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The problem of vacuum-tunneling phenomena such as the quantum decay process of metastable vacuum
states in SU(2) Yang-Mills theory is investigated from a probability theoretical point of view. This is done
by adopting the stochastic quantization procedure to quantize the Yang-Mills field in the Ao = 0 gauge. The
mechanism of vacuum tunneling can be illustrated within the realm of the stochastic quantization. It is
shown that the quantized vacuum field configuration, which manifests the decay process of metastable
vacuum states, is a Euclidean-Markov field of Gaussian type. The validity of the Euclidean path-integral
description of vacuum-tunneling phenomena is also shown from the probability theoretical point of view.
Passing to the semiclassical limit, the concept of an instanton is justified as a classical Euclidean Yang-Mills
field which manifests the most probable tunneling path.

I. INTRODUCTION

In the recent non-Abelian gauge field theory we
encounter a problem of vacuum iristability such
as the quantum decay process of metastable vac-
uum states. Classically there exist a number of
topologically inequivalent vacuum states charac-
terized by different Pontryagin indices. In quan-
tum field theory they are rendered unstable by
the tunnel effect; they are metastable vacuum
states.

Introducing a WEB approximation in Feynman's
path-integral quantization procedure, a Euclidean
technique has been developed to solve the problem
and also to clarify the structure of the gauge theo-
ry vacuum: Beginning with Polyakov's work, ~

several authors' 4 have investigated a Euclidean
path integral description of vacuum-tunneling phen-
omena in non-Abelian gauge theory. They sug-
gested that a Euclidean path integral

exp(-Ss[A]+gauge-fixing term) &A, (1.1)

a= 1 p& V= o

+ PVEPV d X (1.2)

provides a powerful mathematical tool for explor-
ing the structure of the vacuum state of a quantized
SU(2) Yang-Mills field. A vacuum-to-vacuum
transition amplitude of the quantized Yang-Mills
field, which is defined in physical space-time
(i.e. , Minkowski space), was assumed to be given
by the Euclidean path integral (1.1). Classical
Euclidean Yang-Mills fields, which minimize the
Euclidean action (1.2), were introduced as an in-
dication of tunneling phenomena between metastable

vacuum states.
Although the application of such a Euclidean tech-

nique to the problem of vacuum instability has been
put into praetiee successfully, ' " it has not been
carried out to make the quantum-theoretical
foundation of the Euclidean technique concrete.
Moreover, a physical interpretation of the Eucli-
dean path-integral description of vacuum-tunneling
phenomena seems unclear. Much work is needed
to clarify the origin of the Euclidean formulation
within the framework of quantum field theory.

In the present paper, adopting the stochastic
quantization procedure to quantize the SU(2) Yang-
Mills field in the A., =O gauge, we derive the Eu-
clidean formulation from a probability theoretical
point of view. The mechanism of vacuum tunneling
is shown to be illustrated precisely also from this
point of view.

In Sec. II we sketch the stochastic quantization
of the Yang-Mills field working in the A., =0 gauge.
Section III is devoted to exploring the structure
of the vacuum state of the quantized Yang-Mills
field, to deriving the Euclidean formulation, and
to proving the validity of the Euclidean path-inte-
gral description of vacuum-tunneling phenomena
from a probability theoretical point of view. In
Sec. IV it is shown that the quantized vacuum field
configuration, which manifests the decay process
of metastable vacuum states, is a Euclidean-Mar-
kov field of Gaussian type. In Sec. V we justify the
concept of an instanton as a classical Euclidean
Yang-Mills field which manifests the most probable
tunneling path. We give a brief summary and dis-
cussion in See. VI. An analysis of the quantum de-
cay process of metastable vacuum states and a
calculation of the decay rate for a spatially homo-
geneous & model are given in the Appendix.
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II. STOCHASTIC QUANTIZATION OF THE YANG-MILLS

FIELD

Consider an SU(2) Yang-Mills field A& described
by a Lagrangian

3

L=—'Q Q E (2.1)pp Wpp 4 x
P. &=o

where
3

5, c&Z
(2.2)

is a field strength tensor. (Latin letters s, &, &

denote isovector indices and &, j, & denote space
indices. Greek letters p, ~ denote space-time in-
dices, and the terms in the primed sum for p,
& =1, 2, 2 are taken with opposite sign. ) In terms
of field variables

3

E( =E';, Bq ——,
' Q e;qI, E~I,

&sf Z

the Lagrangian (2.1}can be written as
8

I, = 2 Q (EfE', —B'] B'] )d'x .
», a=z

(2.3)

(2.4)

Hereafter, to avoid the complexity of the Cou-
lomb gauge, "we shall work in the A.o =0 gauge.
Then E» becomes identical with ~oA'.

»
=2'», and &»

does not contain A'», In this gauge the g', 's
with &, + =I, 2, 3 are dynamical variables of the
Yang-Mills field. The Lagrangian (2.1) becomes

L=-,' Q f (A]A[ —Bja;)!.
i s a =z

(2.5)

which gives us the following equation of motion for
A'»:

tional integrals as we did in a previous paper. "
In the present paper, however, we do not, make
use of the terminologies of the nonstandard analy-
sis explicitly.

Following the previous paper, "we shall sketch
the procedure for the stochastic quantization of
the Yang-Mills field in what follows.

Let *e (&'}be a totality of isovector and three-
vector valued functions defined on &'. According
to the stochastic quantization procedure, a quan-
tized Yang-Mills field in the Ao =0 gauge is a dif-
fusion process A& (&) in the infinite-dimensional
function space *&(&')." (Hereafter, for simplicity,
we do not indicate the x dependence of the field
variables explicitly. ) The diffusion process is as-
sumed to be a solution of a stochastic differential
equation

dA';(t) =U', (A(t), t)dt+dW, '(t), . (2.7)

3
Q2 . ~ At.

» ea=z

where U;. (', t) denotes a time-dependent transfor-
mation in *&(&') which will be related with the state
functional, W( (&) is a Wiener process in *&(&')

1
with a variance parameter 2 and A is an abbrevia-
tion for {Af],', , =, . The probability distribution of
A,'. (&) is given by a functional integral

3

Prob[A. ;(t)e%]= &[A;&] jQ ~A;, (2.8)
GR

where %is a measurable subset of *&(R'), and
P [A; t ] is a probability density functional of A. ;.(t)
which satisfies the Fokker-Planck equation

3

(I'[A;&]=—. Q —f d'x ~~. [Ui(A, &%[A;t]]
»

B,B) d3x .
ie&=z

(2.6)
(2.9)

To quantize the Yang-Mills field, it is convenient
to adopt Nelson's stochastic quantization proced-
ure. " This is because not only the structure of the
vacuum state but also the mechanism of the vac-
uum tunneling of the quantized Yang-Mills field can
be illustrated within the realm of the stochastic
quantization. "

To make our discussion mathematically rigor-
ous, we need to use the nonstandard analysis for
the definitions of functional derivatives and func-

A', (t, x) 2 (DD *+D*D)A; (t),

A', (t, x)-A;. (t) .
$2.10)

D and D* are the mean forward derivative and the
mean backward derivative defined as

The transformation U] (, t ) should be determined
in such a way that the Yang-Mills field equation
(2.6) is valid with the substitution

DE[A(t);][]=lim E{E[A(tyIt); t+h] —E[A(t ); t ] ~ A(t )]

Q2
= —,', .g f a x c", (x ~],'„.+-.' P f ~ x, .',„.s [x(~];~]

», a=z i i, a=z
(2.11)
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(2.12)

D BF [ A (t ); t ] = lim —& L F [A(& ); t j —F [ A(& —&); t —&j ~
A(t )ja-:&

3 3 Q2
+ Q d'&V)(A, t) 6,——,

' Q d'x 6,6, F[A(t);tj
f)c=g f)&~].

for any smooth functional F[A; t], where V;.(A, t) = U;(A, t) —51nP[A; tj/5A; and E('~ A(t)j denotes the con-
ditional expectation value with respect to A,(t). Namely, we assume that the following generalized Yang-
Mills field equation holds:

(2.13)

The left-hand side of Eq. (2.13) can be manipulated as

—V', (7(&),t)+ g &'yU,'(A(~, y), ~)
6i )&=1

V';(A(t ), t)
g y

$2 8

jt
d'y

6 ) t )6,( )
V;(A(t), t) +—U', (A(t), t)

3

j) b=l

3 $2
+ .g d)yV&(A(t, y), t)

& B - U';(A(t), t) —~B d'y ), ), V&(A(t), t)

(2.14)

It is worthwhile to note that the Fokker-Planck
equation (2.9) and the generalized Yang-Mills field
equation (2.13) with given initial condi. ions, say
P [A;0] =P,[A] and U'; (A, 0) =U,', (A), are sufficient
to characterize the quantized Yang-Mills field
A; (& ) completely.

To clarify the relation between the stochastic
quantization and the conventional canonical one,
it is convenient to make the following additional
assumption on the transformations U; (', t) and
V',. (*,t)..

Thus the stochastic quantization is shown to pro-
vide the same Schrodinger representation as the
canonical one. The only typical difference between
the two quantization procedures is that the stoch-
astic one teaches us that the behavior of the quan-
tized Yang-Mills field in the vacuum state Q[A;t ]
=Q[A]exp(-iE t) is a diffusion process A. '; (&) in
*~(R'). pre shall investigate the structure of the
vacuum state by making use of a probability theo-
retical framework of the stochastic quantization in

the following section.

—,
'
[U; (A, t ) + V'; (A, t )] = 6A, S[ A; t ], (2.i5)

xQ[A;t]. (2.i V)

Equation (2.17) with a given initial condition
Q[A; 0] =Q,[A], which is equivalent to the ones
P[A;0] =P [A] and U'; (A, O) =U;;(A), describes the
behavior of the quantized Yang-Mills field A; (t )
completely.

where S [';&] is a functional on *&(&'). Then, in-

troducing the state functional

Q[A;t]=P[A;&]' ex'p(IS[A;t]), (2.16)

we can convert two equations, (2.9) and (2.13), for
two real quantities, P[A;t] and U';(A, t), to a
single equation for one complex quantity, Q[A; t ].
The equation is nothing but the Schrodinger equa-
tion

3
Q2

i ~ & =-I.

III. VACUUM-STATE STRUCTURE OF THE QUANTIZED

YANG-MILLS FIELD

As we are much interested in the topological
structure of the vacuum state in SU(2) Yang-Mills
theory, throughout this section it is convenient to
adopt a matrix notation as well as the isovector
notation flexibly. We define

3

A, = g A', o' /2i & SU(2), (3.1)

where the &'s are the Pauli spin matrices.
Removing the infinite zero-point energy, we de-

fine a quantum-theoretical vacuum state of the
Yang-Mills theory by a vacuum-state functional
(wave functional) Q[A] which satisfies the Schro-
dinger equation

3 $2

J( B 'x ——~,5,'
—,
' B;.B )B[A] = 0

&)+ —I
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%hat we are going to study, in the following, is
a vacuum-state structure of the quantized Yang-
Mills field characterized by the Schrodinger equa-
tion (3.2).

In classical field theory, vacuum states of the
Yang-Mills theory are classical field configura-
tions A,."s with zero potential energy,

cess A,'- (t) in +&(A') as we have seen in the pre-
ceding section. From Eqs. (2.7) and (2.15) we
find that A'; (t) is a solution of the stochastic differ-
ential equation

dA'; (t ) =U';(A(t)) dt+dW', - (t),

i, a=y
B; (A')8;: (A')d'x =0 . (3.3)

where the transformation U'; ( ) is related to the
vacuum-state wave functional 0[ A] by

They are pure gauge fields

A' =g '8 gE SV(2),

where the g's are unitary matrices such that

(3.4)

lim g(x) =I .
l~l -"

Before proceeding with further considerations, it
seems worthwhile to note that two pure gauge
fields which can be joined with each other contin-
uously in the manifold of SV(2) should be under-
stood as the same classical vacuum state." Name-
ly, classical vacuum states of the Yang-Mills
theory consist of an infinite number of homotopy
classes" of SV(2):

U'; (A) =5, lnQ[ A]. (3.9)

d'x, [ U; (A)Q ]

g2
4 ~x

/AC QAQ (3.10)

Therefore, a transition probability law of the
diffusion process A'; (t) manifests the tunneling
process of the quantized vacuum field configura-
tion between metastable vacuum states 'A; 's. The
transition probability law is given by an elementary
solution @[A; sI A';u] of the Fokker- Planek equa-
tion (2.9)." Namely, we have

(&'=g '& gJ [&'-'=g' '& g'] (3.5)
and

where ['] denotes a homotopy class to which the

pure gauge field inside the brackets belongs.
In order to classify the homotopy classes, it is

convenient to introduce the Pontryagin index"
C

q= —,p J 7 (A, A;A, )d'x (3.6l
&ei e &o =1

For pure gauge fields, g is an integer. Then the
classical vacuum states (3.5) can be rearranged as

(3.7)

where 'A; is a pure gauge field with Pontryagin
index g.

In quantum field theory the classical vacuum
states (3.7) are rendered unstable by the tunnel
effect; they are metastable vacuum states.

Let us investigate the vacuum-tunneling pheno-
mena between metastable vacuum states 'A& 's
from a probability theoretical point of view.

In the conventional framework of quantum field
theory, the wave functional &[A] does not demon-
strate the detail of the vacuum tunneling. One can
describe the tunneling behavior of the quantized
Yang-Mills field only in the semiclassical limit,
i.e, within the realm of the WEB approximation.
In the probability theoretical framework of the
stochastic quantization, on the contrary, the
behavior of the quantized Yang-Mills field in the
vacuum state &&[AJ is known to be a diffusion pro-

iim q(A";sI A"';u]=5(A-A"'], (3.11)

where ~[A —A'] denotes a delf:a functional on
+e (It' ).

To illustrate the mechanism of vacuum tunneling,
one needs to solve the Cauchy problem, Eqs. (3.10)
and (3.11). This can be done by introducing a rela-
tive transition law E[ A; sI A';u] by

@[A;sI A' u] =Q[ A] E[ A; sI A' u JQ[ A' J

(3.12)

Equation (3.10) is transformed into its self-adjoint
from

X
Q2

2 QAt2QAC 2 l i

and the initial condition (3.11) into

lim E[A;sI A';u]=~[A —A']
8 ~Q+

(3.13)

(3.14)

by the substitution (3.12). Equation (3.13) is nothing
but a Euclidean analog of the Schrodinger equation
(2.17). The Feynman-Kae formula" asserts that a
solution of the Cauchy problem Eqs. (3.13) and
(3.14) is given by a Wiener integral
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r ~ 3 S

E[A;s~ A;&]= I „- „-, exp --, g dt d'x B;.(A(t)) B;(A(t)) d]u (A(t)).
~( ~„)

A A'Here p„denotes a Wiener measure with a variance parameter B and the region of integration I'(", [ "„)
is a totality of continuous paths A(t)'s in *&(B')such that A(s) =A and A(&) =A' hold. Therefore,
from Eq. (3.12), we find that the transition probability law of the diffusion process Af (t}has the
following expression:

(3.15)

3 S
I) [A; e] A';e] = (II[A]let[A']) J „- t, exp —— g dt d xB['(A(t))B[(A(t)) 'dP (A(t)). (1.16)T'~s( «) &e=l «

A tunneling probability of the quantized vacuum field configuration between metastable vacuum
states 'A; and A;, (fp(p, from a remote past to a remote future is Q[ A;~['A; —~]. Noticing that
@[~A;~~'A; —~] would coincide with the conventional expression of the tunneling probability, i.e. ,
the ratio ( 0 [ A]/& [' A] ~

', we find a vacuum-tunneling amplitude of the quantized Yang-Mills field
in the Ap=0 ga,uge to be

Amp['A
~
'A; — ] =& ['A]/& ['A]

I 3 OO

exp —B g dt d'xB', (A(t))B', (A(t)) dt], (A(t)).
~( ) ~) - i a~y I

(3.17)

(3.18)

If we introduce a functional path-integral expression of the Wiener measure"
3

d](, (A(t)) =Nexp —B Q dt d'xA( (t )A( (t) t)A(t),
g ~ gay oo

where &A(t) means taking a functional path-integral and 2V is a normalization constant, Eq. (3.17}becomes

A 3 oo

Amp[ed; I'A; — ] =N J exp — p J dt Jd'x[u; (t)A; (I)+-', B(](tA)) B(](tA))]I IA(t) (11p)
(

g ] «oo

In terms of the field strength tensor I'„„ this can be written as

p ~
A 4

Amp[ A; I'A; — ] NJ exp=
1 P, v=p

Eqp p'„„d'x
i 5A(t, x), (3.20)

which provides a Euclidean path-integral descrip-
tion of vacuum-tunneling phenomena in the A. p

=0
I

gauge.
Thus the validity of the Euclidean path-integral

description of the vacuum-tunneling phenomena in
SU(2) Yang-Mills theory has been proved from the
probability theoretical point of view.

IV. QUANTUM DECAY PROCESS OF METASTABLE

VACUUM STATES

To illustrate the mechanism of the vacuum tun-
neling more clearly, we shall investigate the quan-
tum decay process of metastable vacuum states by
solving the stochastic differential equation (3.8)
explicitly. It is convenient to rewrite Eq. (3.8} in
terms of the white noise, "obtaining

A;. (t, x) =U';( (Axt))+ (Z(t, x), (4.1)

where Z((t, x) =W', (t, x) denotes a white noise with
mean 0 and covariance

E(Z((t, x)Z) (u, y)]= ' t)B,.t)((tt)-u) (t]xy),

1& a, b, t, j&3. (4.2)

Qe[A]= g e ' 4' [A-'A] (4.-3)

with

This is simply because one can consider the prob-
le~ of the quantum decay process in a concrete
mathematical framework of distribution theory.

As the transformation U', (') is related with the
vacuum-state wave functional A[A] by Eq. (3.9),
first of all, we have to construct-a physically rele-
vant vacuum state which is invariant under gauge
transformations. We know it to be a coherent
superposition of Gaussian functionals peaked
around each metastable vacuum state 'A;(x).B'A'B

Such a gauge-invariant vacuum-state wave function-
al is parametrized by an angle ~,
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3

eJ A[ =exp —P J 2;(x)teA; (x)tpx/2
g, a=g

(4.4}

(4.5)

Then Eq. (4.1) becomes

A& (t, x}=u(A& (&, x) —'Af (x)]+Z((t,x), (4.6)

where cu is appositive linear operator chosen in a
way that C' I'A —'A] is a local solution of the

, 3
Schrodinger equation (3.2), i.e., a& =(-Q, ,&,')' '.
The gauge-invariant vacuum state .of the quantized
Yang-Mills field is a Bloch state (4.3).

To describe a quantum decay process of the
metastable vacuum state 'A;(x), we shall approxi-
mate Eq. (4.3) by taking only a Gaussian functional
peaked around 'A, (x) into account, obtaining

n, g] = e"8+.[ A 'A-]

ential equation of white-noise type. " A solution
of Eq. (4.6) under the initial condition A; (O, x)
='A', (x) manifests the quantum decay process of
the metastable vacuum state 'A;(x).

Such a solution of Eq. (4.6) can be obtained by
introducing a contraction semigroup on *e(R')
(Ref. 19),

T (t) = exp(- &df }&' 6;;, f ~ O.

Namely,

t)[ (t, x) = T (0)'t);(x) +j p (t —u g) (u, x)ttu

.(4.7)

(4.8)

Z(A', (t, x)] =T(O)'A',. (x) (4.9)

solves Eq. (4.6) with the initial condition. " Equa-
tion (4.8) uniquely determines a distribution-val-
ued Gaussian process A'; (t, x) with mean

which is a linear inhomogeneous stochastic differ- and covariance

3

p Q [~)(x) x[~;.(x)}}f;(x)ex + J [~t(e) x[~t(p)}}et(p)ex)
i) a=y i) & "-1

fl()(-&.) ' l()d', (. o)
t) 0+(

where f; and h', are. arbitrary test functions, &, =Q'„=, &„' is a four-dimensional Laplacian, and we have
made an abbreviation & =(&,x) and d'x =dt d'x. This is nothing but a Euclidean-Markov field" of Gaussian
type. "

Thus we have found, within the realm of the stochastic quantization, that the quantum decay process of
the metastable vacuum state 'A;(x} can be represented by the Euclidean-Markov field (4.8). Needless to
say, the integral which appears in the right-hand side of Eq. (4.10) is of an infrared-divergent nature. In

other words, an object which manifests the quantum decay process of the metastable vacuum state has a
long-range correlation such as the Coulomb gas. We may be allowed to consider the object as a quantum
field theoretical version of the instanton which was originally introduced as an indication of the vacuum-
tunneling phenomena. The Euclidean-Markov field (4.8) may play an important role in quark confinement
as was suggested by Polyakov. '

V. MOST PROBABLE TUNNELING PATH AND INSTANTON

In the present section we shall justify the concept of instanton (or pseudoparticle) from the probability
theoretical point of view.

We found the vacuum-tunneling amplitude of the quantized Yang-Mills field in the A, =0 gauge to be given
by the Wiener integral (3.17). This can be written also in a functional path-integral form (3.19). However,
as the functional path-integral expression of the Wiener measure (3.18) has only a formal meaning, we can
no longer utilize Eq. (3.19) to derive a rigorous probability theoretical characterization of the instanton.

Let us start with the transition probability law of the quantized Yang-Mills field A;. (t, x) in the vacuum
state (3.16). It is convenient to approximate the Wiener integral in Eq. (3.16) by taking only an &-triple
functional integral into account

r II
A" —A„ I

'
dp„(A(t)}=~ exp — " ' ' 'exp —" ' " ~A„ t}A,

r&A~At} a 2(s t&) 2(t, -u)
S Q

(5.1)

with s & t & ~ ~ ~ & t & &," where
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II AII'= Z A;.(x )A;( x )d'x

is a norm on ' e(R ) (Ref. 14) and y is an infinitesimal constant. Then Eq. (3.16) becomes

@[A;sl &';&]= +[A]/~[A'1)y exp — "-- ~ exp—
2(s —t „) . 2(t, -u)

2A+A„x exp —— B " s —t + ~ ~ +
2

&A &A

= (n[ A]/n [ A'])y exp - 2
" + B "

I (s - t„)- ~ ~
A„ll ~ A, P„& l~

'

s —t„, 2 )

A, —A ~A. +A
'1

(5.2)

Now what is left for us to do is to replace each functional integration in Eq. (5.2) by taking the maximum
value in the exponent, noting the fact that the most probable value of a Gaussian distribution might domi-
nate the Gaussian integral, obtaining

I

IIX;~IX';~]=(&]A]/&/&']]~~xuI-'* " +~& "
(~ —') —"'

(5.3)

where [ ],„means to take a maximum value. " Passing to the limit n-~, we finally obtain an approxima-
tive expression of the transition probability law of the quantized vacuum field configuration as follows":

d'x (-,'A;, A;. +-,'a;. a;. )), (5.4)

Correspondingly the vacuum-tunneling amplitude
(3.11)has an approximative expression,

Amp['A;-I'X;--]
P'

=r ax@'"P f dt d'x (-, A,'. A;- i 2&;B;)..
Ill RX

This is the well-known %KB prescription. ,

Let us introduce a notion of the most probable
tunneling path A;(t, x). It is a classicai Euclidean
Yang-Mills field which minimizes the Euclidean
action

Then Eq. (5.5) becomes

Amp['A ~ l'A; -~]
3

= y exp — Q (2A)A;+ ,'&'p;)dt d'x I . —

(5.9)

Thus we hove found that the instanton, associated
with the Euclidean 'action-minimum class'ical field
configuration, manifests the most probable tun-
neling path of the quantized Yang-Mills field be-
tween metastable vacuum states.

VI. SUMMARY AND DISCUSSIONS

p, V=p

under the boundary conditions

lim A'; (t, x) = A', (x),

lim A; (t, x) ='A',. (x) .
g ~Do

(5.5)

(5.7)

(5.8)

%e have presented a probability theoretical ap-
proach with the vacuum-tunneling phenomena in
SU(2) Yang-Mills theory by making use of Nel-
son's stochastic quantization procedure. From
this probability theoretical point of view we con-
clude that the vacuum tunneling can be described
by the Euclidean formulation. Namely, the tun-
neling amplitude of the quantized Yang-Mills field,
in the vacuum state, between metastable vacuum
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states characterized by different I'ontryagin in-
dices is given by the Euclidean path integral (3.19).
Heretofore the Euclidean path-integral description
of the vacuum-tunneling phenomena was proposed
only because one knew from experience in quan-
tum mechanics that such a Euclidean (imaginary
time) formulation can be used to obtain the WEB
prescription of the tunneling phenomena. "'" In
the present paper we have derived the Euclidean
formulation rigorously from the probability theo-
retical point of view working with quantum field
theory. The. quantized vacuum field configura-
tion, which manifests the quantum decay process
of metastable vacuum states, has been also shown
to be a Euclidean-Markov field of Gaussian type.
Classical Euclidean Yang-Mills fields which mini-
mize the Euclidean action, i.e. , instanton, have
been shown to represent the most probable tun-
nel ng path between metastable vacuum states.

It is worthwhile to notice that the deviation of the
Yang-Mills field (4.8) which manifests the decay
process of metastable vacuum states, D', (t, x)
=A4(t, x) —X[A&(t, x)1, forms a free Euclidean-
Markov field." That is, D;(t, x) is a Gaussian
random field on the Euclidean space-time R' with
mean 0 and covariance (—&,) '. Such a random
field with a long-range correlation has been sup-
posed to play an important role in quark confine-
ment by its screening effect. '

We may be allowed to emphasize that the probab-
ility theoretical approach developed in the present
paper can be used in clarifying the mechanism of
quark confinement if it is applied to the case of
the SU(3) gauge group. An application to the analy-
ses of extended models of hadron, e.g. , the string
model and the bag model, as suggested by Haba
and I.ukierski, "'"also seems to be worth con-
sade rang.

We have worked in the noncovariant AO= 0 gauge.
The covariant Lorentz gauge, Z'„',8 A„=O, forces
us to introduce a conce'pt of negative probability.
However, this is beyond the scope of our probabil-
ity theoretical point of view.

We have ignored couplings of fermions to the
Yang-Mills field. To see the effect of the presence
of fermion fields to the gauge field, we investigate
a spatially homogeneous 0 model and calculate the
decay rate of metastable vacuum states from the
probability theoretical point of view in the Appen-
dax.

APPENDIX: ANALYSIS. OF A SPATIALLY HOMOGENEOUS

o MODEL

In this appendix we present a simple model cal-
culation of the decay rate of a metastable vacuum
states. Consider a g model described by the I.a-

grangian density

3

Z=y i gy„a„-ga)O
v=0

3 /

+ p ~~0' ——0' —v.=0
" 4

(A1)

where g, X, and v are constants and y's Dirac ma-
trices, respectively. The Dirac spinor P and the
real scalar 0 represent a fermion field and a boson
field interacting with each other through the Yuk-
awa coupling scheme (A1). Field equations ob-
tained from (Al) are

y~8~ -go' (A2)

g 8, 'o + Xo(o' —v') = -gag .
g-0

We shall restrict the discussion to the spatially
homogeneous case in which P(t, x) = g(t) and o(t, x)
= o(t) hold. Then Eqs. (A2) and (A3) become

iifr(t) =gy, o(tN(t), (A4)

or a more familiar T-product form

t
g(t) = T exp —ig y, o(s) ds g(0),

I 0
(A7)

which yields a conservation law for the fermion
number

(('(t)g(t) = g(0)g(0) . (AS)

Thus we find. that the spatially homogeneous o mo-
del is nothing but an anharmonic oscillator de-
scribed by the equation of motion

o (t) = -Xo(t)[o(t)' —v'] -gy(0)y(0) (A9)

(see Ref. 9).
A quantum theoretical vacuum state of such an

anharmonic oscillator as (A9) is given by the wave
function u(o) c L,(R) which satisfies the Schrodin-
ger equation

O' A.

2 90' 4,+ —(o' —v')'+gg(0)g(0)o u(o) = Eu(o) .

(A10)

The potential V(o)=X(o'-v')'/4+kg(0)g(0)o is
bounded from below and has an absolute minimum
0= -v and a relative minimum 0=v. In classical
mechanics, the two minima o™=+vrepresent dif-
ferent stable vacuum states. In quantum mechan-

o (t) = -xo(t) fo(t)' —v'1- gy(t)y(t) . (A5)

Equation (A4) can be solved in the product integral
form"

t
g(t) = [1 igy, a(s) ds 14(0—)
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ics, however, the relative minimum o=v is ren-
dered unstable by the tunnel effect. The field con-
figuration 0 =v corresponds to a metastable vacu-
um state.

Now we shall calculate the decay rate of the me-
tastable vacuum within the realm of our probability
theoretical formulation. The quantized motion of
the vacuum field configuration is expressed as a
diffusion process o= Z(t} described by the stochas-
tic diffe rential equation

(A14)

and also Ecl. (A13),

tt(-v, t
~

v, 5) =v(-v)'I) v
u( —v)u(v}

t.27 Since the elementary solution of Ecl. (A12)
has an asymptotic expression

f( v, f—
i
v, 0)=u(-v) u(v)+u, (-v)u, (v)

x exp[-(E, —E)t],

dZ(t) = QZ(t)}dt+dW(t), (A11) x ex)t(-(E, -E)t]I, (A15)

where a(o) = 8 inu(v)/()v, and W(t) is a Wiener
process with a variance parameter- &. The diffus-
ion process Z(t) has a stationary probability dis-
tribution u(o)'. The decay rate of the metastable
vacuum state can be calculated by evaluating the
transition probability law of the diffusion process
z(f).

. The transition probability law P (a', f
~

cr', t'), f
& t', is known to be an elementary solution of the
Fokker -P lanck equation

the decay rate is found to be (E, —Z), 9 where E,
denotes the energy eigenvalue of the first excited
state and v, (e) (= L,(R} the eigenfunction

)19'
,+ V(o) u, (o)=E,u, (cr), E,&E.

2 80' (A16)

The level splitting, i.e. , the decay rate, can be
computed with the use of the WKB prescription, "
obtaining

8 8 1 8'
P= =[—~(o)p l+ .p, -

8t 8g 2 8O
(A12) E, E = V(~, ) —V(g),

where $ and $, are the real roots of

(A17)

which can be transformed into a self-adjoint equa-
tion

8 i 18'
f= ——— , +v(o) —E f8t 2 80'

e

for the relative transition probability law

(A13)

and

q = V '[V($)]+ $ (A18)

f(o1 t ~ra', t') =u(o) 'p((r, t
~

o', f')u(o') .
The decay rate of the metastable vacuum 0=v is
given by investigating an asymptotic behavior of
the transition probability law p(-v, t ~v, 0) for large

/

1

respectively.

n, = V '[V(h, )l» 5, , (A19)
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