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Exactly solvable wave equation with a linear confining
potential. II. Symmetric model
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A model based on an exactly solvable wave equation with a linear confining potential is constructed
which is time-reversal invariant and which allows the definition of a conserved parity and C parity.
Sets of linear and parallel Regge trajectories are obtained. A discussion is given of the states which
have the properties of the p'l and n mesons.

I. INTRODUCTION

In the preceding article' a model has been pre-
sented which possibly describes the motion of a
light quark in the field of a heavy (static) antiquark.
The main characteristic of this model which is
based on the Dirac equation in first quantization
(hole theory) is the appearance of a linear potential
term in the wave equation. The way this potential
has been constructed is such that the ensuing equa-
tions are rendered exactly solvable and lead to
Regge trajectories which are linear when the total
angular momentum is plotted against the square of
the total energy of the light quark.

Due to the impossibility of defining a workable
charge-conjugation operation this model is not
fitted for the description of mesons which possess
a well-defined C or 6 parity, but may lead to an
approximate description of strange or charmed
mesons in which a heavy and a light quark or anti-
quark can be distinguished.

We shall now make use of the results of the pre-
ceding article in order to construct a model for
which such a parity can indeed be defined. We
shall call this the symmetric model, which possi-
bly describes the interaction between a quark and
its own antiquark. The equations can again be
solved exactly and lead to Regge trajectories which,
turn out to be linear when the total angular momen-
tum is plotted against the mass squared of the com-
posite particle.

Since this model is based on the Dirac equation in
first quantization, difficulties of interpretation ap-
pear which are the typical result of using hole the-
ory for the description of two interacting Dirac
particles. At this moment we have not found a sat-
isfactory model based on second quantization and
the unpleasant features must be dealt with ad hoc.

There appear to be two ways of constructing a
symmetric model. They have the special feature
that they seem to be able to produce states which
have the properties of the p' and 7l' mesons. It is

II. DEFINITION OF THE MODEL

As has been shown in the preceding article, '
which shall henceforth be called I, the "asymmet-
ric" Hamiltonian (I =c=1)

K„(m) = 0 ~ p+ np ~ r+ mg (n )0), (2.1)

where p and r satisfy canonical commutation rela-
tions

[p „xq]= —. &,.) (i,j = 1, 2, 3)
1

(2.2)

and where m, p, and g are 8 X 8 Hermitian matri-
ces of the form

m =-5I, So„,
j5=1,e5eo„,
g =I,(3I,(3', ,

(2.3)

where I, = 0, , and 5is a set of Pauli spin matri-
ces, leads to wave equations which are exactly
solvable. The solutions have been tabulated in I.

It has also been shown in I that parity and time-
reversal operators can be defined agd that these
operators commute with K~. Also a conserved to-
tal angular momentum J can be defined:

for this reason that special attention is given to
these states.

In Sec. II the two symmetric models are con-
structed, starting from the asymmetric Hamilton-
ian of Ref. 1. Both allow the definition of a suitable
conserved C parity. In order for the equations to
describe particles such as the H or p' meson which
are their own antiparticles another requirement
must be met. This is discussed in Sec. III. In Sec.
IV and V the eigenstates and eigenvalues of the new
Hamiltonians are written down. It appears that
spurious states come about. These are separately
studied in Sec. VI. Sections VII and VIII are de-
voted to the states which describe the physical p'
and & mesons ~
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J = r x p+ —,'(Z&+ Z„),
with

2p
= O' SI28j2 = gn'

and

(2.4)

(2.5)

CZ =ZC
p

CZ =Zc
c'x'(m) =x'(m)c',

Z„=I,So'(312=8p.

W= —,'(I+ Z Z„)

which has the property

(2.6)

The "asymmetry" of the model comes from the
fact that Z& must be associated with the spin of the
light quark while Z„must be associated with the
spin of the heavy quark. They do not occur in a
symmetric way in the Hamiltonian. Associated
with this is the impossibility of defining a con-
served quantity which has the characteristics of a
C parity. Such an operator should at least contain
the spin exchange operator

CV= yc'
C'P=-YC'

C'q =-qC',
Crg g CI

We obtain for X~(m) the following explicit form:

X'(m) = 25 ~ (rip+ o.8r) + 2&(S' 1)-m, (2.17)

where

S =—'(Z +Z„) . (2.18)

Here the symmetric appearance of Z~ and Z„ is evi-
dent.

(b). If the new Hamiltonian is defined by
VZ, =Z„'u, (2.7) X"(m) =x (m) —q(m), (2.19)

However, in I a Hermitian quantity Q has been
introduced which commutes with 3C and which it-
self shows characteristics of a Hamiltonian,

and the charge-conjugation operator by

C~~ = fP'4, (2.20)

Q(m) =i&(p ~ p —nw ~ 'f)+imp ~ %. (2.8) then we have

It is with the help of Q that Hamiltonians can be
constructed which allow a satisfactory definition of
C parity. We have

C«Z =Z C"
p

C«Z, .=Z C«
y P

[X (m),~]= [q(m), ~]
= —i(Z~ x Z„) ~ (re n8%), -

from which it follows that

[X (m)+q(m), e]=0
We have also

[x,.(m), 1&]= [q(m), gQ

= f(Z, + Z, ) ~ (op+ «r),
from which we obtain

[X„(m)—q(m), g~] =0.
If P is the parity operation defined by

P=~Pg,

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

C'IX "(m) = X"(m)C~~,

CI1p ASCII

C 'F=-'PC

CIx~ ASCII

C»e =OC«.

The explicit form for K~& is the following:

X"(m) =2S' ~ (qp- «f)+@(2-8')m,
where

f =-,'g, Z„).
Here Z~ and Z„appear antisymmetrically.

m. msTRIcTlowseoR x' ~D x"

(2.21)

(2.22)

(2.23)

x'(n~) =x„(m)+ q(m),

and the charge- conjugation operator

C'=Ps.

(2.14)

(2.15)

where P is the ordinary parity operation arid & is
the intrinsic parity, we can now define charge-con-
jugation parity together with a new Hamiltonian in
two ways:

(a) Let the new Hamiltonian be

For a satisfactory description of neutral mesons
it is not enough to be able to define a conserved C
parity. There should be the added requirement that
the absence of negative-energy particles is inter-
preted as the presence of positive-energy antipar-
ticles of opposite total angular momentum. How-
ever, particles and antiparticles are identical. We
must therefore be able to find an operator which
anticommutes with the Hamiltonian and with the to-
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tal angular momentum. Such an operator is by ne-
cessity antilinear.

With the time-reversal operator T defined as in

T =gCr„ O'~ SI2, (3.1)

which commutes with the Hamiltonians Xx and X
we can construct an antilinear operator 6 defined
by

(3 2)

which has the following properties:

and

At(n) At&, )(n}+P (n)A(~2)(n)

(n) = gt g) o o o gt

At(, )(n} =—(gxz) aI ~ ~ aI

gI ix) gP. eoeg) +oeo)

P,(n) = [——,'(m'+ 2nn)'~'+ —,'m] .

(4.6)

(4.7) '

(4.8)

(4.9)

8X'{m) = -X'(-m)8,
8X"(m) = -X"(-m)8,
8J= -Je.

(3.3)

(3.4)

(3.5)

The operator 6 would qualify only if m =0.
This turns out to be acceptable for the Hamilton-

ianX" aud then leads to a massless pion. For X'(m)
the choice m =0 is too severe a restriction. If
m is chosen purely imaginary we find

Then

Az(n))1), and PV(n)g, (4.10)

X'(m)At(n))c), = -2mA~(n))I), (4.11)

are. eigenstates of X„with eigenvalues + (m'
+ 2no. )'~' aud -(m'+ 2no. )'~', respectively. They
are also eigenstates of Q with eigenvalues -2m
—(m'+2na)' ' aud -2m+(m'+2no. )' ', respective-
ly, so we find

8X'(m) = -X'(-m)8= -X'(m)8, (3.6) and

so that the requirement is formally met. However,
we now have to deal with a non-Hermitian Hamil-
tonian and with a seeming breakdown of time-re-
versal invariance. Part of the ill effects can be
eliminated by carrying out a similarity transform-
ation. The remaining bad features turn out to be
peculiarities of a model based on hole theory and
have no observable effects. We come back to this
in Secs. IV, VI, and PD.

Xz(m)&Az(n)(o =-2m&A)(n)(, . (4.12}

Bz(n) =Bz&, )(n) — P (n)Btz)(n), (4.13)

Since these states all have the same eigenvalue
—2m, independent of n, they have no physical sig-
nificance. This is one of two sets of spurious
states which occur. These states are a necessary
consequence of hole theory. We come back to this
later. Next we define

IV. PROPERTIES OF THE MODEL HAMILTONIAN X1 (rn)
where

Bt&»(n) = —,'(at &Xt —az &Xt )at ~ ~ az (4.14)
The eigenstates and eigenvalues of the equation

J

X'(m)$ =E( (4.1)

QP+ zp
(2~)113 (4 2)

and

P+ z)z
X= (4.3)

Let R be defined by

X fX/Xy~ f/' p (4 4)

and let )C), be proportional to the one independent
column of

can be found immediately with the help of the for-
malism developed in I. Let

and

1
B&z»(n) = [&X~,&gt az, ~ ~ at +~(at) yt —a)pt )

X (Xt gt oa ~ gt +gt XZ gt eaegt
i2 i3 C2 r3 c4 'n-l

Then

ooo)] (4.15)

B't(n) $0 and gBt(n))|), (4.16)

X'(m)Bz(n)(, = 2(m'+ 2nn)' 'Bt(n)g, (4.17)

are again eigenstates of X (m) with eigenvalues
+(m'+2no)'~' and —()n'+2nn)' ' (n~ 2), respec-
tively. They are also eigenstates of Q(m) with ei-
geuvalues (m' +2nc))'~' and -.(m'+ 2no)'~', respec-
tively, so we find

ge-Cfr2/2

Moreover, let

(4.5) and

X'(m)t;Bt(n))I), = -2(m'+ 2nc))' '&Bt(n) P, . (4..18)
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PC =++

8 PC=--

P
I
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FIG. 1. Physical eigenvalue spectrum (g & 0) of the
model Hamiltonian bC' .

This is a set of states with meaningful eigenval-
ues. When the total angular momentum is plotted
against the square of the total energy, linear Regge
trajectories appear. The ground state of the posi-
tive-energy spectrum has spin 1, negative parity
(if e is chosen to be —1), and negative C parity.
All states belonging to this spectrum have the
property

s =C',

see Fig. 1. Finally we define

(4.19)

Ct(n) =Ct(, &(n)+ P,(n)c((', &(n), (4.20)

1
Ct(. &(n) = dx' Kx' Kxt « ".«

+
( )

(a~, fx~(, fx& + cycl)

where

C(tz&(n) = 3(at gxt gxt + cycl)a(: ~ ~ ~ aI (4.21)

V. PROPERTIES OF THE MODEL HAMILTONIAN X I (m)

With the help of the information provided in the
preceding section we can immediately find the
eigenstates and eigenvalues of the equation

X"(m)(I =ay. (5.1)

The results are as follows:

X"(m)q, = 4m'„ (s.2)

X"(m)A (n)y =2[m+ (m'+2nnp~']A'(n)y (S 3)
K"(m)fAt(n)go = 2[m —(&n'+ 2n(r)' ] fA (n)go,

(s.4)

X"(m)&'(n)y, = 0, (5.5)

3C"(m)g~t(n)y, = 0, (5.5)

X"(m)C,'( )(», = 2[-m+ (m'+ 2n ~)"']C.'(n)((f„

(5.V)

Since these states all have the same eigenvalue
2m, independent of n, they have no physical signif-
j,cance. This is the second set of spurious states
as required by hole theory. The number of signifi-
cant states is apparently equal to the number of
spurious states.

When m is taken purely imaginary, as suggested
in Sec.III, we find that the spurious states have
purely imaginary energy eigenvalues. ,As long as
~m'~ &4n, the physical states have real eigenval-
ues. Moreover, the positive- energy eigenstates
can be chosen mutually orthogonal and so can the
negative-energy eigenstates. The non-Hermiticity
of the Hamiltonian manifests itself through the
imaginary eigenvalues of the spurious states and
through the fact that negative-energy states are not
orthogonal to their corzesPonding positive-energy
states.

It is an attractive possibility to identify the phys-
ical state of lowest positive energy. with the p' me-
son. The physical mass of the p' meson indeed re-
quires a purely imaginary value for w.

Then

X(fx't «ooo«oooo) (4 22) X"(m)&c'(n)g, = 2[-m (m'+2na—)"']Net(n)g .
(s.8)

(4.23)C '&(n) $, and fC ('(n) $,
are again eigenstates of X with eigenvalues (m'
+ 2nn)'~' and -(m'+ 2no. )'~' (n ~ 3), respectively.
They are also eigenstates of Q with eigenvalues 2m
-(m'+ 2no)'~' and 2m+ (m'+ 2noi)'~', respectively,
so we fand CII (s.9)

We now see that the roles of spurious and physi-
cal states have been interchanged. In order to
meet the requirements of Sec. III the only realistic
choice for rn is zero.

For the states (5.3) and (5.4) we find

and

K'(m)Ct(n)$, =2mCt(n)P, (4.24) and for the states (5.7) and (5.8) we have

C II (s.10)

3(."(m)gCt(n)&1, =2mgC((n)y, . (4.25) , Figure 2 shows the positive-energy spectrum (in-
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EB PC =+-
PI:= —+

8 PC=++

8 pc =--
X~=-2S p.

We now define

(6.4)

The Hamiltonian (6.3) does not conserve parity.
There should be coupling with the mirror-image
world for which the Hamiltonian K~~ is equal to

o x',

2S p

-2S'p
(6.6)

6
m

FIG. 2. Physical eigenvalue spectrum (E ~ 0) of the
model Hamiltonian K".

eluding tfio) for the case m = 0.
It is an attractive possibility to identify the state

g, with the m' meson, which would then be mass-
less. The nonzero physical mass is apparently due
to perturbations.

VI. INTERPRETATION OF THE SPURIOUS STATES

In order to obtain an insight into the meaning of
the spurious states which appear in the symmetric
models let us consider a system consisting of a
massless quark and a massless antiquark in the
center-of-mass system. There are two types of
massless quarks. One is left-handed and is com-
parable to the neutrino, the other is right-handed
and has no neutrino counterpart. Similarly there
are two types of antiquarks. We have

(e.l)

Rx~ = z 'p —z-'pp ~ (6.2)

If the center-of-mass motion is split off and dis-
regarded, this effectively becomes, in the c.m.
system,

where the + sign refers to the quark and the —sign
to the antiquark. Both Hamiltonians have positive-
as well as negative-energy eigenstates.

If a right-handed quark of momentum p, and spin
2Z, = —,'o I, is combined with a left-handed anti-
quark with momentum p-, and spin &Z-, = ~I,o,
then the total Hamiltonian for that system is equal
to

as the free Hamiltonian describing a system con-
sisting either of a right-handed quark combined
with a left-handed antiquark or of a left-handed
quark combined with a right-handed antiquark. If
we make the' following redefinition in accordance
with the definition of S used in the previous sec-
tions:

S3I2- S,
then we can write

R~=2S'Kp.

(6.6)

(e.v)

The parity operator should then be defined by

I =EP'g (6.6)

and is clearly conserved.
The spectrum of X~ already shows spurious

states of energy zero together with positive-energy
states of energy 2 ~p~ and negative-energy states
of energy -2

I p
The zero-energy states are sums of products of

positive-energy quark and negative-energy anti-
quark states and products of negative-energy quark
and positive-energy antiquark states. If the nega-
tive- and positive-energy states are called "physi-
cal" then there are just as many physical as spuri-
ous states. The latter are therefore a necessary
consequence of hole theory.

If the system consists of positive-energy quark
and antiquark states then because their momenta
are opposite and they have opposite "handedness"
their spins line up in the direction of p. When both
energies are negative the spins line up in the op-
posite direction.

Interaction between the massless quarks by
means of a linear potential can be built-in in a
parity-conserving way:

2S p 2o iS ' r
T (6.9)

-2&iS.r -2S p

where r is the quark-antiquark distance. With the
substitution (6..6) we find

3C"=(Z,+Z-,) p=2S p,
where

p=p = -p- ~e ' e

(6.3) Kr =2S (g —o.er).
By carrying out a unitary transformation one can
make the following substitution:
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K~~= Z, p, + Z-, 'p-, . (6.13)

Disregarding the center-of-mass motion we find
that this Hamiltonian effectively becomes, in the
c.m. system,

Kr = (Z, —Z-,) ' p = 2S ' p . (6.14)

Also the Hamiltonian (6.14) does not conserve pari-
ty. There should again be coupling with the mir-
ror-image world for which the Hamiltonian is

K z= -28' 'p.
Therefore we define

(6.15)

(6.16)

as the free Hamiltonian describing a system con-
sisting either of a right-handed quark combined

(6.11)

so that Kr as given by (6.10) appears, to be equiva-
lent to K'(0). The parity P as given by (6.8} trans-
forms into P as defined by (2.13).

As follows from Sec. III, 'half of the ei.genstates
of K'(0) have physical eigenvalues, while the re-
mainder have the eigenvalue zero. They are the
result of coupling a "negative-energy quark" with
a "positive-energy antiquark" or a "positive-ener-
gy quark" with a "negative-energy antiquark".

Let us now discuss the C-parity operator in con-
nection with X~. This operator should turn the
right-handed quark into a right-handed antiquark
of the same momentum, while the left-handed anti-
quark is turned into a left-handed quark with the
same momentum. This transformation is effected
by changing r into -r and p into -p, by interchang-
ing Zq and Zq and by interchanging "world" and
"mirror-image world". An extra minus sign is
needed to correct for the wrong sequence in which .

the quark and antiquark states are treated (which
is just the minus sign which results from inter-
changing two fermion creation operators insecond-
quantized theory). Since e as occurring in the par-
ity operation is equal to -1, because the intrinsic
parities of quarks and antiquarks are opposite, we
find immediately that

(6.12)

where P is given by (6.8) and'll by (2.7). For K'(0)
expression (6.8} should be replaced by (2.13). Note
that expression (6.12) then is equal to the C' parity
defined in Sec. II.

If a right-handed quark of momentum p, and spin
&Z, i.s combined with a right-handed antiquark of
momentum p-, and spin &Z-, then the total Hamilto-
nlan ls

with a right-handed antiquark or a left-handed
quark combined with a left-handed antiquark. If
we make the following redefinition:

S'I, - S', (e.17)

then we can write

K~ =28'fp, (6.18)

2S'p
K, =

( 2niS'r

-2afS'. r)
2S' pj

(6.19)

which by means of the substitution (6.17) 'becomes

Kr =2S!(g+ n8r) . (6.20)

By means of a unitary transformation this trans-
forms into K"(0) while P defined by (6.8) trans-
forms into expression (2.13). As follows from
Sec. V, one-half of the eigenstates of K"(0) have
physical eigenvalues, while the remainder have
an eigenvalue of zero. The reason for calling the
latter spurious is the same as before.

We now discuss the C parity in connection with
3C~. Again C should turn a quark into an antiquark
and an antiquark into a quark with the conservation
of "handedness" and momentum. This transforma-
tion is effected by changing r into -r and p into -p
and by interchanging Z, and Z-, . A transformation
of "world" into "mirror-image world" is not nec-
essary anymore. An extra minus sign is still
needed and we find

C =gP'h, (6.21)
1

where P is given by (6.8) and 'll by (2.7). For K"(0)
nothing is changed. If expression (6.8) is replaced
by expression (2.13) we find C to be equal to C".

In this section we have shown that the spurious
states are a necessary consequence of hole theory
when applied to two-particle systems. When an
imaginary mass term is introduced into the Hamil-
tonian X', the spurious states automatically ac-
quire an imaginary energy eigenvalue. We shall
from now on consider only the Hilbert space of
"physical" states of positive and negative energy.

The parity operator is the same as that of (6.8) and
is again conserved.

The spectrum of X~ shows again spurious states
of energy zero, positive-energy states of energy
2jp~ and negative-energy states of energy -2~p~.
Now, however, the positive- and negative-energy
states have their quark spins antiparallel if mea-
sured in the p direction. We thus find that the
physical states are mixtures of spin-0 and trans-
versal spin-1 states.

Interactionbetween the massless quarks can again
be built-in in a parity-conserving way by means
of a linear potential and we obtain
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As a consequence of this, operators like p and r
are not observables anymore since their eigen-
states are mixtures of physical and spurious states. '

Let A project out the physical states, then A =A~

and p„=ApA and r„=ArA are Hermitian operators,
restricted to the physical Hilbert space. As such
they can be called observables.

VII. THE PRYSICAL p MESON

ft,&=) *(m) fN(("&- V*(m) ftI')&.
%'e have also that

(7.9)

and where, moreover, the phase is determined by

(v.v)

7 fe,"')= fC,"'&. (v.8)

Thus we find that

Since the ground state of the positive-energy
X'(m) spectrum has spin 1, negative parity, and
negative C parity it is attractive to interpret this
state as representing a p meson if internal-sym-
metry considerations are disregarded. To obtain
the correct p' mass we are forced to introduce an
imaginary "mass" term into the Hamiltonian and
we find

X'(m) =8 (qp+o. er}~2flml (s2 1}g, (v. l)
which is not Hermitian. Let us recall the proper-
ties of (7.1).

Since the second term anticommutes with the
first term on the right-hand side of (7.1) we find
[K'(m)]' to be a Hermitian operator. We n)ay con-
clude that the eigenvalues of X'(m) are real or
purely imaginary and that the eigenstates can be
chosen to form an orthonormal set. Thus it fol-
lows that the spurious states with purely imaginary
energy eigenvalues are orthogonal to the "physical"
states which have real-energy eigenvalues as long
as fm f' ~ 4().. It follows also that the positive-en-
ergy states can be chosen to form an orthogonal
set among themselves. This is also the case for
the negative-energy states.

It is not true anymore that the positive-energy
states are orthogonal to their corresponding nega-
tive-energy states.

In order to correct for this we carry out a. sim-
ilarity transformation.

Let fg„& be a set of two corresponding states
which satisfy the equation

K'(m)
f g„&=+a(

f g„&, (7.2)

~

&t, f[K'( )-X"( )] f4, &

Thus we have

E.—E,.' &$(ftPJ&=Q, unless i=-j.
4ilm l

(v. lQ)

&0( f
& ft(&=[)(*(m)&SI"l+ v*(m)&4'I" l]

x K[)((m) f(t)'."&+ i), (m} f)t)!2)&]

= f)(m}f'- f).(m}
f

=Q.

We make the following choice:

(v.11)

&0; fp (&

1 —e "~

1 —e2'~

(7.13)
Our purpose is to restore orthonormality by re-
placing

f g(& with g(& such that

(v.14)

Let

(7.15)

Then (7.13) is a set of submatrix elements of AtA.
From this one can solve for A which is deter-
mined up to a unitary transformation.

A possible choice for fg,.& is the following:

=1 eiy (m)
)((m) =, i), (m)=, (t) (m) real. (7.12)

W2
'

W2

With this we obtain

where

(7.3)

Since [K'(m)]' contains m only in a term of the
form 4m', the eigenstates of X'(m) can be written
in the form

With this choice we explicitly find

1+e 1 —e
2 2

(v.16}

(v.4)

(v.5)

(v.6)

fy )=)(.(m) fy(»&+ p, (m) fq(»&

where
f g,")& and l(1)S2)& are a set of m-independent

orthonormal eigenstates of [K'(m)]'. We choose
them to be eigenstates of f such that

g f
y(()&

f
y(1)&

g
f

y(a)&
f

q(2)&

&0;f&fe& H, f&P,& 1-e" ]+e "
2 2

(7.17)
Besides introducing the least possible change of

the system, we find that A commutes with parity,
C parity, and total angular momentum. Our cor-
rected Hamiltonian becomes
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x'(m) =~ 'x'(m)~. (7.iS)

The eigenstates of X'(m) are those of X'(0), while
if E is an eigenvalue of R'(0) the corresponding
eigenvalue of 2'(m) becomes e(E — m ~2) ~ o.

With a and X defined by (4.2) and (4.3) and with
the operators defined by (4.14) and (4.15) we now
find for the p'-meson wave function

the reactions (7.25) that

I"-3.5 keV,

which must be compared with the experimental
value 6.5-10 keV. This result is already of the
same magnitude as the result in Ref. 3. More. ac-
curate calculations with the present model will be
presented in a subsequent paper.

(,o=&,o[&t,)(2)+ l&(,)(2)l(o 2 (7.19) VIII. THE PHYSICAL n MESON

where go is defined in accordance with (4.4) and
(4.5):

The Hamiltonian which should describe the physi-
cal m' meson is given by

0 1 X"(0) =28 '((7p —n8r) . (s.i)
v2 0

1 ~gp/2e- (7.20)

Indeed we find that the parity of the w' is -1.
Taking into account that e in (2.22) is equal to -1
we find the C parity to be +1 as it should be. The
pion mass is zero. The size of the m' can be com-
puted using the pion wave function

Explicitly, (7.19) leads to

(I(,o= X,o[v-n&(r && Z„)+iZ„]g,,
where

(
(I )

(7.21)

(7.22)

g,o = &,o (t'o,

where go is given by (7.20) and where

We find

(9.2)

(s.s)

The parameter n can be determined from the
slope of the p trajectory

Q mm6

gpss
21

4 p

so that the wave function is completely known. It
can be used for several purposes. The size of the

p could be defined as the square root of the ex-
pectation value of x'. We find

(7.23)

(' 2 ( "' 2'
((r ) )' =

~

—
~

— -0.66 fermi. (7.24)
&n) m,

For the computation of the partial width of the de-
cay mode

p'- e'e or p, 'p. , (7.25)

the value of the absolute square of the wave func-
tion at r =0 should be known. We find

2
t —4J (oj (7.27)

where the energy of the qq system equals the p
mass. If for the p meson color degrees of free-
dom are taken into account we find with (7.27) and
with the data from Ref. 2 for the partial width of

IO, (o)~~'=6(..*=2
~

™)
26 m, '. (7.267

The relatively small dimensions of the p' meson
in comparison with other models must result in a
larger width for electromagnetic decays. A crude
estimate is obtained by using the approximate ex-
pression

3 '~' WS
((r ) ) '= — - 0.57 fermi. (8.4)|tv 2 (y 'm

P

IX. DISCUSSION

The model developed in this article for the de-
scription of neutral mesons, although based on
Dirae hole theory, shows a number of favorable
characteristics:

(a) It leads to exactly solvable equations.
(b) It contains linear confining potentials.
(c) It gives rise to linear and parallel Regge

trajectories.
(d) It reproduces the main characteristics of the

p' and m' mesons, including zero mass of the m'.

(The real mass of the mo is considered to be due to
perturbations or refinements. )

The sizes of the mesons turn out to be of accept-
able order of magnitude. The estimated probabili-
ty for decay of the p into charged leptons is some-
what on the low side. ' In order, to improve on this
a better understanding of electromagnetic interac-
tions in connection with this model is necessary.

When second quantization is introduced and the
model is made truly Lorentz covariant (if at all
possible), exact solvability will surely be lost.
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