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We use the stress-energy tensor and the associated energy- momentum conservation to study the
interactions between two widely separated monopoles (or monopole and antimonopole). By defining a set of
minimal conditions to represent the above systems, we show how the problem reduced mathematically to a
known electrostatic problem. The force between the monopoles (or monopole and antimonopole) is then, to
the leading order, the expected repulsive (attractive) Coulomb force. We also discuss how the Prasad-
Sommerfield limit alters the problem, leading to twice the Coulomb force between a monopole and

antimonopole and zero force between two monopoles.

I. INTRODUCTION

The 't Hooft-Polyakov' model of a monopole is
described by classical field configurations of fin-
ite energy. These configurations are static solu-
tions to a set of nonlinear field equations derived
from a local SO(3) gauge-invariant Lagrangian
consisting of a triplet of isovector Yang-Mills
gauge fields and a triplet of Higgs fields. They
exhibit particlelike character and are stable against
decaying into zero-energy solutions on account of
their topological charge. As they are static solu-
tions, their time evolution is trivial, that is, the
configurations are unchanged under the motion gen-
erated by a constant timelike vector field. How-

ever, one could contemplate a more complex sit-
uation which represents a monopole-antimonopole
(or a monopole-monopole) pair and ask how they
interact with each other.

Even at the classical level this is a nontrivial
problem since the configurations are governed
by a set of coupled nonlinear differential equa-
tions. An obvious approach to the problem is the
following: Choose any initial data set for the
Yang-Mills-Higgs system which represents the
pair and let the field equations determine the time
evolution of the system. One could, by studying
the time evolution, determine the effect of one
member of the pair on the motion of the other.
However, the complete time evolution of a given
initial data set is very difficult to compute in the
case of nonlinear systems. Furthermore, even if
one has such a complete time evolution it may
not be possible, in general, to abstract from the
time dependence of the fields the nature of the
interaction between the two objects. It is neces-
sary, therefore, to specify or choose a proper
set of initial data guided by physical considera-
tions.

Our main purpose in this paper is to formulate
a solution to this problem using the stress-energy

tensor and the associated energy-momentum con-
servation. For this purpose we note that in the
't Hooft-Polyakov solutions, there is a, region in
which the Yang-Mills field equations have a non-
negligible source current term due to Higgs fields.
We shall call such a region the "core" of the mono-
pole or antimonopole. Outside this core, the
Yang-Mills fields obey the free field equations.
We choose the initial data to represent fields
which are "generated by two widely separated
cores of monopoles". Then we compute the four-
momentum of the core at the initial instant of time
and its first time derivative using the field equa-
tions. In calculating the first time derivative, we
do not need any explicit solutions of the field equa-
tions but only the fact that the energy-momentum '

is conserved. The method is analogous to the one
used by Dirac' in studying the interaction of the
electron and radiation within the framework of
classical Maxwell theory.

This paper is organized as follows: In the next
section, we describe the model and give the ex-
pression for the stress-energy tensor. We show
how, given a set of initial data, we can calculate
the rate of change of momentum of the core. In
Sec. III, we discuss the choice of the initial data
set for the (a) monopole-antimonopole pair and
(b) monopole-monopole pair. By a judicious choice
of the gauge we can treat both problems (a) and (b)
in the same manner. The problem then reduces to
finding the solutions to Laplace's equation with
specified bounda, ry conditions on the boundaries of
the regions surrounding the cores and in the asymp-
totic region. We show that the force is the ex-
pected Coulomb force. We consider the Prasad-
Sommerfield limit in Sec. IV. In this limit, there
are two contributions to the stress-energy tensor,
one coming from the long-range gauge field and
the other from the Higgs field. They are such
that they lead to twice the magnitude of the ex-
pected Coulomb force between a monopole and
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antimonopole and zero force between two mono-
poles. Identical results were obtained by Manton'
previously by using a different method. We dis-
cuss his method and show that even though his
conclusions are correct, his method does not im-
ply a, specific interaction. In other words, one
can show that his approximation scheme is con-
sistent with an arbitrary force law. The final
section is devoted to a,

'
summary and discussion.

II. ENERGY-MOMENTUM CONSERVATION

= 8 A'- 8 Aa +e&abcA
gv g v v g g, b vc (2.2)

8 Ca
gb c' (2.3)

The field equations which follow from the Lagran-
gian are

D"D @'= A.(Co@ —c~)C«
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(2.4)

(2.5)

The stress-energy tensor of this system is given
by
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Using Eqs. (2.4) and (2.5), we can easily verify
that

8 T"v =0 (2.7)

Given an initial data set, consisting of the values
of the fields and their first time derivatives at a
given time t, the time evolution of this data set is
determined by the field equations. The time evolu-
tion will be such that Eq. (2.7) will be valid. Sup-
pose we have an initial data set on the t =0 surface
such that the "matter field" current J'„is confined
inside two balls B, and B whose radii are R and
whose centers are, respectively, at z =+d/2 and
z =-d/2 of the x axis, where d»R. Then, using' .

the conservation of the stress-energy tensor, we
can compute the time rate of the four-momentum
change of the cores at this instant of time.

To do this, consider a small cylindrical space-
time region associated with &

„

i.e. , f3, Cs If = 0,

Let A'„and 4' be a set of Yang-Mills gauge and

Higgs fields, respectively, belonging to the ad-
joint representation of an SO(3) symmetry group.
The Lagrangian R(x) invariant under the local
SO(3) gauge transformations is given by

2= ——'E E""'—o D 4 D"4' —«X(C'4 —c )4 gva 4 -a

(2.1)
where

t=a]; Since the divergence of the stress-energy
tensor vanishes, the following three-dimensional
surface integral over the boundary of the cylin-
drical region vanishes on account of Stokes's
theorem:

T»
c)(B ~8 to, e g)

B,(T""$ )dV=O,
I3) tO, s 1

(2.8)

where $„is any constant unit vector field. The
surface integral of (2.8) can be decomposed into
three pieces two of which are over spacelike
surfaces at t =0 and t =& and the remainimg one
is over a timelike surface. It follows then that

0= Tf" dS
a(a, g to, e~)

(T""$„t„)d'x +
,g top

(T""$ t„)d'x
,ted

T "v „x,„B'sin8 d8 d
a,@to]

(2.10)

Therefore, once we know T'" on the initial sur-
face, we can compute the force, i.e. , dPI'/dt,
exerted on the core at the initial moment. Of
course, T"V on the initial surface can be obtained
from the initial data set of the field Eqs. (2.4)
and (2.5).

III. INTERACTION BETWEEN MONOPOLES

We shallwork inthe gauge inwhich t 'A'„=0.Then
the initial data set on the t = 0 surface consists of the
spatial components of th'e gauge field A;, the Higgs
field 4', and their first time derivatives-evaluated
on the t = 0 surface. We shall consider a system in-
itially at rest, i.e. , the fir st time derivatives of the
fields are zero. To specify an initial data set, all we
have to do is to choose A;. and 4' such that they repre-
sent fields which are generated by monopole or anti-
monopole cores. To do this we choose the values of
A'. and 4'onthe surfaces of B,andB, sothat they are
consistent with the as sumption that there is a mono-

+ (T""$„x,„)R'sine dt d8d&f&, (2.9)
aa, IS IO, 6]

where f„=&„f,f,„=e„r., and x, is the radial dis-
tance from the center of B,. The first and second
terms of the above equation give the four-momen-
tum P" of P, in the direction (—$ ) evaluated at
f =0 and in the direction )„evaluated at t = E, re-
spectively. Hence, taking the limit as,e -0, we
obtain from (2.9)

5„P"I g=« —g„P"I g=o=—lim'
«=o I-o
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pole core (or an antimonopole core) of the 't Hooft-
Polyakov type inside each ball. Then, to specify
the A'. and C-' outside of B. and B, we solve the
static field equations outside the balls with the
chosen boundary conditions on the surfaces of B,
and B and with the usual asymptotic conditions
for r ~. We impose the condition that the "mat-
ter field" current J'„vanishes outside the B, and
B . The fields outside are then only those which
are generated by the cores in B, and B .

The situation can be compared with the one in
the following electrostatic problem. To find the
interaction between two conducting spheres which
are at rest at t =0, we solve the Laplace equation
for the scalar potential, i.e. , the static Ma~ell
equation, with the appropriate boundary conditions
on the sphere and an asymptotic condition for ~-.
Then, using this solution, we can compute the four-
momentum transfer across the surfaces of the con-
ductors using the method described in Sec. II, and
thereby obtain a force exerted on each conductor.

Before we specify the choice of initial data set, '

let us consider some of the general requirements
tobe imposedupon A',.and 4"on the boundaries of B,
and B, First, the choice of A'. and 4'onthese
spheres shouldbe smooth functions. Second, the
magnitude of C ' should be c on these spheres. This
implies that we require R to be much larger than
the characteristic length of the theory, i.e.,

7) = I/(282~)'~'. (3.1)

Third, the normalized Higgs field, 4', should be
such that the integral'

m =-.
4me

C ~e.4b8.4'dS'~
abc i j (3.2)

over the boundary of B, is +1 and over the bound-

ary of B is -1 for a monopole-antimonopole pair.
For a monopole-monopole pair both integrals are
1. These are the minimal conditions to ensure
that the cores of the 't Hooft-Polyakov type. These
minimal conditions turn out to be enough to deter-
mine the interaction up to the zeroth order of R/d,
when the separation distance d is much larger than
the radii R of B, and B .

In what follows we shall first consider a mono-
pole-antimonopole pair and then discuss what mod-
ifications are necessary to treat the monopole-
monopole pair.

A. Interaction between a monopole and an antimonopole

In order to specify the values of 4' and A; on the
boundaries of B, and B, we consider the most
general form of O'= 4'/(C'4„)'~' and A;. outside
B, and B . We note that locally a smooth 4" field

A,

can be transformed into any other smooth 4' by an

C'=H(z p)C" (3.5)

We now use the condition that J'„vanishes outside
of B, and B to specify the general form of smooth
A'. fields. This condition can be rewritten as

O=J' =H'e"'C. (B..C +ec A'C') (3.6)

The most general A;. which satisfies (3.6) is given
by

A A A
eA'. =-e' 'P 8.4 + C"G.i i c

where G, is any smooth vector field. ' Since @'
is smooth, (3.7) gives a smooth eA;. The fields
F;, derived from (3.7) are given by

eE;, = 4'( c'"C.,B-,4,8,4,+. B,G, —B,G,.)

(3.7)

(3.8)

and the static field equations reduce to
I

8 a,.a=o,
8'(B,G, —. B,G,.) = 8'(d "C,B,C,B,C,).

(3.9)

(3.10)

We can make use of the gauge freedom to choose
a specific )( subject to (3.4), say p. The right-hand
side of .(3.10) is then a known function. It is also
evident from (3.10) that if G, is a solution, so is
G,.+B,.G where G is an arbitrary function. We
can use this remaining gauge freedom to set 8'G,.
=0 so that our problem reduces to finding the sol-
utions to a pair of linear equations, the linear
homogeneous Eq. (3.9) for H, and the following
linear inhomogeneous equation for G,.:

8'B,G, = 8'(~'"C.,B,C,B,C,), (3.11)

with prescribed boundary values on the surfaces
8B and 8B and at infinity.

appropriate gauge transformation. The only re-
striction on 4' is of a global nature. Namely,
4' on the surface must satisfy the second condition
states before and C' is such that the integral (3.2)
over a sphere in the asymptotic region is zero.
The following 4' satisfies all these requirements:

C'= sing cospP'+ singcosgy'+ cos)fr', (3.3)

where Q is the aximuthal angle, and )( is a smooth
function of p and z which satisfies the conditions

&=0 for 0» 6), & &,

g=m for 0 & p & ~ and -2d+R &s & —d -R,
(3.4)

&=2m for m —~&8 &m,

where 8, (8 ) is the angle between the z axis
and r"'„g'),and is an infinitesimal number.
Any other 4', which satisfies the global require-
ments, can be gauge transformed into the above
one. With (3.3), the general Higgs field takes the
form
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From the second of the minimal conditions dis-
cussed earlier, H = c on &B, and &B . H approach-
es c as x- ~. Consequently,

(3.12)

and

b, (R, 8, )Q,. on BB„
i

b (R, 8 )Q,. on BB

(3.13)

(3.14)

~G;I =O(1/r) for r-~. (3.15)

The solution of Eq. (3.11) with conditions (3.13)-
(3.15) is given by

G;(e, p)= —
—,

' +f(e, p) 4';
1 cosX(z, p) (3.16)

where f(e, p) is a function defined by the following
path integral:

p=0
1

f(P, &) -f(d/2 —R, 0) =-
0 0

g~d/2" R

p —p,. ——g,. dl'.

(3.17)

The path joining the two end points is an arbitrary
one which lies outside or on the spheres. The
U(z, p), in turn, is a smooth scalar potential which
is a solution of Laplace's equation

8~8.U=0

with the boundary conditions

(3.18)

e', U= ~ eaaa(R, ea', )a„— e )on aB„
e p

(3.19)

ei U= ea, e ao(Rea) aa,
I

on, aB,
p

H(z, p) =c

is the unique solution of (3.9). To choose the
boundary conditions for G, , we note that because
of the symmetry of the problem, we can choose
it to be axially symmetric. Further, let the bound-
ary values of G,. on B, and B be chosen in such
a way that they do not differ very much from those
for an isolated monopole or an antimonopole.
Since for an isolated monopole or an antimonopole,
G,. is proportional to Q, (unit vector in the azimu-
thal direction), we shall assume that this prope-
rty holds even when we have a system of a mono-
pole and an antimonopole. This assumption is only
to make our treatment simple. One can easily
generalize our treatment to take into considera-
tion components of G,. proportional to p and z,.
on the boundaries of B, and B . Hence, let

(cosy/p)Q, behaves like yQ,./p, but s'~~8&[(cosy/

p)p~] is zero .In Eqs. (3.19) and (3.20) we take
the values of e"'8, [(cos y/p)Q~] on the z axis as
zero. Notice that the path integral of (3.17) is
independent of the choice of the path since U sat-
isfies Laplace's equation.

That (3.16) is indeed the required solution can be
seen as follows. First, notice that the first term
on the right-hand side of (3.16) is a particular
solution of the linear homogeneous equation (3.11).
Second, notice that fQ,. is a solution of the linear
homogeneous equation (3.11). Third, using (3.19)
and (3.20) check that the boundary values of G,.
given by (3.16) agree with those of (3.13) and (3.14).
Finally, observe that the singularities off/, . on the
z axis exactly cancel the singularities of (-cosy/
p)eIe, . Hence (3.16) yields a smooth G,.(z, p) which
is the solution of (3.11) with the prescribed bound-
ary conditions (3.13)-(3.15).

Even though the details of the Neumann bound-
ary conditions, (3.19) and (3.20), over BB, and
SB depend on our choice of G,. over the surfaces,
the flux integrals of ~,.U over the surfaces are
already specified, i.e.,

SB4,

2m= —[cosy(8=0) —cosy. (8= m)]e

=4w j'e. (3.21)

(The square brackets indicate antisymmetry in the
enclosed indices. ) Similarly, the total flux of B,U
over the boundary of B is (-4V/e). This reduced
problem, i.e., the boundary-value problem on U is
mathematically the same as an electrostatic prob-
lem whose boundary condition i,s given in such a
way that the total charge inside 8, and B is 1/e
and (-1/e), respectively. This analogy can be
extended further. In terms of U and H, the stress-
energy tensor of the Yang-Mills-Higgs system,
given by (2/6), takes the form

Te'" = ~(8 "UB U)g"" —8 "UB"U+ (8"UB U)t"t"

—2 (8'HB,H)g ""+8"HB"H. (3.22)

The dependence of T"" on U is exactly the same as
the dependence of electromagnetic stress-energy
tensor on the electrostatic potential. Since H is
constant everywhere outside spheres, the terms
involving H do not contribute to T"".
' Once we observe this mathematical similarity,
it is immediate that the force on the monopole core
in B„computed using the method of Sec. II, will
be

(3.20)

and ~B,U~=O(1/r') for r ~ Near the .e axis,
d pv
df

(3.23)
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in the zeroth order of R/d. Since d»R, the change
in the force due to the multipole moments of the
charge distribution in B' and J3 is negligible. -

one of the characteristic lengths, g, is infinite.
For an isolated monopole (or antimonopole) the
magnitude of the Higgs field approaches c as'

B. Interaction between a monopole-monopole pair
H-c+1/er for r-~ (4.1)

With just a few modifications we can obtain the
interaction between a monopole-monopole pair.
The C" field now should be such that the topological
charge integral of (3.2) is (+1) for both H. and 8 .
The following 4' satisfies the new requirements:

4"= sing cosQx'+ sing sinQy'+ cos)tz' for z & 0,

instead of the exponential approach of the general
case.

With just a few modifications only in the magni-
tude of the Higgs field, the argument of Sec. II can
be used in this limit. Taking into account Eq. (4.1)
for an isolated monopole, we have to choose the
boundary condition on H over 8B, and &B as

(3.24) 8, Hda' =.4m/e (4.2)

(3.26)

q=-w for either 0& 8 & 6 or —5&z &0,' (3.27)
( =0 for m —5 & 8 & z.

Equations (3.24) and (3.25) define a smooth 4'.
Using this 4', the general form of A; is still given
by (3.7), and the field equations take the same form
in terms of G,. as (3.11). The reduced problem,
i.e. , the boundary condition (3.20) is now changed
into

] cos(
O'B.U=~"'r, 8, b(R, 8. ). + — — tP, on 8H .

e p

(3.28)

once we have a solution U which satisfies the new

boundary conditions, t",. is given by

cos'g
6;(z, p) =- —, 0;+f4;, (3.29)

where rl =)t for z & 0 and q =
g for z & 0 and f is de-

fined in terms of U as before. Now the integrals
of 8,.U over both spheres are 4m/ Heowever, the
stress-energy tensor of the non-Abelian system
still depends on U and H as in (3.22). Therefore,
the force law (3.23) is changed into the repulsive
Coulomb force.

IV. INTERACTIONS IN TEIE PRASAD-SOMMERFIELD LIMIT

How does the interaction change in the Prasad-
Sommerfield limit of the SG(3) model'? This limit
is defined by taking ~ =0 but keeping the asymptotic
boundary condition 4"4-, -c'.as x-~. In this limit

@'=sing cos(-Q)x'+ sin(sin(-Q)y"'+ cosgz' for z & 0.

(3.25)

The )t and P of (3 24) and (3.25) are smooth func-
tions of z, p which satisfy

for both a monopole-monopole pair and a mono-
pole-antimonopole pair. The equations for H and
T"" of the system are still given by (3.9) and (3.22).
Notice that the equation and the boundary conditions
(4.2) for (H- c) for both pairs are the same as
those of U for the monopole-monopole pair; hence,
in the zeroth order of R/d the solutions for (H —c)
for both pairs are the same as U of the monopole
monopole pair. Further, substituting T"" of
(3.22) into dP" /dt, Eq. (2.10), notice that the re-
sulting formula changes its sign if we interchange
U and H. Hence, the contribution to the force from
H is the attractive Coulomb force for both pairs.
Therefore, when we add this force from H to the
force from U the net effect is twice the attractive
Coulomb force in the monopole-antimonopole case
and zero force in the monopole-monopole case.

Using a different method, Manton has studied
the interactions between monopoles in the Prasad-
Sommerfield limit. His method consists in first
choosing a specific time dependence of the fields
such that the field configurations are, unchanged
under the motion generated by a unit vector field
q" orthogonal to the t =0 surface. Further, the
vector field q„,on the t =0 surface, has a constant
acceleration along the z axis with as yet unspecif-
ied magnitude near the monopole. Near the other
monopole (or antimonopole) rt" also has a constant
acceleration with the same magnitude, but in the
opposite direction. Then Manton finds initial data
which will have such time dependence. He works
in the gauge where A. ;pl' =0, and specifies initial
data on'y in the region where D 4 ' = 0. Because

V

g~ =t" on the initial surface and the time depen-
dence of fields is already specified, the field equa-
tions on the initial surface reduce to equations in-
volving only spacelike derivatives. We shall short-
ly display these equations. Manton claims that
these equations have solutions only when the mag-
nitude of the acceleration near each monopole has
a unique value, and arrives at the same interac-
tions as ours in the Prasad-Sommerfield limit.
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However, his analysis does not support this con-
clusion.

In order to show this, we first write down the
above-mentioned equations. Once we choose 4'
appropriately, the most general forms of @' and
A;. on the initial surface are again given by (3.5)
and (3.7). Because 4'„is unchanged under the mo-
tion generated by q~ (i.e. , A is Lie-derived along
q"), the Yang-Mills field also has only spacelike
components on the initial surface. Hence, the
form of E;, is again given by (3.8). The Higgs
field equation outside B,and 8 reduces to

8 H+a'B. H=0

where a' is the acceleration of q" at the initial
moment. This can be shown as

0= D~D e'=(a~" f~t")D -D (If@')
a Jl v

=eb(h~"- i)~i)')8 8 a
=4 I8'8,.a+(i) 8 q")8,a]
=4'(8'8,.H+ a'8,.H),

(4.3)

(4 4)

where h"" is the Euclidean metric of the initial
surface: The last step follows because the accel-
eration is orthogonal to t". Using a similar tech-
nique as above, the Yang-Mills field equation can
be reduced to

D'F'. . + a'F'. = 0ij (4.5)

on the initial surface. In terms of G, , this can be
rewritten as

8'8,.G,. + ai(8,.G,. —8.G )
— 8i(» @a8 4)b8.4b)

V. SUMMARY AND DISCUSSION

We have shown how the stress-energy tensor and
the associated energy-momentum conservation that
follows from the field equations can be used to
study the interactions between classical field. con-
figurations. The field configurations we have con-
sidered are smooth solutions in an SO(3) gauge-in-
variant Yang-Mills-Higgs system. As initial data,

(4.6)

Hence, the problem of finding initial data which
will have the specified time dependence reduces
to the problem of finding solutions of Eq. (4.3)
and (4.6). From the theory of elliptic equations,
it follows that (4.3) and (4.6) will have smooth so-
lutions if a' and boundary conditions for G,. and H
are smooth. This conclusion is in a contradiction
to Manton's result that a' should take on only a
specific value in order that (4.3) and (4.6) have
solutions.

we choose the configurations to approximate wide-
ly separated monopole or antimonopole cores of the
't Hooft-Polyakov type. To accomplish this we im-
posed three minimal conditions on the fields over
the boundaries of the cores. One of the conditions
combined with the static field. equations implied
that the magnitude of the Higgs field H is constant
everywhere outside the cores. The static Yang-
Mills field equations reduce to the Laplace equa-
tions for a scalar potential U with boundary con-
ditions on the cores such that the total flux of the
gradient of U over the cores equa1. s the flux due
to a unit charge inside each core. Furhtermore,
the stress-energy tensor of the non-Abelian sys-
tem depends only on U, and this dependence is
formally identical to that of the conventional elec-
tromagnetic stress-energy tensor on the scalar
electrostatic potential. Consequently, we can im-
mediately deduce from the energy-mementum con-
servation equation that the force between the two
cores is the expected Coulomb force.

In the case of the singular limit considered by
Prasad and Sommerfield, the behavior of H is
nontrivial outside the cores. It turns out that H
is a solution of Laplace's equation, the flux bound-

ary conditions being identica1. to those on U in the
case of two monopoles. The additional contribution
due to H to the stress-energy tensor is such that
one obtains twice the Coulomb force between a
monopole and an antimonopole and zero force be-
tween two monopoles.

Finally, it might be worthwhile to discuss the
uniqueness of the interactions we have determined.
Our result states that if appropriate initial data
sets for a multimonopole system are indeed those
which satisfy the usual asymptotic condition for
z- ~ and the three minimal conditions on the
boundaries of J3, and J3, then the interactions in
the zeroth order of R(d are of the Coulomb type.
The second and third of the minimal conditions
are the critical ones for our argument; these con-
ditions lead to the unique flux integral of &,U over
the boundaries of J3, and & and consequently leads
to the Coulomb-type interactions. These were
chosen to reflect the physical expectation that, for
widely separated monopoles, the configuration near
each monopole would not be very different from that
of an isolated monopole. Although this expectation
seems to be reasonable, it is by no means obvious
that it is warranted. . It should be noticed that the
minimal conditions exclude vortex- type configura-
tions ending in monopoles. Such configurations
have been considered by many authors' because
the emerging force from these configurations con-
tains a term which does not depend on the separ-
ation distance. Clearly much further work is nec-
essary to resolve this issue.
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