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Exactly solvable wave equation with a linear confining potential. I. Asymmetric model
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A wave equation is presented which describes the confinement of a Dirac particle by means of a static
linear potential. The model is exactly solvable and all solutions are tabulated. Also a complete set of
commuting observables is given which can be used to characterize these solutions uniquely. The eigenvalues
for the total angular momentum, j, and the energy squared, F. , arrange themselves into linear and parallel

Regge trajectories. Finally, a discussion is given of the high-mass limit.

I. INTRODUCTION

During the last few years linear-potential mod-
els' have become popular in high-energy physics
for several reasons. They seem to be able to
explain the charmonium spectrum reasonably well
and they are a natural consequence of certain
non-Abelian field theories involving quarks,
gluons, and strings.

The models in which a linear potential is intro-
duced in a. nonrelativistic Schrodinger equation
are exactly solvable only when the orbital angular
momentum is equal to zero. The solutions then
involve Airy functions. ' The asymptotic behavior
of the leading Regge trajectory which describes
the bound states of highest angular momentum l
as a function of energy E is given by E-E' '. Not
much else is known about the behavior of the tra-
jectories, but there certainly is no simple regu-
larity in the energy spectrum as there is in the
isotropic harmonic-oscillator model or in dual
resonance models. Nevertheless, if the system
is coupled to a scattering channel there probably
exists a high-energy limit in the sense of Dolen,
Horn, and Schmid. 4

It is easy to show that if a conventional linear
potential is introduced into the Dirac equation,
whi. ch for high energies is more appropriate to
do, then this will give rise to at least asymptoti-
cally linear leading Regge trajectories in the sense
that E-.s =E'. The exact behavior of the trajec-
tories is not known. It is the purpose of this arti-
cle to present a potential model, based on the
Dirac equation, which contains a modified linear
confining potential. and which gives rise to an
infinite set of linear and parallel Regge trajec-
tories. The model is exactly solvable and has a
perfectly regular energy spectrum. The complete
solution is presented in this article and a set of
commuting observables iricluding the Hamiltonian,
the total angular momentum squared, and the z
component of the total angular momentum is found
of which it will be proved that it is a complete
set.

The main ingr edient is a linea|"-potential term
which, as distinct to ordinary linear potentials,
has a smooth behavior at the origin, but it does
not find as yet its justification in field theory.

There are also problems of interpretation
which are the result of the asymmetric appear ance
of two spin operators. However, the model al-
ready contains all necessary ingredients for a
satisfactory adaptation as will be shown in the
following article.

II. DEFINITION OF THE MODEL

The model which will be studied throughout this
article is defined by a Hamiltonian of the form
(s =c=1)

BC=a 'p+ np r+ pm, (2.1)

where p and r are the momentum and position op-
erators satisfying the usual commutation relations

[P,, ~,]=-i&,, (i,j=1,2, 3); (2.2)

p =I~(3o Sa

I4 0f =I,@I,eo, =
0 -I

(2.4)

Here 0 is a set of Pauli spin matrices and I„rep-
resents the e &n unit matrix. Apparently the ma-
trices defined by (2.4) have eight rows and col-

a) 0 defines the strength of the linear potential
represented by the second term on the right-hand
side of Eq. (2.1); m is a real number representing
some sort of rest mass. The remaining quantities
m, p, and g are Hermitian matrices, independent
of p and r, which satisfy the anticommutation re-
lations

(7I'g) 7J.)= 25, (p( p~j'= 25(~ q fjl .
~ p.j'= 0 i

(w„g)=0, (p, , gj=0, P=.l.
A representation of these matrices can easily be

found „
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umns.
There is a conserved axial vector J defined by

and define the parity operation P as follows:

P=Pf. (2.13)
Pp x f'+ p x pJ=r x p+ 4i (2.6)

satisfying

[z,, J~] =it,q»J», (2.6)

(2.7)

where

which can be interpreted as the total angular mo-
D.. ntum of the system with respect to the origin
r =0. The term L=r xp is to be interpreted as
the orbital angular momentum with respect to r
=0, and

S=-.'(Z, +Z„),

Then K commutes with P and the solutions can be
labeled according to parity. However, this
labeling turns out to be trivial. The form of P is
in agreement with the interpretation of the model
as describing a confined Dirac particle.

The time-reversal operation T can be defined by
the antilinear operator

T =Ko So' SI» (2.14)

where K represents complex conjugation. We have

Tr =rT,

and

Txm =aSI,SI,
2i

(2.6) Tp= pT

T1T VT

(2.15)

=I SgSI,
2i 3 (2.9)

(2.10)

is to be interpreted as the total spin.
H n =0, Eq. (2.1) describes a free Dirac particle

and it is therefore suggested that Z~ describes the
spin (—,) of the particle itself, while Z„is a spin
which is somehow carried by the potential. Both
spins commute with each other and with g.

By squaring one obtains from (2.1)

K' =p'+ ~'x'+ m'+ a gZ~ Z„.
The operator gZ~ ' Z„has one eigenvalue + 3, ' one
eigenvalue -3, three eigenvalues + 1, and three
eigenvalues -1. The eigenvalues of K' are there-
fore, remembering that m2+3n is the lowest
eigenvalue of p2+ n2x~+m2 and the spectrum is
equally spaced with spacing 2a,

III. SOLUTIONS OF THE EIGENVALUE EQUATION

Simple solutions of the equation

1
rrg = —r ~ vr v p r r t:m) (=R 4

2

can easily be found with the ansatz

q(r) = 4 (r)e

The equation for p(r) then becomes

(3.1)

(3.2)

and we find that K commutes with T. Apparently
the model is parity conserving and time reversal
invariant.

&,(n) =m +2nn, nondegenerate for n =0

X,(n) =m'+2(n+1)n, triply degenerate for n =0'
Xs(n) =m2+2(n+2)n, triply degenerate for n=0

X4(n) =m'+ 2(n+3)n, nondegenerate for n = 0.
(2.11)

Here n = 0, 1, 2, . . . and the degeneracy for n 4 0
is either once or three times the degeneracy which
is normal for the ordinary isotropic harmonic
oscillator. Apparently the spectrum of K' is
equidistant with spacing 2n. The operator K'
and therefore also K lacks a continuum, which
means that the potential appearing in K is con-
fining. %e now discuss parity and time reversal.

Let P be the ordinary parity operation,

—g ~ V+ &2nX r+ gm Q(r) =Ep(r),
2

where
~ ~

P+2%
X=

has the property

(X;, X,j=0 (&,j=1,2, 3).

The scalar

&= gX, X»

satisfies

~=Rg=O,

and we see that

Re

(3.3)

(3.4)

(3 5)

(3.6)

(3.7)

P r=-rP,
P p=-pP,

(2.12) represents a set of solutions of (3.1) with E = ~.
However, if we define
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/'0 I,r/=I, SI,S „=
(I~ 0

(3.8)

e=I, SI,So,
O -fI&

0)
we find that

(3.9)

R=2v 2(r/+fe)(I, Z, ~ Z ),
and since —,'(I, —Z~ Z„)projects out states with
S'=0 and

(3.1o)

n+ze=g(n+fe) =i
'„(3.11)

(0 2I,

Io o)
we find that Be " ~' contains only one independent
column, representing the one solution g, for which
S'=0 and E =m. There does not exist a correspond-
ing solution with E = -m, which means that the
symmetry between positive- and negative-energy
solutions is broken. It makes a difference whether
m is chosen positive or negative. It will be con-
venient to indicate the explicit dependence of the
Hamiltonian K on m and we write (2.1) in the form

K(m) = w ~ p+ ap ~ r+ gm. (3.12)

K(m) g =E t/i (3.23)

can be obtained. Note that if n operators of the
type (3.21) are multiplied together the result is
an operator which is homogeneous of nth degree
in at and &g~ combined. Obs'erve also that

[at, at] = 0 (3.24)

gxt, cd&= o. (3.26)

If we partially reduce such an nth-degree operator
by symmetrization and antisymmetrization we thus
find that only a limited number of Young diagrams
can contribute (see Fig. 1).

There are three categories:

then
4

K(+m)U tg=EU tg. (3.22)

Thus we find that U t does not cause the energy to
change, but the Hamiltonian. When U th) is mul-
tiplied by f, the resulting expression is an eigen-
state of K(m) belonging to the energy E -It .is
clear that in this way by repeated application of
operators such as Ut on the solution g, which we
have already found, an infinite set of positive- and
negative-energy solutions of the equation

If the set of operators a t is defined by n columns

cxr —zpa
~2n

(3.13) 4 {n) = a a
(&(

n columns

(3.14)

(3.15)

which leads to

[K(m), a, t+ p, &Xt] =-2p„gran(at+ p, gXt) (3.16)

then the following relations can easily be derived:

[K(m), at] = ~o. Xt,

[K(m), LX'] = 2&a/:V + 2m-X',

4(, itn) = CX' a'

n-1 columns

B In) = at a~
(i)

Ex

n-1 columns

at

with

[-~2 ~ 2(m' —2a)'i']. (3.17)

B, (n) = gx a " . . . . a
(&l

Ex

n-2 columns

From (3.16) we obtain, by replacing m by (m'
+ 2o.)'",

K(+m)(a'+ p, &X') =(a'+ p, i;X')K((m'+2a)'i')

t
C (,){n) = at at.

(x'
&Xt

at

with (3.18) n-2 columns

P, = ~ [--,'(m'+2m)'i'~-, 'm).

We find that if (/ satisfies

K((m'+ 2n)'i')g =Ei/r

and if U ~ is defined by

U,'=a'+P, rX'

(3.19)

(3.20)

(3.21)

C (2(fn) = 4X a

gx

fx

at

FIG. 1. Representation of the operators A&& 2i,
B&& 2&, and C& 2 by means of Young diagrams. For
the definition of' )he operators see Eqs. (3.26), (3.27),
(3.35), (3.36), (3.43), and (3.44).
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(a) Two, completely symmetric operators of nth
degree can be constructed. We have

A~ (n)=a~ a~ . a~
( ) f1. i2 g„

and

(3.26)

1
A~2 (n) = —(f)P a~. .a~ +a. LXt a~ a~ + ~ ).(') n gl l2 fn fl f2 $3

(3.27)

with

p, (n) =~ [ —~(m' p 2nn)' ' + —,
' m].

Apparently

At (n)i(I

(3.32)

(3.33)

sC(+ m) A, (n) =A,(n)3C((m'+ 2na, )'~'),

where A', (n) is defined as follows:

A, (n) =A(~, ) (n) p, (n)At(, )(n)

(3.30)

(3.31)
I

From (3.14) we have

[~(m), A(, )(n)]=no n g A~(, )(n), (3.28)

and from (3.14) and (3.15),

[DC(m), A. (,)(n)]=- 2$Mo. A(, )(n)+2m' A(t, )(n). (3.29)

This leads to

and

gAt (n)g, (3.34}

and

are eigenstates of DC(m} with eigenvalues + (m'
+2no. )' ' and —(m'+2no. )' ', respectively.

(b) There are two nth-degree operators of mixed
symmetry corresponding to two-row Young dia-
grams. They are

B~&, ) (n) =-,'(a~t rXr, —at gX~( )at~ a~ (3.35)'2

B(,)(n)= 1[EX( KX q a( ''' aq +-(a, X, —at Xt, }(Xt( at at&, ~at Xt at, at, y }]&n &2 ~ ng (3.36)

We find after some algebra

[X( m), B (» (n)] = v~c( (n - 1)r„B(,) (n) + 2 my B (,) (n)

P .) Apparently

B', (n)0, (3.41)

and

(3.37} and

gBt (n)g, (3.42)

[GC(m), Bt(,) (n)] = g W(r B~(,)(n) .

This leads to

X(a m) B,(n) =B,(n) X((m'+2no, )'~')

where B,(n) is defined as

Bt(n}=Bt(, )(n) p, (n)Bt(, )(n)

(3.38)

(3.39)

(3.40)

are again eigenstates of X(m) with eigenvalues + (m'
+2no()'~' and —(m'+2nn)'~', respectively.

(c) There are two nth-degree operators of mixed
symmetry corresponding to three-row Young
diagrams. They are

C (»(n) =-, (a;,fX, fX, +cycl)a, ~ ~ a,

(3.43)

with p, (n) given by (3.32). (Note that B, contains

1

+ (a, LX; KX, +cycl)(KX, a~ ~ at +at iX~ a~ ~ ~ ~ at ~ ~ ~ )3(n —2) 1 n 1 n &n 2 2»4 (3.44)

This gives

[GC(m), Ct(, )(n)] = v~ (n —2)gCt( )(n)

and

(3.45)

I

This gives

DC(a m)CI(n) = C ~(n) JC((m2 + 2n'n) ' '),
where C, (n) is defined as

(3.47)

[DC(m), C (,)(n)] = — an Ct(, )(n)+2m' Ct(, )(n),

(3.46}

C, (n) =C(»(n)+ P„(n)C(»(n) (3.48)

with p~(n) again given by (3.32). We thus find that
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and

Ct (n)g

gC (n)g

(3.49)

(3.50)

are eigenstates of X(m} with eigenvalues + (m'
+2na)' ' and —(m'+2no)'~', respectively. This
exhausts the number of possibilities. We gee also
that except for g, all positive-energy states have
their negative-energy counterparts.

The operators A, (n), B, (n}, and C, (n) can be
reduced further. Let (A~n, j], f B+,n, j], and

{C„n,j] be the irreducible operators with total
angular momentum j obtained by reduction of
A, (n), B,(n), and C, (n). These are nondegenerate.
We have . E2

At(n) =(A„n,nj +/A„,n, n —5
"+(A, n, oar 1],

Bt(n) (B n n 1] +]B,n, n —2j,

+ ~ ~ ~ +(B„n,1),
C'„(n)=(C„n,n-3] +(C„,n, n 5]—

+ +(C„n,0 or 1).

(3.51)

(3.52)

(3.53)

D

nondegenerate

twofold degenerate

[Q, Bt(,) (n)] = (n —1)Wa&B (, ) (n)+ 2mBt, )(n),
(4.6)

FIG. 2. The total angular momentum j plotted against
the square of the total energy for the positive-energy
solutions of X{m)/=ED {m&0).

From a simple counting argument it follows that in
this way all positive- and negative-energy states
can be constructed. The E' spectrum of the posi-
tive-energy eigenstates is displayed in Fig. 2.

States with energy squared ~'+2&a have parity
(-1}",so we see that the parity operation is unable
to lift the degeneracy of the spectrum. The nega-
tive-energy spectrum has the same structure, with
only the state with E = —m (m &0) missing.

IV. CONSTRUCTION OF A COMPLETE SET OF

COMMUTING OBSERVABLES

As we have seen in Sec. III, the operators X,
~', and ~, do not cform a, complete set of commut-
ing observables. We shall now prove that all re-
maining degeneracies can be lifted by adding the
following Hermitian operator:

Q =i & g ~ p —o, v'' r) +i mp n . (4.1)
This operator commutes with X and manifestly
commutes with ~' and ~, . We have

[Q, a~] = ~o. 6 (4.2)

[Q, y, ]=—2Wnra +2m' . (4.3)

From this the following relations can be derived:

[Q,A (~)(n)] = nV n gA (2) (n), (4.4)

[Q,A (,)(n)] = —2Mnr A (,)(n)+2mA (,) (n), (4.5)

[Q, B~(,) (n)] = v a. gB (, ) (n) + 4 mB ( ) (n),

(4 f)

[Q, C (, ) (n)] = (n —2)v o. g C (,) (n) +4 m C t(, ) (n),

(4.8)

[Q Ct(, )(n)]= Mng Ct(, )(n)+6m C(,)(n) .
(4.9)

(4,12)

From (3.51), (3.52), and (3.53) it now follows that
is able to distinguish between states with the

same energy and total angular momentum under
all circumstances. Thus we find that

Remembering that gg, =(, and using the fact that
$, is an eigenstate of Q,

. Qgo= —3m', (4.10)

we obtain from the relations (4.4)—(4.9) the follow-
ing results:

QA„(n)g =[ —2m —(m'~2no)'~']At (n)g, (4.11)
QB+ (n)Q =(m'+2na)'~'Bt (n)g

QC,. (n)g, =[2 m- (m'+2no. )'~'] C, (n)( (4.13)

Qt At (n)g =[-2m+ (m' ~2nn)'~']gAt (n)g (4.14)

Q&B (n)g, =- (m'+2no. }' 'jB (n)g (4.15)
Q/Ct (n)$ =[2m'(m +2n~p~']/CD (n)g . (4.16)
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X, &" &, , andQ

form a complete set of commuting observables.

V. THE HIGHS LIMIT

gc =gg'+ m

and substitute this into (2.10), after which we
neglect X'2:

ae =p', "',
gZ Z„.2m+ 2m 2m

(5.1)

(5.2)

Except for the last term on the right-hand side,
this is just the nonrelativistic isotropic harmonic
oscillator with characteristic frequency &u = o./m.

The energy spectrum becomes

E = E —m=(m'+2no. )'~' —m= n—I
nz

(n=0, 1, . . .). (5.3)

Let us now look at the behavior of the solutions
of the wave equation. Since

When ~ is large and & small the dominating term
in (2.10) is m'. We write for. the positive-energy
states

(5.13)

(5.14)

The interpretation is obviously the following:
In A, (n)g, the particle spin is opposite to the

spin carried by the potential, while in B.(n)(0 and
C, (n)p, these spins are parallel.

VI. CONCLUSION

Applied to g, we find that in all cases the lowest
four components of the 8-spinors vanish in the
high-~limit, since they are eigenstates of g with
eigenvalue +1. This is exactly what one should
expect.

The operator Q becomes very simple in the
large-m limit:

Q i mp " Tr = mt Z„Z~, (5.11)

which for positive-energy states is equivalent to
m ~„~~~. Apparently Q measures the total spin
of the system when ~is large. We have from
(4.11), (4.12), and (4.13)

QA. , (n)( = —3m'. t (n)( (5.12)

QBt (n)g, = mBt (n}(, ,

QC, (n)g = mCt (n)g

(5.4)

lpl «m, (5.5}

we find, with

(5.8)

and

m
P (n)- (5.7)

(5.9)

Finally, in Ct(n) as given by (3.48), the first
term dominates again:,

C',(n) —Ct(, )(n) . (5.10)

that in A, (n) as given by (3.31) only the first term
survives:

(5.8)

In B.(n) as given in (3.40} it is the second term
which dominates the first term

gn the foregoing sections it has been proved that
the linear-potential model as presented in the first
section can be solved exactly and the explicit ex-
pressions for the solutions have been given. The
spectrum is discrete and resembles that of the
isotropic harmonic oscillator, There is an infinity
of linear Regge trajector'ies in terms of the square
of the ~otal energy. These are al1. parallel.

One could imagine the potential as being associa-
ted with an infinitely heavy Dirac particle located
at the origin. A light Dirac particle as well as its
antiparticle can then be bound by the potential. The
lack of symmetry between positive- and negative-
energy states as is evident from (3.31), (3.40),
and (3.48} is then the result of the apparent differ-
ences between potentials carried by particles and
antiparticle s.

The above interpretation is not without diffi~:ult-
ies, since it would mean that the interpretation of
E as the total energy of the system is incorrect
and a connection with quark dynamics is hard to
make.

However„a modification is possible which re-
stores the symmetry between the source of the
linear potential and the particle which is affected
by it. ln that way the description of neutral me-
sons becomes possible. This is the subject of the
following article.
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