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Extended objects created by Goldstone bosons
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Extended objects which appear in relativistic quantum field theory with spontaneous breakdown of
symmetries are studied. The extended objects are created through the condensation of the Goldstone bosons.
The condensation is mathematically expressed by the boson transformation. The topological singularities are
defined by means of the noncommutability condition among the derivatives acting on the boson
transformation parameters which are functions of space and time coordinates. A systematic method for
constructing the extended objects with topological singularities is presented. It is found that the extended

objects can carry a full variety of topological singularities. Only some of the topological constants associated
with these topological singularities are quantized. Though the choice of original symmetry does not restrict
the choice of topological singularities, it does restrict the choice of quantized topological constants
(topological quantum numbers). Special effort is devoted to the construction of the extended objects which

are confined in a finite domain of the three-dimensional space. In particular, a spherical surface singularity

(a "bag") is obtained explicitly. Furthermore, it is shown that instantaneous singularities and transient

singularities are also acceptable to our scheme.

I. INTRODUCTION

Recently, study of the topological structure of
extended objects has aroused much interest among
high-energy physicists in connection with the prob-
lem of quark confinement and particle structure. '
'The present paper is devoted to a study of extend-
ed objects which appear in relativistic quantum
field theory with spontaneous breakdown of sym-
metry.

In solid-state physics we find many phenomena
in which certain macroscopic objects (extended
objects) are created in various ordered states
(systems with spontaneous breakdown of sym-
metry). . Vortices in superconductors, disloca-
tions in crystals, and magnetic domain walls in
ferromagnets are some well. -known examples of
this kind. In these systems, classically behaving
macroscopic objects coexist and interact with
many quanta.

'The extended objects in systems with spontaneous
breakdown of symmetry are created through the
condensation of certain bosons. To understand
this intuitively, we denote by hN a quantum number
carried by these bosons, and by AM' the quantum
fluctuation. When the boson condensation makes
N very large, then hAN/hN = 4N/N becomes so
small that the system behaves classically. To
establish such boson condensation we need certain
bosons with gapless energy. According to the
Goldstone theorem, spontaneous breakdown of
symmetry is maintained by the presence of certain
gapless bosons (i.e. , the Goldstone bosons). ~ This

0(&)= 0(&;X ', 4' ') ~ (1.2)

'This expression is called the dynamical map. ' The
dynamical map of any Heisenberg operator Oz[g]
is obtained by use of (1.2):

0„[(]= o„(x",Q ') . (1.3)

The maps (1.2) and (1.3) determine the structure
of Heisenberg operators when no extended objects
are created in the system with spontaneous break-

is true even when the presence of certain gauge
fields induces the Anderson-Higgs-Kibble mech-
anism'4 and the Goldstone levels become unob-
servable. Therefore, in systems with spontaneous
breakdown of symmetry, one can create many
kinds of extended objects through the condensation
of the Goldstone bosons.

The above intuitive consideration has been put
in a mathematical form which is called the boson
method. ' A brief account of the boson method can
be summarized in the following way. One begins
with a set of Heisenberg equations for Heisenberg
fields (say, P). Then try to identify the in-fields.
Whenever a certain symmetry is spontaneously
broken, there appear among the in-fields certain
Goldstone bosons X"(x) (n = 1,2, . . .), which satisfy
the massless equations

&'X."(~)= o.
Let &f& "(x) stand for other in-fields. Calculating
all the matrix elements of the Heisenberg field tj,
we can express g in terms of normal products of
the in-fields X" and P":
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down of symmetry. Now perform the boson trans-
formation

[8„,8,]f(x)S 0 for certain p, , v, x

under the condition

(1.7)

X."(x)—X."(x)+f.(x), (1.4) [8„8„)B,f(x) = 0, (1.8)

where f (x) (a = 1,2, . . . ) are c-number functions
which satisfy the same equations as y'"(x):

8'f (x)=. 0. (1.5)

We define the boson-transformed Heisenberg field
by

(1.6)

It has been proved' that P(x) and gt(x) satisfy the
same Heisenberg equations. This is the boson-
transformation theorem. The transformation (1.4)
with the condition (1.5} shows that f (x) are created
by the condensation of the Goldstone boson X"(x).
The P~(x) corresponds to the situation where the
quantum system (X™,P") coexists with the extend-
ed objects created by f (x) The g.round-state ex-
pectation value of O„(x) is now given by (OI 0„(X,"
+f, Q")IO). In this way, we can calculate various
observables such as energies, current, etc. , as-
sociated with the extended objects. The boson-
transformed S matrix S[}t"+f,Q"] describes the
reaction among the extended objects and quanta.

It has been widely known that to perform the
transformation X"-y"+ c-number is one way to
cover many unitarily inequivalent representations
of canonical commutation relations. ' However,
when we speak of the boson transformation, we
are concerned not only with the canonical commu-
tation relations, but also with the Heisenberg
equation; the boson transformation is conditioned
by the requirement that the Heisenberg equation
should not change. This condition is the one which
leads us to (1.5). It should be noted that, when

f (x) is singular at a certain point, the original
Heisenberg equation should hold even at this sing-
ular point.

The situation becomes a little more involved
when there exists a gauge field. This happens,
for example, in the case of superconductivity
models (i.e. , the gauge-invariant Nambu or Gold-
stone model}. There appears one Goldstone boson
y" and the massive vector (plasmqn) field U'„', '
and the Anderson-Higgs-Kibble mechanism forces
the boson transformation y"-X"+f to induce also
the transformation U„"-U„"+a .' Here a„ is the
c-number (and therfore classical) vector potential
and is related to f(x) through certain equation,
which ean be used as a basic equation for pheno-
menologieal analysis of macroscopic objects. In
this case it has been shown"' that the macroscopic
current and electromagnetic field do not vanish
when and only when

[8„,8„]f (x)&0 for certain p, , v, ox, (1.9)

which is the differential expression of the multi-
valuedness of f„(x). This definition of topological
singularities is in sharp contrast to the commonly
used definition: The tapologically singular do-
mains are usually defined as the domain where the
order parameter vanishes. 'To see how our defini-
tion is related to the usual one, let us recall that
the order parameter 4(x) for a superconductor
is related to f(x) through the relation

~(x) =
I
&(x)

I
exp[2if(x)], (1.10)

where the absolute value
I
4(x)

I
is a function of

8„f(x). Since b,(x) should be well defined every-
where,

I
b(x)

I
must vanish wherever f(x) is sing-

ular.
In the following sections we shall show that use

of the condition (1.9) leads to a systematic method
for constructing extended objects with a variety
of topological singularites.

In Sec. II we present a general method for con-
structing topological objects. In Sec. III we make
a detailed study of strings. The significance of
this study lies in the fact that, . assembling and de-
forming many strings, one can obtain a variety
of topological singularities. When a string is de-
formed in such a way that it has one end-point
joint with a half-infinite line (the hairpin string),
the end point acts as a monopole. It is obvious
that the extended objects associated with an in-
finite-line singularity do not suit to the particle
model. It will be shown that a finite-line singular-
ity is obtained by deforming a closed string (the
dihairpin string). In Sec. IV, the general theory

where [8„,8,]= 8„8„—8„8 . Equation (1.7) implies
that f(x} is not single valued: f(x) is. path depen-
dent and therefore has certain topological singu-
larities. When there is no gauge field (i.e. , no
Anderson-Higgs-Kibble mechanism), both the ex-
tended .objects without any topological singularity
and the ones with topological singularities can
appear. In a crystal model, for example, there
appear three Goldstone bosons lt" (o. = 1,2, 3) (there
crystal phonons), and f (x) (n = 1,2, 3) without any
topological singularity create the classical sound
wave, while f (x) with topological line singulari-
ties create dislocations. "

The main purpose of this article is to formulate
a general method for constructing f (x}with topo-
logical singularities. Here, the topological singu-
larities are defined by the condition
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of closed surfaces will be discussed. There it
will be proved that any closed surface is accept-
able to our scheme. Some of the examples which
have wide applications both in elementary-particle
physics and solid-state physics are presented.
Of particular interest is a bag which is a spheri-
cal-surface singularity. It is a fascinating idea
that the black hole in general relativity is an ex-
ample of the closed-surface singularity. In See.
V, extending the method of previous sections, we
make a detailed analysis of those singularities,
appearances of which are instantaneous in time
(instantaneous singula. rity) or limited in a finite-
time interval (transient singularities). There,
we will show how the instantonlike objects can be
coristrueted. The consideration in this section
supplies us with a powerful method for study of
macroscopic transient phenomena in systems with
spontaneous breakdown of symmetry.

Finally, in Sec. VI we discuss the question of
how the original group symmetry restricts the
choice of topological objects. Although the number
of Goldstone bosons depends on the original group
symmetry, this number does not restrict the
choice of topological singularities. " However, the
original group symmetry strongly controls the
structure of the dynamical map, through which the
toPotogica/ quantum number is identified. In other
words, although the original symmetry does not
restrict our choice of topological singularities, it
severely influences the answer to the question of
which topological constants should be quantized.
We come to this conclusion because we do not treat
the Heisenberg equation as a classical equation.
We have considered how the extended objects are
created in a quantum ordered state. The shape
of the singularity depends on the boundary condi-
tions: For example, the shape of the vortex line
in a superconductor is conditioned by the require-
ment that no persistent current can cross the line
singularity, and the shape of the closed surface de-
pends on what is contained.

When we try to apply the theory of extended ob-
jects to particle physics, we meet a serious dif-
ficulty which arises from the fact that the extended
objects behave classically, while we want to have
quantum particles. To overcome this difficulty,
we might need an enlarged Hilbert -space which
contains all the states with topological objects. A

study along this line is in progress.

II. MACROSCOPIC OBJECTS WITH TOPOLOGICAL
SINGULARITIES

We suppose that there appear z Goldstone bosons
X" (n = 1, 2, . . . ,n) in a system with breakdown of
symmetry. 'The extended objects are created by
the boson transformation y„"-y"+f with f satis-

fying the equation for X"
B'f (r. ) =0. (2.1)

'The structure of the topological singularities is
determined by the quantities G' „'~ which are de-
fined by-

G ( „'t(x)= [B., B„]f„(x). (2.2)

B'D(x) = 5("(x),
we obtain from (2.2)

(2.4)

xf(x)= J,d',xD(x —x)e"0„","(x). (2.5)

In order to construct G'„'t, it is-useful to intro-
duce

(2.6)

where our choice of the metric is given by e„23
=1, —g„=g,, =1 (i=1,2, 3). The relation (2.6)
gives

G(»t(x) )
& )PG(~)(x)

Making use of (2.3), we find that

B"G„"„'(x)= 0.

(2.7)

(2.8)

It can be easily shown that the condition (2.8) is
sufficient for the relation (2.5) to reproduce (2.2).

Making use of above relations, we can develop
a systematic method for constructing f (x) with topo-
logical singularities. First, look for G'„' which sat-
isfies the divergenceless condition (2.8), and then
constructG'„'t according to (2.7). Then, B„f (x) can
be calculatedby means of (2.5). The multivalued
functionf is obtained through apathintegral of B f,
the existence of which is guaranteed by (2.2) as long as
the path does not cross the singularities. In fact,
G „=0 is the integrability condition for f outside
of the singular domain. Although f (x) is path
dependent, an explicit expression of the function

f (x) for x outside of the topologically singular do-
main, can be obtained.

When the number of Goldstone bosons perform-
ing the boson transformation is not larger than
four, it is convenient to introduce the notations
G~ „, and G„which are defined as follows:

( ) = [G(x)'t G( )t G( )t'] (2.9)

The domains in which some components of G'„'„'t(x)
do not vanish are the domains of topological sing-
ularity. In most cases known in solid-state phys-
ics, the spatial or temporal variation of the con-
densation is observable. We therefore require
that the (Iuantities B„f„are single valued:

[B„B„]B,f„(x)= O. (2 3)

By use-of the Green's function D(x) defined by
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G, (x) =——,
' ).,"'Gt„,(x) .

We then have the following relations:

3G'„„,(x) = &,„,'Gt(x),

G",,'(x) = G,(x) .

(2.10)

(2.11)

(2.12)

P (~ ')=0, (3.7)

should form a network which does not have any end
point. When lines y"'(r, o) (b=1, 2, . . . ) join with
each other at a point (called a vertex or node) y(~),
the divergenceless condition (2.8) requires the
continuity relation

s[y„,y„] sy„.&&y„ sy„ sy.
6[7 o] &&v (&v 87 Bo

and dada is the surface element of the world
sheets, we can put G' „' in the form

(3.1)

III. THE STRING

Let us consider a set of world sheets y"&(r, o)
(a= 1,2, . . . ) which depend on two parameters v'

and o. Since the product of the Jacobian

Bc(0( ) dSn)Gt, '(x), (3.8)

where the + (—) sign corresponds to the first (sec-
ond) term in the right-hand side of (3.6). Con-
versely, the right-hand side in (3.5) for all v van-
ishes when (3.7) holds at each vertex, implying
that (3.7) is the complete condition for the diver-
genceless condition (2.8) to be satisfied.

Let us now consider a surface Sc which is en-
closed by a closed path C and define

G( &(x) = glif a

This leads to

&&[a, o]
x 5"'(x -y"'(i, o)) .

(3.2)

&(6&t&(x -y"&(r, o)).
(3.3)

where n,. is the normal unit vector on the surface
Sc. From B&G,'& '=0, we see that the constants
B~ ' do not change when the surface Sc varies, as
far as the path C is fixed, and that Bc ' =Bc,' when
two closed paths C, and C, can be deformed contin-
uously onto each other without crossing any string. -

'Therefore, Bc ' do not change when the closed
paths belong to a same homotopy class. In. this
sense, Bc ' are topological constants.

Since (3.2) and (3.4) gave

In the following part of this section we assume
that v is the timelike parameter. We then choose

y,"'as follows:

G,', '(x) = P M" do6& "(x y" &(f, o)) y—"'(t, o), —
a

(3.9)

y&0'&(r, v)=r for all a. (3.4) we have

Then, y "&(v,o) appear to be lines at each instance
These lines are parametrized by the spatial

parameter v. In this case the extended objects
are called the string. The vortices in supercon-
ductors and the dislocations in crystals are some
examples of the string.

Uses of (3.3) and (3.4) lead to

(a) (7')(a)
8"G '(. )=-~ M ' d " 5 '( —y'")gV Bva

)t( (t &

(3.5)

where v&,"(7) and o&,"(r) are the end points of the
line y"'(r, o) at time 7. Using (3.4), we have

S)tG &)t &(x) PM«[6 (3&(x y(a&(f (&t &))

-5'"(x —y"(t, o,"'))]. (3.6)

We can see from (3.6) that, if a line has an isola-
ted end point, the divergenceless condition (2.8)
is violated. Therefore, assembly of all the lines

I

a, = g M"', (3.10)
a t

where Z' means that the summation is performed
only over those strings whi'ch cross the surface
Sc. The continuity relation (3.7) again shows that
Bc depend only on the closed path C.

Uses of (2.2), (2.6), and (3.8) Lead to the relation

(3.11)

In other words, the topological constants Bc ' are
the closed-path integral of V'f„(x).

It has been frequently assumed that the ring
strj.ng may be used as the Pomeron. On the other
hand, the open string cannot be confined in a fin-
ite domain, and therefore it is hard to assume
that they form particles. When we studied the
relativistic superconductivity model in Ref. .9,
we simply cut off both tails of an open straight
string to obtain a straight string of finite length
with two end points, which create the monopole
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fields in addition to certain short-range forces.
Then we met a difficulty; the nonvanishing domain
of G, „extends to infinity (i.e. , the topological
singularity covers everywhere) as soon as we cut
off the tails of the open string. 'The only excuse
for using such a cutoff process was that all gauge-
invariant quantities in the superconductivity model
do not contain f without derivatives, while B f„
does not have any topological singularity accord-
ing to (2.3).. In this paper we do not employ the
cutoff process mentioned above, 2nd we are going
to look for other possibilities of confining the top-
ological singularities in a finite domain.

A significance of the following study of the string
is that, by combining many strings and deforming
them, we can construct a full variety of extended
objects. This will be illustrated by several ex-
amples.

A half-infinite-line singularity with the end point
y(r) (the hairpin string) is obtained by folding a
string y(r, o) around a point y(v') with relative dis-
tance el, ;

The right-hand side of (3.14) contains the contri-
butions of the end point y(t) and the line singular-
ities. However, we can make certain combinations
of G~„' which have only the end-point effect, when
B, and z (r, o) satisfy the following relations:

Bz (v, (r) Bz„(7,g) B z~( 7, o)

n 8~ g(y

(3.16a)

„Bzo(&, o') Bz ~(7', o) Bz~(r, g)
0'

8„' =C„' ' +C„7' 80

(3.16b)

Here it was assumed that q = 0 for'n4 0, 1,2, and
3, and the C 's are certain constants. Equations
(3.16) lead to the wave equation for z,(r, o);

(3.1 l )

When (3.16a), and (3.16b) are assumed, (3.14)
gives

&,(r, o) = z.(r,
~

~
~

)+-.ef„
1

(T) —0'1», —z& & (7& zt,
=z»(7, o) -zeal», ze- o&~,

where

(3.12a)
1

(3.12b)

(3.12c)

(3.13)

G', '(x) = (B —C„-—C„) ' 6 (x —y(t)) .

(3.18)

Thus G„' ' contains only the end-point effect.
When observables depend on f' '(x) only through

the quantity

G,'„'(x)= 8 ~~g &~v e )t (4)" "]a,B„'6"'(x-z(r, o))
BI&,ol

e 8 8".:—..( ) —~:—,„~,( ))

x 5'4)(x -y(r)), (3.14)

where B~ = q l~. One may notice the similarity
'of the present construction to that of dipole in
electromagnetism: Every time the line is folded,
there appear more derivatives in front of the 5

function. Therefore the behavior off near the
singular line becomes more singular than that of
the string.

It is obvious from the structure of the hairpin
string that

Here we consider only one world sheet and there-
fore omit the superscript a and write M ' simply
as M . The limits & - 0 and M - ~ should be per-
formed in such a way that g

—= &M stays finite.
Feeding (3.12) into (3.2) and performing the above
limit, we obtain

Go(x)= V'Vx f

(8 —C„—C-„)6~"(I—y(f)), (3.20)

where f means (f„f„f,). This shows that the
hairpin string behaves as a monopole in the calcu-
lation of V' Vx f. It is straightforward to see that
a closed-surface integral of Vx f,

B~= ds Vxf, (3.21)

is a topological constant. When the surface S en-
closes the point y(r), Bz is given by

Bq=C~, +C~~ —'B~ . (3.22)

G(e)

=-.' e„""([B., B,]y, + [B„B,]y, + [B„B,]y,],
(3.19)

one observes only the end-point effect. The rela-
tions (3.19) and (3.18) lead to

(ds vy )=0 (3.15)
The expression (3.21) can be further rewritten

for any n and any closed path C which does not
cross the singularities.

B~= ds'f, (3.23)
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where C is a closed path in surface S. 'The closed
path C should be chosen to pick up all the contri-
butions from the line singularities possessed by
vxf.

Since the hairpin strings have half-infinite lines,
they cannot be confined to a finite domain. As was
pointed out previously, one way of getting rid of
this difficulty is to assume that f in the observ-
ables appear only through G„, that is, in the form

G, =V (Vxf),
G& = ao(V x f )&

—(V' x &of )& .
'This assumption is satisfied when and only when
the Goldstone bosons X" in the dynamical map
(1.3) for any observable appear through the forms
V '(V x P') or &,(V X P') —(V x B,y"). We have not
yet studied the question of what kind of Lagrangian
satisfies this assumption.

Let us now turn our attention to closed strings.
For simplicity we assume that only one Goldstone
boson performs the boson transformation. In the
static case, the nonvanishing components of G„„(x)
are

G,„(x)=-G„(x)=M do ~" 5'"(x-y(o)).

(3.24)

As can be seen from (3.5), S"G„„(x)vanishes when

y~(o) is a closed line. Therefore a closed string
of any shape is acceptable to us.

As an example, we consider the case

y(o}=(acoso,asia, 0}, a&0, O~o&2v.

(3.25)

Substituting (3.25) and (3.24), we obtain

G„(x)= -G„(x)=@5(x,)6'(x,)5(x,),
G„(x)= -G„(x)= -g5'(x, )6(x,)5(x,),

(3.27a)

(3.27b)

where g=wMa'. Other components of G„„vanish.
A line-shape object of finite length is given by

a rectangular closed loop with an infinitesimal
width &l„;

y (r o) =z (y o) zgf for &e g & 1, (3.28a)

= z „(7,g)+ z e/„ for -1 & cr & -&e, (3.28b)

=y'„(r) —l„o for =ze & o'& &e, (3.28c)

where

=y„'(7')+ l„(a —1 —ze) for 1 ~ o & 1+e,
(3.28d)

3,'(r) =z.(7,o), (3.29a)

(3.29b)y„'(r) =z„(r,1) .
I

'The two points, y'„and y'„, are the end points of
the line object. Since we are considering one
closed string, we can omit the superscript (a) in
(3.2) and denote M ' simply by M . Then (3.2)
leads to

G„(x)= —G„(x)= -2M5(x, )x,5(~' —a'),
(3.26)

G„(x)= -G„(x)= 2M5(x, )x,6(r2 - a2),

where x'=x, '+x,'+x, '. . Other components of G„„
vanish. We shall call this type of. closed string a
loop or a ring. It is known that, in crystals, many
loop dislocations are porduced, for instance, by
the Frank-Bead mechanism. As for a model of
particles, an infinitesimal loop might be interest-
ing. In the limit of a-0 and M- ~, (3.24) and
(3.25) yields

G'„„'(x)= dv
1 '"'" &, s„'5"'(x —z) —[&.i.'(f)5'"(x —y'(f })—&.i!(f)5'"(x—y'(f)) l

& v, a

+ [&.i'. (f)5"'( —y'(f)) —&.i!(f)5"'( —y'(f))1, (3.30)

where B~ = &M l~. The limits & - 0 and M
were performed in such a way that zM stays fin-
ite. It can be easily- seen that the result (3.30)
can be obtained also by superposing the two sets
of the hairpin strings with opposite strength; one
with end point y'„(7') and the other with end point
y„'(v). The extended object under consideration
will be called a dihairpin string.

As a particular case, let us consider the static
dihairpin string, which is along the first axis:

z „(7',(r) = (7', od, 0, 0) . (3.31)

'This specifies the two end points, y„"' and y'„":

y„'(r)=(v, 0, 0, 0), y2(r)=(7, d, 0, 0). ' (3.32)

I3O =0. (3.33}

The symbol d denotes the distance between two
end points. To study this static dihairpin string
we choose
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G& &(x)=0,ij
G&;. &(x).= B;.[6(x,) —6(x, -d) ]5(x,)6(x,)

(3.34a)

We now assume that not more than three Goldstone
bosons (o! = 1, 2, 3) perform the boson transforma-
tion. Then (3.30) gives

p(q) = M sing,

leads to
2M

G„(x)= —,x,(x,'+ x, ')'~ '5(r' —a'),a'

(x) — x (x 2/x 2)) ~&6(/2 a2)
2M

(4.3)

(4.4)

(3.34b)

According to (3.34b), the topological singularity
is the line of length d along the x, axis. It is an
interesting question to ask whether we can con-
struct, by means of the dihairpin strings, a model
for particles which satisfies the duality condition.

When we choose,

xi=a', =. o,
we have, from (3.34b), the relation

(3.35)

Q G,",'(x) = -(B22+B33)[6(x) —6(x —d)], (3.36)

where d = (d, 0, 0). This gives

V .V x f (x) = (B', + B',)-[5(x) —6 (x —d)] . (3.37)

This relation shows that the dihairpin string acts
.as a dimonopole in the calculation of V ' Vx f(x).
When some observables contain t&~ f' ' in other
forms than V 'Vx f, we observe the line effect
in addition to the dimonopole effect.

IV. THE CLOSED-SURFACE SINGULARITIES

In the previous section, we have considered the
extended objects with line singularities. We de-
vote this section to a general study of closed ob-
jects with surface singularities which can be creat-
ed by the boson transformation.

The straightforward extension to a surface from
the strings is to pile up strings with certain weight

P()I);

G „(x)= dv'dadq [ ~' "ip(q)6(')(x -y(r o q))
)& [&,ol

G„(x)=@5(x,)6'(x,)5(x,),
G»(x) = -g5'(x, )5(x,)6(x,),

(4.5)

where g=(4&r/3)Ma'. It is to be remarked that an
infinitesimal loop and an infinitesimal closed shell
have the same type of topological singularities
[cf. (3.27)].

The example presented above is made of closed
rings. To look for a general expression for closed
system, let us come back to the divergenceless
condition O' G„,( x)=0. As will be shown later, this
condition means the continuity of the singularity.
Therefore. when an object has a domain of sing-
ularity without any end point, its G„„satisfies the
divergenceless condition. The sphere in three
dimensions is an example of this kind. Quite gen-
erally we can state that any closed surface is ac-
ceptable to our scheme.

To prove this, let us consider a closed system
which has no end points. The surface singularity
is expressed by y (r, $, o), in which r is the time.
For convenience, we use the parameter $ to para-
metrize the flat planes which cut the object under
consideration. The domain of this parameter is
chosen according to 0 & $ & )r. The cross section
of the closed surface and the plane ( is a closed
loop, which is parametrized by a (0- a - 2)r). We
then have

y.(r, &, o) = y „(r,k, 2v),

3) (7, 0, o) =y„(r, 0, 0),

y, (v, )r, o) =y„(r,&r, 0),

(4.6)

which imply that, at $ = 0 and rr, y„does not depend
on o. It is easy to show that

which implies that the singular surface is a sphere.
In the case of an infinitesimal closed shell (a- 0),
(4.1)-(4.3) give

For example, a static closed shell

y (7, o, q) = (r, a sing coscr, a sing sincr, a cosy),
0& g(2)r, 0& q&&r, (4.2)

o(~) =m~~
gV

[Xr rXvrX»]
sf. , (, cr]

x 5'"(x —y(r, (,o)) (4.7)

with the weight p()I),

satisfies the dive rgenceless condition. Indeed we

have
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The condition ~yo(v', $, a)
~

— for ~7
~

-+ together
with (4.6) leads to the result G„„(x)= d(do y"' " 5'"(x —y($ o))

8

e[],o]
e'O( &=0

PP

implying that any closed surface in space is ac-
ceptable to ours. scheme. As an example, we con-
sider the static sphere:

This is different from (3.2), because the para-
meters $ and o in (5.1) are both spacelike para-
meters; the world sheet y, (g, a) extends in a
spacelike direction. When we choose

y, (r, $, v) = (r, a sing cosa, a sin) sino, a cos)) . y. (t, a) = (f., y(k, a)), (5.2)

This leads to
I

G&0;. &(x) =M eq. —25(2. —a),
G',. '(x) = 0

(4.9)

(4.10)

This singularity is on the surface of the sphere
with radius a and will be called a bag. In the limit
a- 0, we have

G01 '(x) =—a M ee1eeV25 ~(x) .47t

3
(4.11)

The special case in which all M except M" van-
ish, this again leads to (4.5).

On the other hand, when we have (4v/3)aeM'e
=g5 e (o!,P = 1,2, 3), (2.5), (2.6), and (4.11) lead to

V f (x) = -2g5"'(x), (4.12)

where f means (f„f„f,). We thus see that

Gq= dS 'f (4.13)

is a topological constant when S is a closed surface
which does not cross the singular domain.

Closed surfaces have many applications. While
infinitesimal closed surfaces might describe el-
ementary particles, closed surfaces with finite
size might be applicable to the bag for the quark-
confinement model, the black holes in general rel-
ativity, the magnetic domains in ferromagnets,
crystallites in solid, etc.

V. INSTANTANEOUS AND FINITE-LIFETIME
SINGULARITIES

In previous sections, we have conside ed only
those extended objects which exist at all times.
However, there can be other kinds of extended ob-
jects created by the boson transformation. When a
singular domain has no end points in the four-di-
mensional space-time world, the divergenceless
condition (2.8) is still satisfied. Therefore, con-
sidering a world sheet confined in a certain time
interval, we can deal with the extended objects
which exist only for this time interval. In this sec-
tion, we shall study this kind of objects, i.e. , the
instantaneous and finite-lifetime singularities.

Let us begin with the spatial surface singularity:

y„($,cr) = (0, 0, o, $), -~& $, a'& ~ .

In this case we find

-G„(x)= G„(x)= M5(x, )6(x,)

(5.4)

(5.5)

and the other G, „vanish. According to (2.5) the
boson function f(x) in this case is given by the re-
lations

S f(X)= M dP dP ' e '200"21"1
0 (2v)2 0 1p 2

p
2

(5.6a)

8 f(X)— M dp dp
o e %0+ 21 1-

1 (2v)2 0 1p 2
p

2

(5.6b)

We use the retarded Green's function in (5.6a) and

(5.6b), since we are interested in effects of the in-
stantaneous plane after it is created. Replacing

p, ' in (5.6a) and (5.6b) by (p, + ie)', we get

Sf( )x= =,'M8(x, )[5(x,-x,) -5(x,+x,)], (5.7a)

8,f(X)= =2M 8(X0)[5(X0—X,)+ 5(X0+X,)] . (5.7b)

Then, f(x) is obtained by means of the path-integral
calculation as follows:

f(x) = B„f(x)= [dx,s,f(x) -dx,S,f(x)].

(5.8)

This leads to

f(x) = 2M [8($(x)—e'/4}+ 8((f&(x) —3w/4)]+ nM,

(5.9)

with t, being a constant, then (5.1) gives

G, &(x) = 5(x, —to)M d$do " ~ 6'"(x —y((, o)),
&[5,al

(5.3)
G„(x)=0,
which implies that the surface singularity appears
only at xp tp The divergenceless condition
S G „(x)=0 is satisfied when y($, o) forms a surface
without any end point (see Sec. IV). In order to ob-
tain an intuitive picture of this type of singularity,
let us consider an instantaneous plane which ap-
pears only at tp=0:
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where tan(t)(x) =x,/x, and n is a certain integer.
As is seen from (5.9), f(x) jumps whenever x cros-
ses the forward light cone. In. the superconductiv-
ity model, "'f(x) is the phase of the order para-
meter and creates the electric field

m'
Z, (x) =—,, (B,e, —B,e,)f

m M 1
2e (27))' ~ '(p, +le)'-p, ' —m'

G,„(x)=a

By (0 &)1 By (0 &)l i
eo " Bo

By exchanging the role of 7' and o in the expres-
sion (3.14) for the hairpin string, we find an open
spatial-line singularity which is born at xp= 0;
i.e. , a born distring. In this case we have

B[y ,y„d«o "' " l„e„'5'"(x -y(7, o))
B[ ] x x

pgP+~~ jul

m2 )VI
= 8(x,) —J,( (x,'-x, ')' ') (ix, i

(x,)

(5.10)

x 5( )(x -y(0, (r)),

where B= &M. The choice

y. (7', o)=(&,o, 0, 0),
l„=(0,0, 1,0)

(5.11)

(5.12a)

(5.12b)

while no magnetic field is created. This is the ef-
fect of instantaneous appearance of the singular
plane at xp= 0 which propagates in the future light
cone. A detailed analysis of this phenomenon in
a superconductor has been made in Ref. 12.

Following the way in which we constructed the
hairpin string, we can deform a singular world
sheet in a.variety of ways in order to make the do-
main of instantaneous singularities smaller. In
the following, we present some examples.

leads to

G„(x)= 8(x,)5'(x,)5(x,),
G„(x)= 5(x,)5(x,)6(x,) .

(5.13a)

(5.13b)

We consider two overlapping world sheets with
a common'boundary which is a timelike closed
line (i.e. , a flattened closed world sheet). The re-
sult is a dihairpin which exists for certain time
intervals and is called the transient dihairpin
string. In this case we have

0„„(x)=B dx da ' " ),a, ar'r(x —) ( a)) rar a" ' 1„— " '
1 )0"'(x —a(0, a))

B [y. ,y.] By„0,o) By„(0,o) (,)

y(x( pa o) l yv( or l 5(4)(x y(t o))P

-a d " ' — " ' 5"'( — ( o))
BT 87

+a dpi " ' l„" ' l. 5(4)(x-y(~, d)).&By„(r,d) Byr, )d(, )

0
(5.14)

The choice (5.12a) and (5.12b) lead to

G„(x)= [8(x,) —8(x, —t,)] [8(x,) —8(x, —d)]i)'(x, )5(x,),
G„(x)= -[8(x ) —8(x, —t )] [5(x,) —5(x, -d)]e(x,)5(x,),
G„(x)= [5(x,) —5(x, —t,)] [8(x,) —8(x, —d)]5(x,)5(x,) .

(5.15)

Performing the limit t„d- 0 in (5.14), we find a point singularity in the (3+ 1)-dimensiod. al space (a kind
of instanton): '

G„„(x)=(Btp) "' " l~e„'5(d)(x -y(v, a))+ "l„— " 1„ i B„'5"'(x y(r, o))-
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For example the choice (5.12a) and (5.12b} give

G„(x)= (Itt,d)5(x, )5(x,)5'(x, )5(x,),
G„(x)= (t-it,d)5(x, )5'(x, }5(x,)5(x,),
G„(x)= (at,d)5'(x, )5(x,)5(x,)5(x,) .

(5.1&)

G~„(x)= do " "' " 5'"(x — (7' o))
e[r, o]

Let us turn our attention to transient closed sys-
tems which are created at t, and disappear at tj.
The transient dihairpin studied above is an exam-
ple of this kind. A transient loop is given by

&t'(x) = &t'(x; X~, it&"), (6.1)

Be= dS 'Vx f(x)
S

in (3.21}are some examples of topological con-
stants. When a topological constant is quantized,
it is called the topological quantum number.

To find which topological numbers should be
quantized, we must know the structure of the sym-
metry rearrangement which is induced by the
spontaneous breakdown of symmetry.

In the first section we introduced the dynamical
map [cf. (1.2)]

with conditions

y.(t., o)=(t., y(t.)), y, (t„o)=(t„v(t,))

y„(v', 0}=y„(7,2w) .

A transient ring is given by

y (7, o ) = (r, a(r) coso, a(r ) sino, 0)

(5.18)

(5.19)

(5.20)

0- O'=Q[4] (6.2)

When this transformation is induced by a -certain
in-field transformation (the q transformation}

in which the Heisenberg field g is exp~essed in
terms of normal products of in-fields y„" and it&".

Suppose now that the Lagrangian of the system is
invariant under certain transformation (say, Q
transformation) of g:

with

a(t, ) = a(t, ) = 0 .

Any closed surface which appears at t, and disap-
pears at t, can be put in the form

x8'-x&"=q (x" 0")
it&in mini q (~in gin)

we can write as

Q R] = 4(x;q„q.)

(6.3a)

(6.3b)

(6.4)

t~
G (x) =M~ dr s[y& ~yv~y»l

s[r, &, o]
x 5"'(x —y(7, g, o))

(5.21)

with the conditions that y„(7, $, o) forms a closed
surface for any value of r and that y (t„$,o) and

y, (t„g,o) are independent of $ and o. At the limit
tp t j this gives the instanton mentioned above .

Use of these instantaneous or transient singular-
ities supplies us with a powerful method for study
of time-dependent macroscopic phenomena in
systems with spontaneously broken symmetry
(i.e. , the transient phenomena in systems with
spontaneously broken symmetry).

a& &= ds Vf. (x)

in (3.11) and

VI. THE SYMMETRY REARRANGEMENT

AND THE TOPOLOGICAL QUANTUM NUMBERS

In previous sections, we studied a variety of
topological singularities associated with extended
objects which appear in systems with spontaneous
breakdown of symmetry. The constants such as

We then state that the Q symmetry is dynamically
rearranged into the q symmetry. The Q symmetry
is the symmetry of basic equations, while the q
symmetry is the observable symmetry. The sym-
metry groups associated Q and q transformations
will be denoted by Gz and G„respectively.

To see how the dynamical map selects the topo-
logical quantum number, we recall two examples:
the superconductivity model and the crystal model.

In the case of the superconductivity model, the
Lagrangian is invariant under the phase transfor-
mation &t&- exp(i8)&t&. In this case, there appears
only one Goldstone boson X", and the dynamical
map for &1& takes the form

&t&(x) =:exp(iC)(")F(x; sy", @"):. (6.5)

Here C is a constant, it&" stands for the in-fields
other than X", and I is certain function. The q
transformation y"-)("+8/C induces the Q trans-
formation &t&- e'e&t&. This is the dynamical rear-
rangement of phase symmetry.

The boson transformation y"-&t"+ (1/C )f (with

f satisfying 8'f= 0) changes &t& into

p t(x) = exp(if): exp(iC&t")F(x; Sx"+ Sf, it&"): .

(6.6)

Let the position x move along a closed path C.
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We see from (6.6) that B„f does not have any topo-
logical singularity. The requirement that the dy-
namical map for g~ in (6.6) is well defined at each
point x leads to the condition

Bo =— d s Vf(x) = 2m'n (n = integer) . (6.7)

0(x) =:Z C'i.(x+X )&z(x' BX 4' ): . (6.8)

Here $4i,(x)} is the orthonormalized complete set
of periodic functions with the lattice vectors a,.
(i=1,2, 3).

According to (6.8), the q transformation

Xi'(x+ f)- Xi'(x+ cY, t)+ ix, (6.9a)

P"(x,t)- P"(x+ oT, t)

induces the Q transformation

g(x, f)- P(x+ o.', t),

(6.9b)

(6.10)

that is, the spatial translation. This shows how

the translational symmetry is rearranged.
The boson transformation X"-Xi'+ f (B'f=0)-

changes P into

g'(x)= p C,(x+ f +Xi')Z, (x; BXi'+ Bf, y"):.

This, implies that B~ is the topological quantum
number. The relation (6.7) is called the flux quan-
tizationn.

In the case of the crystal model, the Lagrangian
is invariant under the spatial translation $(X, t)

P(x+ o'. , f). There appear three Goldstone bosons
X„" (o'. = 1,2, 3) which are identified as acoustic
phonons. We use the notation Xi'= (X,",X,",X,").
The dynamical map takes the form"

Biz t in+f
(6.13)

induces the gauge transformation. When f has a
topological singularity, this boson transformation
induces the following changes in the vector poten-
tial a, (x) and the field strength E,„(x):

Ba, (x) = 9„f(x),
BE,(x) = [6,B„]f(x)=Gt „(x) .

(6.14)

The latter relation shows that 6E~„=0 outside of
the singuLar domain.

The topological constant B~ is given by

Bo= de Vf(x)

ds 5a

the number of Goldstone bosons is determined and
the structure of the dynamical map (and therefore,
of the symmetry rearrangement) is identified.
This structure of the dynamical map is the key to
tell us which topological constants should be quan-
tized. On the other hand, the choice of the sing-
ularities is not strongly restricted by the groups
G~ and G, . As was mentioned in Sec. I. the shape
of the singularities depends on boundary condi-
tions.

Let us close this paper by a short comment on
the Bohm, -Aharonov phenomenon. According to
the Gupta-Bleuler formalism, there exist a mass-
less (Goldstone) boson X" and a ghost b" in quan-
tum electrodynamics. It has been shown" that the
boson transformation

X"-X"+f

(6.11)
dS~'Gt „(x), (6.15)

Let the position x move along a closed path C.
Equation (6.11) shows that B„f does not have any
topological singularity. Since g~ is well defined
at each point x, we need the condition

Bc— ds'V f x — pgga (6.12)

where n,. are integers. This implies that B~ is
the topological quantum number, which is usually
called the Burgers vector in solid-state physics.

In general, when groups G+ and G, are known,

where C is a closed path going around the singular
domain and S is the surface enclosed by C. This
result shows that the topological constant B~ is
the electron phase difference in the Bohm-Aharon-
ov phenomena. From a somewhat different view-
point, the topological aspect of the Bohm-Aharon-
ov phenomena in Abelian and non-Abelian gauges
has been analyzed by Wu and Yang. '4
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