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The unpolarized differential cross section for spin-1/2 Compton scattering is shown to be completely
specified up to terms of the sixth power of the photon frequency by the mass, charge, anomalous magnetic
moment, and dynamic electromagnetic polarizabilities of the target and four other sturcture dependent
constants. The two polarizabilities and the four new constants are expressed in terms of the threshold values

and threshold derivatives of the invariant amplitudes of the process. Their parts which can be expected to
satisfy fixed-t = 0 unsubtracted dispersion relations are evaluated in terms of single-pion photoproduction
data. The extraction of the proton polarizabilities from low-energy elastic y-proton scattering is discussed in

the light of the results obtained.

I. INTRODUCTION "f(z) = a, + a,z + a,z ',
Recentj„y there has been a renewed interest in

both theoretical' ' and experimental' study of the
so-called dynamic electric and magnetic polariza-
bilities' of the nucleons. These two structure-de-
pendent constants n and P (describing the scatter-
ing produced by time-varying induced dipoles
driven by the electric and magnetic fields of the
photon), together with the mass m, charge e, and
anomalous magnetic moment A, of the target, deter-
mine rigorously to lowest order in electromag-
netism the low-energy behavior of the unpolarized
differential cross section up to terms of the fourth
power in the photon frequency + according to the
following formula'.

~'[a(1+z')+2pz] [1 —3(~/m)(1 —z)]
4wm

+ o((u'),

where u is the incident photon energy in the lab-
oratory system, z =cos6}», 0» is the scattering
angle, and the first term in Eq. (1}represents the
Powell cross section' for the scattering of y quanta
on a structureless spin —,

' particle of anomalous
magnetic moment A. :

(
do 1 e' ') (1+z')
dQ ~ 2 4vm ] [1+(&g/m)(l —z)]'

[(1—z)'+f(z) ]
m [1+ ((u/m)(1 —z) ]'

g = 2 X+ —X'+ 3 A.'+ —' X0 (3)

a, =-% —8 '-2x',

g =2k+ —
A, —X ——

A.
1 2 3 1 4

The first experimental measurement of the pa-
rameters a and P for the proton was done by
Goldansky etaL' froman analysis of the elastic y-p
scattering (at photon lab energy ~ = 55 MeV} with

a formula for do/dQ which contains powers of &u

only up to &o', inclusive [e.g. , disregarding the

last term in the second set of square brackets in
Eq. (1)]. In their recent experimental analysis
Baranov etaL' used Eq. (1} to find n and P from
better data in the & region from 80 to 110 MeV
and lab scattering angles of 6) = 90 and 150, as-
suming, of course, that the contribution of the
neglected terms of O(&o') in Eq. (1) is very small
in the energy region considered. However, it is
known that the p'-meson pole contribution to the
differential cross section [which appears in order
O(&o ) and higher] is quite significant at low ener-
gies owing to the smallness of the denominator
p.'- I (p is pion mass, t is the four-momentum
transfer squared). Therefore, in a subsequent
paper' Baranov, Filkov, and Shtarkov performed
a new extraction of n and P based on the following
formula for da/dQ which explicitly includes the
w'-meson pole contribution to the cross section:

to'[n(1 z') +2/+]1z—3 —(1 —z) + —,—,B,(B, +E) + O((g'),
dA d ~ 4mm m m' p, 1+((o m (1 —z

(4)
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t = -2&v'(I -s)/[I+ (u)/m)(I -s)],
g~» is the ANN coupling constant, and E~ is the x
~ 2+ coupling,

The results of Ref. 9, obtained with the assump-
tion that the remaining terms of O(a&') are small
with respect to those already taken into account,
show that the coIQbinRtlon Q —p 18 particularly
sensitive to the contribution of the g' meson pole.
The numbers found for n Rnd p are consequently
substantially changed with respect to those given
in Ref. 4 and the final conclusion which emerges
is that in order to settle the question new mea-
surements of the energy dependence of the y-p
scattering (for large angles) in the region 20-100
MeV, with better energy resolut1on, are needed '0

For the time being, in this context it becomes
useful for both practical and theoretical reasons
to have at hand a low-energy expansion of db/dA
coming from general principles and which goes to
higher orders in the frequency +. The puxpose of
this note is to provide a low-energy theorem for
do/dA valid up to the sixth order in &o and to dis-
cuss i.ts possible usefulness in the extraction of
the electric and magnetic generalized polariza-
bilities from low-energy Compton-scattering data.
As will be shown below (Sec. II), the term of order
~' in de/dII can be written down at the expense of
introducing four new structure-dependent con-
stants which in turn will also fix the &' contribu-
tion. The identification of the new constants enter-
ing the O(u') low-energy theorems obtained in this

paper is given in terms of the threshold values and
threshold derlvRt1ves of the invariant amplitudes of
Bardeen and Tung. "

In Sec. III the four new structure-dependent con-
stants which fix the co' and ~' contributions to the
unpolarized differential cross section are theo-
xetically eva. luated by means of a dispersion treat-
ment in terms of single-pion photoproduction data
and a certain model for the exchanges in the annihi-
lation channel. The calculation should be quite
reliable owing to the increased convergence of the
dispersion representations, the needed quantities
be1Qg mainly expl essed 1Q terms of der1vatlves of
the scattering amplitudes at threshold. The re-
sulting formula of the differential cross section is
compared with the accurate data from Ref. 4 and
the difference 0. —P is extracted keeping n+ P
fixed in terms of the total cross section for photo-
absorption on protons. The analysis shows that
the inclusion of the &' Rnd ~' terms is compulsory
at energies a,s high as 80-110 MeV and large
angles, e.g. , in the actual domain of the experi-
mental measurements presented in 8',ef. 4.

The easiest way to obtain low-energy theorems"
fox' observRble quRnt1tles 1Q COIQpton 8cRttering OQ

spin- —,
' targets is to express the object of interest

in terms of six independent invariant amplitudes
known to be free of any kinematical singularities
and zeros and to expand the resulting expression
in the photon energy at fixed scattering angle. Vfe
choose to work with the amplitudes A., of Ref. 11
which do have the above-mentioned property. In
terms of these amplitudes the unpolarized differ-
ential cross section for spin--,' Compton scatter-
ing in the laboratory frame has the following form:

~. {t[(-2t'+ 8m't) IAil' -2m't'IA2I'- (64v'+ 8m't) IA I'+ (16v)(mt ReAAf —«eAiAf)l
dA (o 32 64m&'

+ (4v' ——,'t'+m't) [8(4v'+-,'I'+m't) lA, l'+ (4v' ,'I'+m't)(2m' ——,'t) lA, —l'—

+ (8v'+-,'I —2m't) lA, l'+ 8m(4v'- ,'t'+m't)ReA, A,*—+16vt ReA, Ag]],
(6)

where s, t, N, are the usual Mandelstam variables,
v = —,'(s —u), and &u' is the energy of the emergent
photon.

Separating the single nucleon s- and u-channel
Born poles of the amplitudes A,- according to

using the following developments for the continu-
um parts of the amplitudes Ac(considered as
functions of v, t), which take into account their
s-Q c1osslng syIGDletX'y

A., (s, t, u) =As(s, t, u)+Ac(s, t, u),
A;(v, t)= P C™v"t", = t, I, 254,

l, m=0
(8a)
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A (v f)=v g C™v"f f=3 6
l, fft =0

(Bb) ~/
[1+(or/m)(1-z)]

and noting the kinematical relations Eq. (5) and

mor [2+(or/m)(1-e)]
2 [1+(or/m)(1- z)]

one gets in a straightforward manner the desixed
low-energy theorem for do/dO holding up to terms
of order Q}

4F 4F dv 1 8 M QP+ — ——,1 —4 —(1 —e) — [A+Be+ Cz'+De']+ 0(or'),4n dn en, „»4 64m'm' m m

2 2 3 2

(1 —e) + B — (1 —e)' —1o — (1 —e) ' — [(1 —e)'(o —P) + (1+e)'(o'+ P) ]2 4g m m m

m e' or or
' (1.-&)'———1 —4 —(1 —e) — ' [(2-2~ -z') —e(2+2' +x')](a —p)44m m m 2

(1+e)'(u + p)'

g = (4m')g (2m') [C,"+m(C", + —,'mC,")]—(4m) [C +m(C", + —,'mC,")]
+(1+@.+r ')C"+(%+3~')mC' '+(2+3r +2~')C' '- -'(3r '+v+4)m'C' ']

8= (4m')(- 2(2m')[C"-m(C' '+-"mC")]+ (4m) [3C'"-m(C' '+ -'mC")]
—(3+ 'la+ B.')C"—(Br + 2Z') mC" —{2+r )C"—X'm'C"]

C = (4m )( (2m )[C,'0+m(C', + —,
' mC', )]—(4m) [3C,' —m(C", +-'mCO')]

+ (3+ 5@+X')C"-X'mC"-(2+ 3X+ 2X'}C"+-'(X'+ Q. + 4)m'C")
D= (4m')( {4m)[C"+m(C" +-'mC")] —(1+X)co o+ (2+x)c"J

The dynamic (generalised) electric and magnetic
polarizabilities of the target, 0. and p, are iden-
tified as

& = —[C '+m(C" +-'mC")]1 0

P=
B

[-C +m(C", +-,'mC", )] .

Equation (9) up to terms of order or' confirms the
result of Ref. 6, and in addition gives the next &'
and &' terms of the expansion by means of the four
constants rt, B, C, and D. As seen from Eq. (9),
no new structure-dependent constants appear in the
terms of odd power in or (e.g. , of order or' or or' )
with respect to those already fixing the correspond-
ing previous even order (e.g. , or' or or'). This
fact, which is a simple consequence of the s-I
crossing symmetry [as can be easily shown using
Eqs. {B)and (B)], is valid in general: the unpola-
rized differential cx'088 section 18 determined to
the order ~'"" inclusively in terms of the same

constants which have already established it in the
previous even order ro'".

Now we will pay particular attention to the con-
tr ibution of the p'-meson pole to the differ ential
cross section, because it could be essential for the
practical extx'action of the polarizabiliti. es o. and p
from low-enex'gy data. The rad1us of convex'gence
of the development of the g' pole term in powers
of or (at fixed angle) being quite small [as can be
easily seen looking at the location of this pole in
the context of the analyticity structure (in energy
at fixed angle) of the relevant amplitude], it is
preferable to keep the contribution of the p' pole
to the differential cross section (in the low-energy
region which is of interest) in its original form,
that is, undeveloped in powers of +. The mo-me-

son pole appears only in the invariant amplitude
A, and we wiQ now separate it explicitly, modify-
ing Eqs. (7) and (Ba) for A, as followS:

(14)
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Ac(v, t) = Q C™v"t
l, m=0

Then, with the explicit inclusion of the g'-meson
pole contribution, the low-energy expansion Eq.
(9) is replaced by

da da'

dQ dQ ~ dQ (~ ~)

2 (u
' (1 —z)

m' v. [1+((u(m)(1 —z)]'

A
C,"= ' (v=O, t=O), i=3, 6

the six threshold values of the derivatives of A,.
with respect to v',

C".
$

c)A
i =1,2, 4y 5

v=o, ~ =O

C". =
i

and the six threshold values of the derivatives of
A,c with respect to t,

x [X+Bz+Cz'+Dz'] + O(&u'), (9')
aA'

i=1,2, 4, 5
u=o, t =O

N
2 ' 2 m

Cl O Pl 0 Cl 0
2 2 2 (16)

CO l po l Co l frgfr NN
2 2 2 4

III. NUMERICAL ANALYSIS AND DISCUSSION

OF THE RESULTS

In this note we presented a. framework for a de-
tailed investigation of the low-energy elastic y
scattering on hadronic spin- targets which takes
into account correctly the higher-order low-ener-
gy theorems valid for this process. The dynamic
electric and magnetic polarizabilities ~ and P as
well as the other structure-dependent constants
A, B, C, D or A, B, C, and D, on one side, can
be extracted from a careful experimental low-en-
ergy analysis (new measurements at energies as
low as 20-30 MeV, in spite of their difficulty, are
badly needed) and, on the other side, can be the-
oretically computed using, for instance, disper-
sion relations. The Compton-scattering process
on spin- —,

' targets is determined up to terms of
O(cu') by the six threshold values of the continuum
parts of the invariant amplitudes A, ,

C',.' =A, (v = 0, t = 0), i = 1, 2, 4, 5

where the first two terms of the above formula are
those given by Eqs. (2) and (10), and the third term
is the one which appeared in Eq. (4), and the quan-
tities A, B, C, and D are obtained from the cor-
responding A, B, C, and D of Eqs. (11) through
the replacements

ACo I ~ i 3 6
l

1
0-+ P=

27T

dc' z'

~ threshold

= (14.1 + 0.3) x 10 ' fm' .
The difference n- P will then be obtained by least-
squares fits to the data of Ref. 4. The relative
importance of the different contributions entering
Eq. (9') will then be discussed.

To compute the coefficients C,.', C,'. , and C',.'
which determine A, B, C, and D we start from the
following dispersion representation for the six in-
variant amplitudes:

Among the constants C,'. (l,m=0, 1) which specify
the spin--,' Compton effect up to terms of the sixth
power of w, many of them (C", , „C,"..., „.
C", .. .) may be quite well evaluated in terms of
meson photoproduction data by means of fixed
t=0 dispersion relations, while for the other
(C", , ; C", ,), in view of the probable bad high-energy
asymptotic behavior of the corresponding invariant
amplitudes, the consideration of the exchanges in
the annihilation channel (by means of an adequate
dispersion treatment) may be necessary.

In the following we shall evaluate numerically
the quantities A. , B, C, and D [according to Eqs.
(11) and (16)] and shall compare the resulting val-
ues of the unpolarized differential cross section as
given by Eq. (9') with the experimental determina-
tions of Ref. 4. The combination o+ P will be taken
as known from the analysis of Damashek and Gil-
man" in terms of the total photoabsorption cross
section v ~:

A; (s, t) =A, (s, t) +—
m+)1 )

2
ds', —, A,"(s', t) (i = 3, 6),1 1

A, (s, t) =
A &s(s, t) +— 1 1ds', +, A (s', t) (i =4, 5),

)
2 S —S S —Q

(18)
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A, (s, f) + —A,(s, f) =A, (s, f}+ —A, (s, f) +- ANN

" „,, A~'&(t, u=m') +1/mA~'&(t, =m'}
tt

1 ",A,,') s', u=m' +1 mA, s', sc=m'
I 2

Tf (~+)1)2 S m +

(u-m') - " „,A&, '~(s', f) —1/mA';&(s', f)
(s'-m')(s' - u)

, A,"(s', f)+1/mA" (s' t)(,„)2 (s'-m'+ t)(s'- s) (19)

A, (s, t) —A, (s, f) =As(s, t) —As3(s, t) + (4n) (n —P)

1 " A~'i(t', u=m') -A ' (t', u=m')
t'(t' —t)

1 A" (s', u=m') -A" (s' u=m')
ds

(m+)1 )
(s' -m')(s' -m'+ t)

(„m2) - A(s)(s', f)+A',"(s', t)
yp)2 (s m )(s u)

A" (s' t)-A"(s' t)
(s' -m'+ t)(s' —s)

(20)

In other words, we use fixed-t unsubtracted dis-
persion relations for A. .. , [Eqs. (18)], while for
the combinations [A, + (1/m}A, ] and (A, -A3} we
write fixed-t dispersion relations subtracted at
u=m'. The subtraction functions have been ex-
pressed respectively through an unsubtracted dis-
persion relation in the t variable [the w'-pole term
plus the term in the first set of square brackets in
Eq. (19)]and a dispersion relation in the t variable
subtracted at f = 0 [the term with (n —P) and the
term in the first set of square brackets in Eq.
(20)].

The sign of F„in Eq. (19) is chosen in agree-
ment with Lapidus and Kuang-Chao, "i.e.,
g, »F„&0. We have taken

g„„~'/4v= 14.5,

=64v/p, 'p, '=0.85x10 "sec .

The superscripts s and t in Eqs. (18), (19), and
(20) denote the corresponding absorptive parts of
the amplitudes in the direct and annihilation chan-
nels. Working in the two-particle unitarity ap-
pxoximation, we keep in A~') only nN intermediate
states and use the pion photoproductj, on multipoles
of Ref. 15 for the low-energy region (~ from 180
MeV up to 250 MeV) and of Ref. 16 for &o from 250
MeVup to1210MeV. OnlywaveswithZ= & and & are
retained. The s-channel absorptive parts appear-
ing in the subtraction functions from Eqs. (19) and
(20) at u =m' have been calculated in terms of
photoproduction multipoles without any kind of ex-
trapolations, so disregarding complicationq due
to the unphysical region of certain kinematical
variables. This approximation is not expected to
introduce large errors. In terms of tabulated
quantities (see also for definitions Refs. 3 and 16)
the needed coefficients are

4 ce 1

CO, 0 m'graf NN 2S' (2IA,"',g. l'+ 8IA,',g.l'- 2IA~, g, l' - 8IA~, (21')
(m+)f )

(2IA~'3g~l'+2I&g, g, l' 2IAo"'Sg21'-2IA'o.g~l'-)(s'-m )



i. gUlgyU AhtD K. E. RADKSCU
OO

c,"=64x»-' ds', ', ,{2s'[(2I&,"',/2I'+ &I&s 2/2I' -21&p',/2I' -21&'p2/2l')(SP m2 6

+4(2i&p2/2l'+ 2I&pp2/2I' -2I&n2/2I' 2I&2n2/2I')~

+ &2(s'/m)«(2&p 2/2&p 2/2+ 2&p 2/2/lp 2/2
—2&n 2/2&n 2/2 ~&n 2/2/t n 2/2)'/

(211)

C", +-,'mC,"=«x»-' ds', '
2—,&2[(21& s', /21'+2I&s i/. I'+2l& p'2/21'+2l&pi/2l'),„)2 (s'-m

+ 2(2IW p™2/2I'+ 3l/t pp 2/. I'+ 2I& './. I'+ ~ l&n 2/;I') 1

+&&&I&p'.~/, l'+~I&pp, g, f'+2l&n. /. )'+2l&', /, I')),

C66=lexlo-' ds' „',, &2[(2I&,"„.I'+2I&s, /, I'+2l& p'2/. I'+2l/lp2/2l')
+2)2 (s —m )

+ 2(2I& p 2/2l'+ 2l&p 2/2I'+ 2I& n'./2l'+ 2 l&n 2/2I') j
84m~ F38 F3 P'lt F34 F3 P+ P+, . «(»p;/2& p 2/2+ ~&p 2/2&p 2/2+2&n 2/2& n2/2+2&n 2/2+»/2)(s' -m')

+,+, —

(2lfl „"',/, )'+ &la' „,I'+ 2l&,"'2/21'+ 2l&n2/2l')(s' -m'

C66=22x&O-6 ds'; ', ; (-2W[(2I&s', /2I'+3l&s'2/2I'-2I&p, /, I'-2I&p2/, I')

+ 4(2I& p 2/2l'+ 3IApp 2/21' - 2 I & n 2/2I'- 21 An 2/21'))

C"=64Xla-' --, ' ., &-2[(2' 2'/2l'+2las. /2l'+21& p",/2l'+2I&p2/2l')

+ 2(2IW ",/, I'+ 2I&p22/2I'+ 2I& n'2/. I'+ 21&n 2/2l') l

+ 2(2I a p'2, :I'+2la p./. I'+
2 I&,",/, I'+ 2I &n 2/. I'0

C'2, ', mg6 & =axlO-6 ds', ', , [-2(s'-m')(2I& s', /21'+2l&222/2l'+2I& p~2/2l'+2l~pm/21')+2m 6
—

(
I m2)6

+ (2Os'+ 4m')(2IA. ',/, I'+ 2I& p'2/2l'+ 2IA n'2/2I'+ 21&n22/21')

+24m+ «(2B ',/, A p',y/, +2&p2g/2&p2/2

F3+ F3 p* p+ 2Bn 2/2A n 2/2 + 2+n 2/2 +n 2/2)

+ (Qm' —»')(2I& p 2/. I'+
2 I &pp 2/. I'+ 2I &n'2/. I'+ ~I&n 2/2i') l

—8x&O ',ds', ', , )4Ws (2I&2',/21'+2I& sp, /2I'-2I& p2/2l'-2I&p, /2I')

24ms' F26 V6 26 2 e 226 2 2'2 2~26 A 2 )2 «(2& p 2/2& p 2/2+ 2&p2/2&p 2/. —"&n2/. -" n./. n./2 n 2/2—

(2th)

As seen fx'om the above relations, among the
coefficients C,. entering 8, 8, C, and D only the
constant C" is affected by the (less known) an-

nihilation-channel contx'ibutions, thx ough the tex'm

C,"(t channel).
Pex'fox'Dling the Qumex'ical integx'Rtlons and col-
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TABLE I. The calculated values jvrith 0. +p and 0, -p given, respectively, by Eqs. Q.V) and @3)j of the different con-
tributions on the right-b~wi side of Eq. P'). @0/dQ) o stands fox the ~-poje contribution tthe third term in the right-
hand side of Eq. (9')); (do/d Q&z gag~ stands for the last term in Eq. |9'), and ere recall that (do/dQ)p and (der/dQ)&~ @
tthe 6rst and second term in Eq. (9')) are given, respectively, by Eqs. (2) and g.0). To put better in evidence the role
played by the ~4 (and cut} contributione, ws have also separately given ths ~I, &ut ((do/did}p 'zI&j and ot

~
o I (go/dQ)I4 'I&j

terms of the piece tier/dQ)Io @ containing the generalized electric and magnetic polarizabilitiss. {do/d@~. denotes tLs
total calculated value of the differential cross section from Eq. p'). All cross-section values are given in units of 10 3~

cm /sx'.

|MeV) dQ p dQ (~ 8) Cf Q (ct 8) Cf Q (0( 8) (AeBi V &5)

80.9
85.4

109.9

81.9
86.3

106.7
111.1

1;300
1.321
1.455

1.949
1.963
2.039
2.058

-0.284
-0.310
-0.458

-0.368
-0.388
-0.444
-0.446

0.008
0.010
0.01V

-0.063
-0.078
-0.188
-0.222

-0.276
-0.300
-0.441

-0.431
-0.465
-0.632
-0.668

0-049
0.05V
0.115

0.130
0.148
0.240
0.261

-0.031
-0.037
-0.085

-0.100
-0.112
-0.124
-0.113

1.548
1.534
1.523
1.538

1.15+0.06
1.09 + 0.04
1.03 +0.06

1.44 ~ 0.12
1.3V + 0.10
1.60 + 0.08
1.44+ 0.06

leeting the results, one finally has

(tI/m)'A = -0.1106-y,
(tI/m)'B= 0 2462. +2y,

{p,/m) C = -0.0491 —Sy,
(p,/m)'D = 0.0256 +y,

where (m/tt)4y-=16m'C', ~ ' (t channel). As the quantity
y is highly model-dependent, @re shall first extract
a —p using Eqs. (22) and Eq. (17) in a two-param-
eter [n —P and y] least-squares fit of the differen-
tial cross section [as given by Eq. (9')] to the
seven experimental points of Ref. 4, e.g. , to the
values given in the last column of Table I. The
optimal value found fox' ac —p and p ax'e

at —p=15.53x10 ' fm~,

y = -O.SVSV.

In Table I are have listed separately the calculated

values of the different contributions from the right-
hand side of Eq. (9') so that the reader can easily
judge their relative importance.

%e now' come back to the theoretical estimation
of the parameter y containing the continuum t-
channel contributions. We evaluate the needed ab-
sorptive parts in the t channel, keeping only IIII in-
termediate states and taking the amplitudes NÃ
~ zw and IIX «yy in Born approximation (thcl't is»
nucleon pole terms alone for the covariant matrix
element of ÃF - mm, and pole tex ms plus the con-
stants dictated by the exi.sting lour-energy theor em
for the reaction ww -Q). In this model, first used
by Holliday" in his analysis of nucleon Compton
scattering, y is given by

{m/tI)' y, = C,"(t channel)

1 dt, f(t')
t/2

(25)

4~ [(t' —4p'l(t'- p'+ Rmy't(Rmp+ lP —P) V')
(2tIm+ p,

' —t')I~' 8"(t' - 2tI')

,)
4m[(t' —4tI')(t' —p,

' + 2mtI)]'~'

if (2mtI+ tI' —t'}& 0,

2m ~(t'- p,'2) [(+t' - p,'4)(t'- ' tI+ 2m)(ttI' - 2ym,
—tI')]'/'

(t'- tI' —2miI)'~' ~g{t' —SiI') —[(t' -4tI')(t' - tI'+ 2m')(t' - 2my, —y.'}]'~'
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We note that in Eq. (24) we have corrected a, gen-
eral sign error present in Ref. 17 which persisted
for a long time in the literature and which affected
also those parts of Ref. 3 related to the
evaluation of the annihilation-channel contributions
to the proton polarizabilities. (We are much in-
debted to Bernabeu and Tarrach, who pointed out
to us that the gw contribution to n-P in Ref. 3
should come with an opposite sign. ) The origin of
this sign change should be traced back to the ex-
pression of the gp contribution to the t-channel ab-
sorptive part of the T matrix for the yp-yp pro-
cess given in Eq. (4.9) of Ref. 17. A direct cal-
culation in perturbation theory of the matrix ele-
ment (vv~ (y„s/sx„+m)p(x)~p) appearing in Eq.
(4.8) of Ref. 17 shows that the general sign of the
t-channel contributions should be reversed. It can,
however, be shown" that a more detailed investi-
gation of the t-channel 2n exchanges which incorp-
orates the I=4=0 vv phase shift through an N/D

procedure could restore the final conclusion of
Refs. 3 and 10 (e.g. , that the annihilation channel
could contribute to a —P with a positive quantity
such that the negative amount coming from the u-
and s-channel singularities be balanced and hence
a —P still be finally positive).

In this paper we limit ourselves to the crude
estimation of y as given by Eqs. (24)-(26). The
result of the numerical integration is

y = (p/m)'(16m') C,"(t channel) = -0.103, (27)

to be compared with the result for this quantity
given by the two-parameter fit done previously
[Eq. (23)]. Using this calculated value of y in a
one-parameter least-squares fit to the differential
cross section (Eq. 9') to the same seven experi-
mental points of Ref. 4 one finds that the optimal
value of a —P is, this time,

a. —P=19.41x10 4fm'. , (28}

which is not too far above the number given by the
first of Eqs. (23).

The numbers for n —P from Eqs. (23) and (28)
suggest a great positive value for a —P. This rep-
resents one of the main conclusions of the analysis
given in this section. It is true that it is partly
model dependent, because the coefficients A, B,
C, and D were calculated in a dispersion approach.
When more accurate experimental points [espe-
cially at lower energies (20-80 MeV) and large
angles] will accumulate, it perhaps could become
possible to determine all the six low-energy pa-
rameters a, p, A, B, C, and D directly from the
data, and a comparison with the calculated values

will then furnish interesting checks for the theory.
We hope that the numerical calculations presented
in this section can at least be regarded as a sup-
port for the assertion that taking into account the
next photon-frequency order z' (and &o'} in the low-
energy expansion of the proton-Compton-scatter-
ing differential cross section, especially at (under
the pion photoproduction threshold) energies which
might still be too high to keep only &o' (and &o')

terms, makes nontrivial sense.
Concerning the number found for a —P [Eq. (23)],

it should not be forgotten that (i) it has been de-
duced from the results of only one experiment
(Ref. 4), (ii) even though, owing to the good con-
vergence properties of the dispersion representa-
tion the model calculation of A, B, C, and D
should be quite reliable, one could still lose the
needed precision required by a trustworthy eRrac-
tion, and (iii) the numerical result is sensibly de-
pendent on the sign of the v'-2y amplitude (taken
by us as in Refs. 14), in agreement with the com-
mon attitude presently adopted on this subject (see
also Refs. 9 and 10). In connection with point (ii),
we note that a more detailed investigation which,
in the context of a new dispersion analysis of the
low-energy proton Compton effect, goes beyond
the consideration of a few terms in a simple co-po-
wer expansion, is in progress, and the results will
be published elsewhere. "

With respect to the new structure-dependent
constants entering the higher-than-the-usual-sec-
ond-order low-energy theorem, a nonrelativistic
interpretation would be desirable. Here we shall
only show by means of simple classical electro-
dynamics considerations how the scattering due to
an induced quadrupole polarizability of the proton
(x) will appear in the &g' order as a part of the D
coefficient in Eq. (9). To compute the effect of the
electric quadrupole induced polarizability we ex-
press the Compton cross section through the en-
ergy flow S(8) of the scattered wave at the dis-
tance R and the energy density H =E'/4v (E is the
electric field) of the incoming plane wave

, s(e)—=4 R'

In the case of electric dipole and quadrupole radia-
tion there is the following contribution to the
Poynting vector, coming from the dipole-quad-
rupole interference term":

, —f- (d xn) x [(Q x n) xn]
1

4&a' 6

+ [(d x n) x n] x ( Q x n)]

where n is a unit vector in the photon direction,
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d= e,r (d=Ee, '/m), e, =(1/~4v)e, and Q, =Z,Q;, n&

is the induced quadrupole moment

with ~ the static induced electric quadrupole pol-
arizability of the proton. (This parameter has
been theoretically estimated in Ref. 20.) Working
with the plane wave E =E,exp[i(k r —&ut)], neglect-
ing powers higher than +', and averaging omr
polarizations, one finally finds

So, a certain part of the ~' scattering appearing
through the D coefficient in the expansion given
by Eq. (9) can be viewed as due to the induced
electric quadrupole pola, rizability of the system.

We conclude this note recalling that Eqs. (9) or
(9 ) represent a full exploitation of the relativistic-
(and gauge-) invariance requirements insofar as
the model-independent specification of the unpol-
arized differential cross section for the Compton
effect on spin- —,

' hadronic targets up to the sixth
power of the photon frequency is concerned.
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