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Closed Regge eikonal formula for summing multiple-Reggeon-exchange contributions to the
inclusive six-point function in the fragmentation region
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We derive a closed Regge eikonal formula for summing the distinct types of multiple-Pomeron-exchange
corrections to the Mueller-Regge contribution to the inclusive six-point functions a + b —ic+ X in the
fragmentation regions. If one takes into account final-state .absorption (i.e., Pomeron exchange between c
and the missing-mass state X), as Reggeon renorrnalization to the basic triple-Regge term (Y graph), then
using the renormalized Y' graph as input, the formula accounts for all the absorptive corrections within a
Mueller-Regge framework and essentially can provide a complete description of the inclusive distribution in

the fragmentation region. The technique we use is a straightforward generalization of the functional
derivative method introduced by Abarbanel and Itzykson for summing multiple-meson-exchange contributions
to the four-point function. This generalization allows for a large class of possible nested. ladders to be
summed up to a closed expression within the eikonal approximation. The formula shows that one should
expect the absorption corrections in the case of an inclusive process in the fragmentation region to be much
stronger than one would naively expect from the corresponding study of two-body processes.

I. INTRODUCTION

For some time it has been thought that the Muel-
ler-Regge pole model for inclusive distributions
of the form a+ b- c+X must have important
Regge-cut corrections, particularly in the triple-
Regge region. Such a conclusion arises from both
purely theoretical' and phenomenological consider-
ations. " From the phenomenological point of
view it was shown in Ref. 2 that, for processes
like p+ p -n"+X, in which spin and parity play

an important role, the Mueller-Regge pole model
[Fig. 1(a)] did not describe the data adequately,
except for approximately reproducing the over-all
normalization. Subsequently, it was argued in
Ref. 3 that absorption corrections of the form
shown in Fig. 1(b) could remedy the discrepancies;
however, this required the strength of the cuts to
be rather stronger than one might naively expect
from the analysis of the corresponding exclusive
processes y+ p- ~'+ N. 4 The formula derived in
Ref. 3 has the simple form [Fig. 1(b)]

H((&...(&...s.„M„')=J( ),
'

t&
)', s((&.)v(q„-Q. , Q., - )., ~.„('&s"(MQ.),

where

S(Q)- (2m)'5"'(Q) —C(
' '" (1 1)

where Q is a two-vector and Y is a triple-Regge
.pole term. [There is an error in Ref. 3 concerning
the definition of C. This has been corrected in
Ref. 15 and in Eq. (1.1) above. ] However, Eq.
(1.1) does not take into account final-state absorp-
tion or, in fact, all Pomeron-induced cuts of the
rescattering type. In the case of strong absorp-
tion cuts for two-body processes like a+ b- c+d it
has been argued' that one should take into account
all multiple-P omeron-exchange contributions.
This formidable task would be greatly simplified
if the Regge eikonal model, first proposed by
Frautschi and Margolis, ' were a good approxima-
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FIG. l. (a) Mueller-Regge diagram for y+p ~" +X.
(b) Initial-state absorption of the triple-Regge contri-
bution to a+b c+X.

tion. The latter model received some respecta-
bility when it was shown' that it could be derived
under certain reasonable assumptions by summing
nested ladder diagrams in a (t&' theory (Fig. 2).
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i

FIG. 2. Iteration of nested ladder diagrams leading to
the Begge eikonal model.

i

The purpose of the present article is to show how
one can derive in a similar way a Regge eikonal
formula for summing all Pomeron-exchange re-
scattering corrections to the Mueller-Regge F
graph. The formula we arrive at is a simple gen-
eralization of Eq. (1.1) and has the form

d ~d d

where

(1.2)

I

s(C., Q.)= J&(e, c'B, exc(.-(Q, '8, —(Q, 'Be]exp(ix, [s, ]+ex [s s ]e(x [s ])
/

This involves three distinct Begge eikonal phases and the impact parameters B„b and B„, respectively.
We shall use (1.2) to argue that one can expect the absorption corrections in the region 1&x,»0 to be
larger than one might expect from a simple comparison with the corresponding exclusive process a+ b- c+ d. Further, if we argue that final-state absorption [Fig. 3(a)] can be taken into account by Pomeron
renormalization of the Y graph, then using the latter as input, Eq. (1.2) in principle accounts for all
Begge-cut corrections in a Mueller-Regge description of a+ b- c+X in the triple-Begge region. It is in-
teresting to compare (1.2) with the recent works of Capella, Kaplan, and Tran Thanh Van' and Pumplin. 'b

The former arrive essentially at (1.1) with

$(Q B ) — d2B ex@a BabeiXa'b]B b, sab]a
o~ ab ,ab

while the latter obtains the formula

(1.4)

with

$(Q ) dbj3 +inc BcbeiXcbiBcbescb]
C cb

However, we do not agree with the derivation given in Ref. 10, since it appears to fail to take into ac-
count the nature of Regge exchange as opposed to elementary exchange.

In Sec. II we show how the algori. hm, involving. functional differentiation introduced by Abarbanel and
Itzykson" in order to show how the sum of multimeson exchange graphs eikonalize, can be extended to the
case of the exchange of nested ladder diagrams. In Sec. III we use the same method to derive the eikonal
formula (1.2) for the inclusive six-point function. We conclude in Sec. IV with a short, discussion. Some
details are left to the Appendix.

II. CASE OF THE FOUR-POINT FUNCTION

In order to illustrate the method, and for later reference, we first consider the case of multiple Regge
exchange in the four-point function (Fig. 2). We treat the Heggeons as ladders, or more generally as con-
nected two-particle Green's functions [Fig. 4(a)], which we denote by the translational-invariant form

~ aL X) X3 k-q/2 +q/2

(a) (b) x k'+q/2 k'-q/2

FIG. 3. (a) Final-state absorption corrections to a
+b c+X' in the triple-Begge region. (4) Equivalent
Heggeon renormalization g»phe

{a) t,'b)

FIG. 4. {a) and (b) Two-particle connected Green's
function.
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FIG. 5. (a) Complete g-channel iteration of nested ladder diagrams, represented here as two-particle connected
Green's functions t". (b) The s-u terms building up the Regge eikonal. phase.

I

Gfx„x„x„x,] = G(x, —x„-,'(x, +x,) --,' (x,+x,),x, -'x, )+ Perms(1- 3, 2-4), (2.1)

where [referring to Fig. 4(b)]

G(,)
dk dq dk' - „„,,(„.„. . .)

(2m)4 (2v)4 (22)4 (2.2)

One begins by introducing external sources A and 8 and one-particle Green's-function operators G(Z) and

G(&), ~espectively, where G(A) =[P' —m'+ ie —g&(x)] ' with [P",x"]=ig"" We. can then write the sum of
nested ' ladder" diagrams [Fig. 5(a)] in terms of the following algorithm involving functional differentiation
with respect to the sources

(2~)'&'(P, +P, P,' Pf)T(s, t) -P(—-, )=r(P.',P„A)v—(P,',P„a)
A~B~P

where

(P',P;&)= I' (P' - ')(P" — ')&P'
~

G(&) ~P),
P ~fft2
p'~m2

which can be expressed in the form"

(2.3)

~(P',P;&)=&P'
~

T exp [ig J. d»(x —2P7)]g&(x) IP). (2 4)

and the functional differential operator is given by
I

5 5 4

p II 3 f 5Q( ) 5+( )
fylP3 293 3934] 5g( ) 5i3(y ). (2.5)

r(P', P;2) is a relativistic analog of a I.ippmann-Schwinger scattering amplitude for a particle in the ex-
ternal potential A. Here the sources A and 8 are dummy variables, which generate vertices on the upper
and lower lines (Fig. 4). After applying the functional differential operator (2.5), each. such vertex is re-
placed by a vertex involving one leg of the Green's function (2.1). In this way this algorithm generates the
complete set of Feynman graphs shown in Fig. 5(a). The eikonal approximation is achieved by assuming
at high energies that the momentum flowing through the lines a and 5 in Fig. 5(a) suffer only small fluc-
tuations as a result of their interaction via the exchange of Heggeons. This means that all the interme-
diate momentainthe expansion of 7'(P', P;&) are strongly peaked around the average of the initial and final
momenta p and p', respectively. Such a situation allows us to make a relativistic Glauber approximation, -

in which we replace the momentum operator P in the right-hand side of (2.4) by the c number P = (P+P )/2.
Furthermore, we can drop the time ordering and replace (2.3) by

(2v)'5"'(P, +P, -P,, -P,, )T(s, t)

=D, d4x,d4x, ex' i p, -p,' 'x, +i p, -p,' '

9 8
X exp ig dr+(x, —2P,r,)+ig dv, B(x, —2P~7,)', (2.6)

9Q 8 Q b a A=8=0
Cg 220t ~22P

with P, = (P,+P,')/2 and P2= (P„+P~)/2.
It is now a simple matter to carry out the functional differentiation, and we obtain
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9 9
d'x, d'x&, exp[i(P, i&,-') x,+z(p, -p&'&) x,] .s8a, jhow

x exp g d&~d"a dvbd7'yc 2pa Ta 7'o &+a xb —Pa Ta+ ~a +Py 7y+Ty, 2pp Ty —7

(2.7)

The eikonal formula for T(s, i) is obtained by expressing y„=x, -x, in terms of the Sudakov variables

gg~= B~p+ 2vPg+ 2g P~)

where Bah Pa Bah'Pa, =O, and

( 2.8)

dy -g d(ydgd 8 ~ g-4 P.P 2 P 2P 2&i2

After separating out the 4-momentum-conservation 5 function and making the variable change

&I= (v,' —v, ), v = (v', + v', )/2, q' = (v~ —v, ), v' = (v,+,v)/2,

we arrive at"
( 2.9)

T(s t}=s f dadld'B 0'~' "
~ OO

8 8
, exp dig' d7

190 $80'
dv'G(2P, g, 8„—2P,v, + 2P,v~, 2P,v&'') (2.10)

with Q= P, -P,'.
It is a trivial matter to see that (2.10) can be written in the form

p(s i)= s d B e"'~ ea&&(I e~&ab~ ab'~ah&)

X.,[&,s) = dvldvdq'dv' G (2P,vl, B —2P,v'+ 2Pp', 2P,vj'). (2.11)

d4u de'
27&' 5 (2P k)2&75 (2Pg k )G (k y tf y

k )

Substituting expression (2.2) for G we obtain

X,,[»s]= = (2.12)

By noting" in the limit s -~, k'/v's, i/V s -0,

1 +, , = . + . =2&v5 2P'k),1 1 2.13)(P —k)' —m'+ie (P+ k}' —m' ie+-2P, k+ie 2P k+ie

we see that (2.12) corresponds to the Fourier-Bessel transform of the set of graphs in Fig. 5(b); hence for
Begge exchange we obtain

d'Q
[Z z]= — e«'»P ( Q )P ( Q )(1+ v e ''~&-@'&)g~&-o'&.

s (2&v)2
(2.14)

III. CASE OF THE TRIPLE-REGGE LIMIT OF AN INCLUSIVE DISTRIBUTION

For simplicity we consider the equal-mass case, and we begin by defining the Y graph in Fig. |&(a)
through the expression

(2m)'5 "&(p.+p, —p, —p,- p~+ p~)Y—
=D. "m Q(i.'- )&m&. I G(G)G. 'G(»I&.& &i pIG(&)G. 'G(&) If,&&i.I

G(A)G. 'G(G) If.& I ~~~

where
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(a)

FIG, 6. (a) The trip]e-Begge pole p graph for a+5 —c+X. (b) Green's function corresponding to a triple-Begge lad-

der diagram.

5"' ' ' ' '~ 5A(y, ) 5B(y,) 5C(y, ) 5A(y, ) 5B(y, ) 5C(y, )
'

Here G"' represents the Green's function for the triple-Reggeon ladder diagram shown in Fig. 6(b). (More
generally one can use a double-Regge form. )

To generate the full set of nested ladders shown in Fig. 7, we start from

where

II(u ' —~'XP lG(c)Go'G(A)lu, )&f I&(B)co'G(B)lf )&frlc(A)co'G(c)lf, &l . = =o (32)
pe2 m2 XM =V=o

" 6A ' 6B -' 6A ' 6C ' 6B) " 6C ' 6B '

5 5
gg, b XP gJ 3i 6A( ) 6C( )

I. JirX2) 73934] 6B( ) 6Bt ) 7

and D,~(5/6A, 5/5B) and D„(5/5C, 5/5B) are as defined in Sec. II. Since the sources act only on single-
particle states, we can use the completeness relation

d4p
)l»&P l

= I. ( 3.3)

Further, the Reggeons in the Y graph carry away a large amount of longitudinal momentum from lines a
and a, so that nested diagrams of the form shown in Fig. 8 do not eikonalize, essentially because the inter-
mediate propagators involved suffer drastic changes in momentum. %e shall therefore collect these terms
together and include them in the definition of the Y graph. The latter is characterized, in the target rest
frame by a change of energy in the lines a-c, &E-(1-x)E„and consequently an interaction time &f s/-
(I -x)-M„. Hence, for large missing mass the I' graph involves a rapid interaction, in contrast to the
terms that eikon3lize. It is thus reasonable to make this separation, since the physics of each piece is
radically different and different approximations can be expected to be involved. The remaining summation
in Fig. 7(b) can be rewritten in the following form, where we again make use of Eq. (2.4):

d4+' d4*-'
S,=D*D ", ; 2~v' p.'2-m' 2~v' p-."-~' 2~ 'e"' p'+p,'-p'-p'-p~+p, '

Ol y Ot

x 7 * (p, ,p', ;A)7 *~(p-g,pi, ;B)r,"~(p~,p~, C)Y7 (p„p,', C)~ (p„pt;B)v (p„p,', A)l„.ii c 0, ( 3.4)

FIG. 7. The sum of all Pomeron-induced rescattering
corrections to the Mueller-Begge F graph. Here the
Pomerons are treated as nested ladder diagrams.

I

i~~~ dlSC
M„

1

FIG. 8. Nested ladder diagrams that do not eikonalize
in the case of the inclusive six-point function.
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where, as before,

v(p', p;A)=(p' ~T exp(ig J, dvA(x —2p r)]gA(x)~p ).
The eikonal approximation is made by replacing the operators p in the 7 matrix elements by, respectively,
P~-PN (~=&, &, c)»d p--p- (c.=a, b, e)andbydroppingthetimeordering. The fact that we do not use the
symmetric Glauber approximation is not likely to be important, since we are not dealing with large-angle
effects. This simplifies the calculation. After these replacements we obtain

d'p' d'p-'JI, , 2vv5'(p„" —m')2vv5'(p "—-m')(2w)'5~ '(p, +p, -p, -p;-p;+p )
. a, u

where

x D*Dv„* (p, ,p',-;A-)v,* (p p, p~, B)v„"~(p~,pq, C)F

x v (p„p', ;C)v (p„pf, ;B)v (p„p '»)
~
~-a=~=0 (3.6)

g 9
v (p' p A)= d4xe"~~''" . exp ig

g9Q
dvA(x —2pv) .

After carrying out the functional differentiation we obtain the rather lengthy expression

x d'xqd'x~ exp ~a ~a xa+ ~y py xy+ ~ ~c ~e c
SHIIT

x exp[ —i(P,--P,'-) x, -i(p-, P-) x;--i(p~ p~) —x~]

9 9 9x. . . exp dvad~a
g9Q g9Q& g&Q

d7pdTQgg

dY'~dT~G c g+ d~6d~~~c~

.9 9 9x . . . exp
g 9 Q& g 9A- $9(M& ~a

dvgvI dvgdv~W

dv, dvP'd7'~ 47 pd7bGgp p+
0a b

with

G„=G(2P, (v, —v,'),x, -x, —p, (v, + v",)+p, (v', + v,'), 2P, (v', —v, )),

„,, = G(x, —2p,v, -x, + 2p,v„~ (x, +x,) -x, -p,v, -p, +vp, (v, + r,'), 2p, (v,' —v', )),

G„=G(2P, (v,' —v, ),x, -x„-p, (v, + v,')+ p, (v, + ),pv, (v,' —v, )),
similarly for Gk, etc. ,

Q,', =(p,' —p', ), Q,-';=(p,'--p ), and Q', =(p„' —p').

( 3.6)

We can considerably simplify (3.6) by making a series of variable changes beginning with the transforma-
tion

I

l gxa~xb~xc yah xa xb~ ycb c b~ 3(xa+xb+ (3.7)

Similarly for the variables xz, xp, and x~, after which the x and x integrations can be immediately per-
formed giving us the 6 functions 6'(p, +p, —p, -'p,'-p,'+ p,') and 5'(pz+ pF —p~ -p~ —p~+ p~), combining the
latter with the 5 function in Eq. (3.6) allows us to factor out the over-all four-momentum-conservation 6
function 6'(p, +p, —p, —p; p~+ pz). —

%e now make the Sudakov decompositions

„=B„+2o~sP, + 2o,'g y.s =
~ B2&+.~Pc+ &&cP~ (3.8)
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with

and define the momentum-transfer variables

Q, =(P. P.')-a d Q.=-(p'. -P,), ( 3.9)

and similarly for the barred variables.
After shjfting the T integrations in the same way as we did in the case of the four-point function, we can

express Eq. (3.6) in the following form, in which we have factored out the over-all four-momentum 5 func-
tions:

H = (2n') ' d'Q, d'Q, d'Qp'Q~5'(p, "—m')5'(p,"—m')5'(p,"—m')

x 6'(p," m')6'(p,"—m')6 (p," m')Z„—Z„Z~W~
I

eisa'Bab~igc Bcb d2B d28 e Qg'g j~ f Qp' Bp$
ab cb ab 87

x do'~ ~do~ ado ~gdogg&~d'0 pb

do 82~v(gc. pb) dO &2io'(Qp pp)
2m' 2m

'
8 8 8

where

8 8x . —, exp(VQ+ V~~*~+ V~+),180'~ 180'~ 280'~
(3.lo)

Vab dTad7a dTbdT&G 2pa 7' —T,Bab -p T + T +pb, Tb+ Tb, 2pb Tb —Tb
cab cab

Vac, b—
ab

dr, dv'~dT~G(B, z
—B,~

—2p T + 2P,7; —2',z(B,~+B~~) —p,&, -p, ,r +p~( gref, )
cb cab

+»Pg, 2pz(&z &z))&-

cb c c b b c c c ~ cb c c c ~b b b& b b b
.ccb cab

oao +cz i + oRi o% ~ ~a8 4~(pn PB) Pe PB l

Q.'.=P.' P.'= Q, -Q.+ Q-. , Q.,=P. P„. Qzzzz=p Pp= -Qzz; Qzz+ Q-p Qzz;=-P; Pp, -
Q '-=P '- -P t', = Qtz+ Q p

-Q -Q .
From Eq. (3.10) we see that the a„, o,'„and o,~ integrations can be immediately performed, which after
allowing for the disconnected pieces leads to the eikonal factor

S'= exp(zX„+ iX,', ,+ zX„),

where

zX.~= V.~(-",— ), zX.'. ,= V;, ,(-, , — ), zX„=V„(-, . ).
Finally, we decompose Q, and Q, into transverse and longitudinal parts, according to

(3.ll)

2P» ' Q. 2P. ' Q. 2Pg'Q. 2P. 'Q,
Qe=

2p .p pc+
2p .p p~+Q.z (3.l2)

where Qz is a transverse four-vector and Q,z'p, = Q~ p, = 0 and Q,z' p, =Q~' p, = 0: We have already made
use of the fact, for large s, that we can drop terms of order Q,z/s, etc.

Since we are solely interested in the eikonal approximation, welinearizethe 5 functions 5(2P 'Qz —Q~ )by
replacing them by 5(2P Qz), which is consistent with the approximations we have already made and
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amounts to assuming only smaQ four-momentum transfers are important, except at the l' graph. We thus
arrive at the expression

H= (2v) ' d Q d Q ding Q&exP(iQ ' B &+iQ 'B &}exp(-iQ& B& —jQ&.B&5)

x) dadaJd(p. q, (d(p q(mq(mq. (.(ming@
«40

d(P. 'Q.)d(P 'Q )»(2P. Q, )2&(2P, Q,+c()
«00

4 Pg' g d PI, ' g 25 2pg' g 25 2pp'

x d ~c 5 d ~p' p 25 2pp' ~ 25 2pg' tt+0
«00

gp, q~, s,,q, M~
«Oo

(3 ' 13)

In going from E(ls. (3.10) to (3.13), we notice that the Jacobians J„,J„,J~, and Jg cancel out. E(lua-
tiou (3.13) simplifies considerably if we note that at high energies Q„and Qz~ become independent of o(

and c(, respectively (see Appendix A}., This means we can perform the integrations involving the 6 func-
tions 5(o) and 6(o).

Defining the variables f„=(Q„—Q, +Q,)', t„=(Q„—Q;+ Q~)', f,= (Q, + Q, —Qz -Q~)', and t=Q„'=Q~',
we now consider only the forward missing-mass discontinuity for s --~, where we can use

s„=-xs,~ and ~z'=(I -x)&„,
and

m'+p ' xm
(3.14)

Then

~'+ (p, +xQ, +Q,)' — (2, , m'+ (p, +xQ~+Q~)'
tac- (2 -xgm- x',m

x

f = (2 -x)m' — ', to= -(Q, +Q, -Qq -Qq)2.
(3.16)

Integrating over a and V in E(l. (3.13) leads to the following closed eikonal form, which has a simple
convolution-like structure:

Z[t, S,~, Mz'] =f (
(',

(
(',

(
~', , (', S(Q„Q)1(f (;, t„, S'„„, ,

' )S "I(Q;,Q, ~),
I

where

S= d'B, ~d'B, ~exp i, 'B,~+i, ' B„e i ~ 8„+y„,, 8„,&„+g„&„
and (3.16)

$*= d'9d B+exp -i &'B&~-i z'B~ ex -i X~ B~ +X,*,,„&~,&zg +X,& &~

The eikonal phases X,~ were computed in Sec. II, and are given by

Jl Qa& 5@a CbP ( Q -2)P '( Q 2)g (~ )z ~ @a

ab

(3.1V)

X„,~ is more complicated and depends on both impact parameters. It is defined through the expression
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XQCb 5 dT d2 d'rbd~it (+ b +cb —2pc~c+ 2PcTct2(+cb++cb) Pc c t'c c+&b( b+~!)i 2pb(~b ~b)) (3.16)

In Appendix B we show that this can be cast in the following form:

x.„b=
(

'
(

)' exp[&(B,b+ B,b) (Q, -Q, )/2j pb(-(Q. -Q.)')h (-(Q, -Q,)')

x s„' '~c ~" '(exp[i(B, b -B,b) (Q +Q )/2lEoc(x~Q ~Q )/ (3.i9)

The function E„is related to the residue functions P,(t) and P,(t), however, its form depends on detailed
dynamical considerations. For the purpose of computation one could use the exponential form

X~«ec&
(x Q Q ) (P+00)l/2sbctc/2ebctc/2

cc 1 cb c 2(1 x2) c 9

where
P (t)=P'e'~' n=a, c t = -(Q —Q )'

(3.20)

From (3.20) we see that the eikonal phase y„, is in fact small, because of the small slope of the Pomeron
traj ectory.

IV. DISCUSSION

. It has been argued by Bartels and Kramer" that, in fact, the above sum of eikona1 phases overcounts
the contribution of exchanges in channel ab and cb in some sense. To resolve this problem one has to re-
sort to a more detailed model, in which combinatoric questions can be answered. We have briefly exam-
ined a tt theory in the weak-coupling limit following the calculation of Circuta and Sugar (see Ref. 7).
One finds for inelastic processes that only the mixed eikonal phase enters (in the leading-logarithmic ap-
proximation), however, its weight is precisely that given by formula (3.11). The main point is that for the
inelastic case there are 2" ' more graphs at the ~-ladder-exchange level. We strongly suspect the count-
ing problem in general is more subtle than has previously been supposed.

From Etl. (3.16) we see that there are three distinct kinds of multiple-Pomeron-exchange corrections to
the inclusive six-point function a+ b- c+X. Further, if we identify the Regge eikonal phases involved, with
the corresponding ones for a+ t/- c+ d (see Fig. 9), we see that the factor S defined in (3.16) contains both
the initial- and final-state eikonal phases of the latter. However, for an inclusive distribution the final-
state absorption corrections, shown in Fig. 3, should also play an important role, because we can expect
their strength to grow with the multiplicity of the missing-mass state which rises like nx = c lnMx . From
the above consideration we conclude that the strength of Pomeron-cut corrections in the Mueller-Hegge
model to be strongly dependent on x and somewhat stronger than one might naively conclude from the ana-
lysis of the exclusive limit. This was indeed the conclusion of Ref. 3. It is interesting to note that using
the parameters of Ref. 3 for the unpolarized distribution y+p-tt'(x, p, )+X as input, one obtains" a target
asymmetry y+P -m'(x, P,)+X, which becomes appreciable for p, 2& 0.2 GeV2. Further, the values obtained
in Ref. 15 approximately agree with the preliminary data." This should be contrasted with the Mueller-
triple-Regge pole term, which predicts zero target asymmetry. The x dependence of the latter should be
a good test of the detailed structure of the Regge-cut terms. An analysis" of reactions like mp- &+X at
high energies would be very useful in verifying the conclusions of Refs. 3 and 4, which rely on the avail-
able DESY data, the latter being at rather low energies.
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APPENDIX A

We can show Q'„ is independent of ct in Etl. (3.13, by noting that to leading order

2Pb'Q. = 2t/b'9, =&-
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FIG. 9. Multiple- Pomeron-exchange corrections to
the Regge pole exchange for a+& —c+X.

p Q /2
I

p foal 2 T

p -Q. /2

p, +Q,I2

p +Q/2

FIG. 10.Diagram involved in the Regge eikonal Phase &ac,b.
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We see that

ab cb ab cb cb

and since scb xsab

q„= (1 -x)P +y p("+ (P~i —Qg~+ Q~i)+ 0(1/s). (A2)

APPENDIX B

To calculate the mixed Hegge eikonal phase g„, (Fig. 10), we proceed in much the same way as the cal-
culation of y, ~ in Sec.. II, starting from (3.18}, namely,

d7', d7'pr~dv ~G(B, ~
—B,~ —2p, 7', + 2p, r, & ~ (B,(, + B,~) p, r, p—,7', +—p(, (v, + v~), 2'p, (v„' —r(, )). (B1)

Using the I'ourier representation of the Greens function G,

G(& & &() Q
G(@ q I ()&-f)( r io )(-Ik' r'-'

(2v)4 (2v)4 (2)))4

we obtain the expression

(S2)

lf„,=g4 4 ', 2mb(2p, 'Q, )2v|)(2p, Q,)2w6(2p~' (Q, —Q,))

d'ux,2~~(2p, u) exp[i(B.,+B„}(q. -Q.)/2]

@exp[i(B., B )(Q.+Q-.)/2.,)G( '2 ' Q. —Q, )) ~

We now use

g ~27|5 2pb'k G Q +Q, 2, Q, —Q„& =g g a ~ Qc Pb a Pb+ c-Pb

with Q=@,-Q, and

().")= I da p(v)().* —v'+ ia) '.

Equation (B4) exhibits explicitly the propagators connecting lines a and c. In the case of y, ~ and y,~ the
latter go to making up the residue functions P,,(Q, ') and P,(Q,'), respectively.

By defining the Sudakov variables



S. CRAIGIE, K. J. M. MORIARTY, AND J. H. TABOR i8

q, =2op, +2&gpb+qg~, q, =2o,p', +2&gpb+q, )

We can express (83) in the form

',
(2

)2'exp[i(B,b+ B~)' (Q, -Q, )/2] exp[i(B b
—8 b)

~ (Q +Q )/2]

(86)

1
2pg pb 2pg pb

dogd7', do,d7'g(') (2r, p, '
pb )6 (2r,p, ' pb)

x g((r, p, p, (r,p, pb)pb((q, q, )')

x ((r s p o g )g((og Qg) )~ (q 2)n (q 2)g2 (87)

By noting cr,p, P, -O,P, 'P, =O, which implies a, = -xa, =xo, we see that

q 2 ~x2o2m2 (1 x2o2)Q 2 q 2 ~ o2m2 (I (r2)Q 2 (q q )2 ~ (Q Q )2

a11d

(88)

)(„, = 2„); (2 ); xp['(8, +8, )'(Q, -Q,)/2]p(-(Q, -Q, )')$ (, )

x exp[i(B,b
—B,b) (Q, + Q,)]F„(x,Q„Q,),

where

&..(x,Q. ,Q.) =Z' —&~'(r'm2 —(1-x'o')Q ')(xo)g '~g~g' b, (o'm' —(1-(r )Q )2r (810)

The corresponding expression for the residue functions P,(t) and P,(t) is given by

g( g ) f-'2,*.=g.(-g")~.&-(r) -g')').

If we insert a propagator of the form &),(k2) = (k' —m'+ ie) ' into (810), we obtain

) 2 d(r 1 1 1 )g(((I ~ )2)
2)r (1-x'(r'+i&) (1 —(r'+it) (@,2+m2)(Q, 2+m')

, x (-(&g&g)2)

(811)

(812)

E(Iuation (812) suggests the form of E„proposed in E(I. (3.20).
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