <3
3 2 Xty f '
o
t(s,)
(a)
B
t=o
T
lﬂ(sz)

FIG. 5. Schematic representation of dynamical sing-
ularities for semielastic reactions. (a) shows the ¢
channel, and images of the s channel, cuts and poles
in the complex-¢ plane for fixed a <0. The “pig tails”
leave the real ¢ axis atf and progress tot*(s;) as s
approaches its threshold value, s,. Fora=0, t*(sy)
=F, and ¢ =ty. is also real. t, is the £-channel uni-
tarity hadronicthreshold, and tzrepresents the position
of at-channel resonance on the second dyramical t
sheet. The Mandelstam diagram (b) shows the location
of these singularities with respect to the s- and t-chan-
nelphysicalregions., The z-channel unitarity cut appears
on another kinematical t sheet, does not contribute to
the dispersion relation, and is not pictured here. Phy-
sical-region boundaries are indicated by short-dashed
lines and physical integration paths by heavy continuous
lines. Heavy-dashed lines represent contributions to the
dispersion relation from amplitudes at complex values of
t, Ag being the contribution of the “pig tails” in (a). For
a=0, Ag=0, both heavy solid and dashed lines for ¢ >,
contribute to the discrepancy function, D(¢,a).
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ical region, as shown in Fig. 5. For nonpositive
a, we let S(a) denote the value of s at the branch
point in Eq. (A8). We have S(a)>s,, where s, is
the two-hadron s-channel threshold, 5(0)=s,. For
s =25(a), t,(s,a) are real and the amplitudes evalu-
ated along these portions of the path (heavy-dashed
line in Fig. 5) are physical. {, corresponds gener-
ally to forward, and ¢_ to backward, scattering
angles, although cos6,(5,a)=0 only for a=0. In

-0 8 ¥
ImA (t, a)dt’ +_{_

ReA(t,a)-AZ (¢, a)+..pJ' o

the range s,<s<§%, {, are complex, and the s-
channel unitarity cut produces the “pig tails” as
shown in Fig. 5, which extend into nonphysical
regions.

Also shown in Fig. 5 are the images of an s-
channel bound-state pole, the ¢-channel unitarity
cut, whose hadronic threshold is ¢{,, and a ¢{-chan-
nel resonance.

The resulting IDR has the form

° ImA*(#', a) ., ImA* (¢, a) .,
pf? Do v a,(t,a)+ _Pf Il LDa,  (a9)

where T=#3(a), a), Ay is the bound-state pole contribution, and the superscripts s and ¢ refer to the re-
spective channel in which the physical amplitude is evaluated. 4, is the “pig tail” contribution, and repre-
sents the amplitude at unphysical values of {. For many reactions and for most interesting values of a
(i.e., those for which the s-channel information in the first integral does not come from far forward scat-
tering), § lies far below the occurrence of the first significant s-channel resonance, and the contribution
of 4, can be expected to be small. A, vanishes, of course, for a=0.

The t-channel integral in Eq. (A9) is called the discrepancy function. It is determined by the ¢-channel
background and singularities, and is expected to be smooth as a function of ¢ in the s-channel physical and
subthreshold regions. This smoothness assumption is vital to most IDR applications.
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FIG. 2. Discrepancy functions forﬁ{ , showing the

best quadratic fit and extrapolation to t=pu?,

Other

extrapolations in this paper are to f=— u’ (Breit
threshold) and t=— u?(1 — p/my) (physical threshold),
D(t,0) is shown in GeV units appropriate to the ampli-

tudes (see Table I).
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FIG. 5. Schematic representation of dynamical sing-
ularities for semielastic reactions. (a) shows the ¢
channel, and images of the s channel, cuts and poles
in the complex-t plane for fixeda <0. The “pig tails”
leave the real f axis at ¥ and progress tot*(s,) as s
approaches its threshold value, s,. Fora=0, t*(sy)
=F, and #4 =ty. is also real. t, is the f-channel uni-
tarity hadronicthreshold, and {zrepresents the position
of a t-channel resonance on the second dynamical ¢
sheet. The Mandelstam diagram (b) shows the location
of these singularities with respect to the s- and f-chan-
nelphysicalregions. The u-channel unitarity cutappears
on another kinematical t sheet, does not contribute to
the dispersion relation, and is not pictured here. Phy-
sical-region boundaries are indicated by short-dashed
lines and physical integration paths by heavy continuous
lines. Heavy-dashed lines represent contributions to the
dispersion relation from amplitudes at complex values of
t, Ag being the contribution of the “pig tails” in (a). For
a=0, A;=0, both heavy solid and dashed lines for ¢ >f,
contribute to the discrepancy function, D({,a).



