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We study quantum chromodynamics in the limit of an infinite number of colors N, at fixed coupling g, .
On a null-plane lattice, the field theory can be recast as an interacting string model. The resulting dual

string has internal degrees of freedom corresponding to the spin of the gluon quanta. The dynamics of these
spins is that of an isotropic Heisenberg antiferromagnet. In the limit N, ~ Oo, low orders in the dual loop
expansion are expected to give a good approximation to the spectrum {modulo effects such as spontaneous
symmetry breakdown). We find that, in this limit, all particles lie on linear Regge trajectories. Quarkless
gluonic states correspond to closed strings, and the spectrum is Lorentz invariant if the intercept of the
leading trajectory is 2. Open strings are terminated by a quark and an antiquark, and the p trajectory
must have intercept unity. Our limit preserves chiral symmetry: There is a J c = 0++ scalar degenerate with
the "pion" 0 +

~ Both these particles are tachyons, so chiral symmetry may be spontaneously broken by
string interactions. Our N, ~ao calculations are similar to zero-temperature expansions in statistical
mechanics. We expect them to give a qualitatively correct description of the ordered phase (confined quarks).
We suggest that there is a critical number of colors below which confmement is lost. If X, = 3 is close to
this criticalvalue (it is hoped, above it), the 1/W, expansion might not give quantitatively accurate results.

I. iNTRODUCTION

Understanding the spectrum and low-energy
phenomenology of hadrons remains an outstanding
problem in the context of local fiel.d theory. Though
the popular candidate field theory of the strong
interactions, quantum chromodynamics (QCD),
may accurately describe hard processes involving
few elementary quanta with large relative momen-
ta, collective effects responsible for confinement
and Regge behavior remain obscure. In light of
successful phenomenological descriptions of had-
rons as extended objects such as bags or strings,
it is of some interest to pursue the question of how
collective degrees of freedom describing such ob-
jects might arise in field theory.

Recently, a method has been devised for casting
ordinary field theory in the language of interacting
string theory. "' In this scheme the sum of Feyn-
man graphs for the field theory defined on a novel
lattice in light-cone variables is reorganized as a
sum of interacting lattice string graphs. ' This is
essentially a kinematical result. Each Feynman
graph may be alternatively interpreted as describ-
ing interactions among field quanta or as describ-
ing latticized strings interacting by breaking or
joining. It remains a dynamical question whether
low-order perturbation theory either in the field
theory or in the corresponding string theory accur-
ately describes the full system.

If the dual loop expansion is to yield an accurate
description of the theory, nonplanar graphs must
be suppressed and quanta with infinitesimal mo-
menta must interact strongly. In a theory like AQ'

theory"' there is no a priori reason for nonplanar
graphs to be suppressed. I ow-momentum quanta
are expected to interact strongly in an infrared-
unstable theory. In XP' theory this will be the case
only if X & 0, for which the Ham iltonian is unbounded
from below.

Quantum chromodynamics, being an infrared-un-
stable theory, is an ideal candidate for a string
theory. Furthermore, as pointed out by

' t Hooft, '
nonplanar graphs can be suppressed by considering
a large gauge group, i.e., a large number of col-
ors N, . In this paper, we discuss the string re-
interpretation of QCD in the limit N, -~. Whether
N, =3 is sufficiently large for our description to be
accurate for real hadrons is an open question. The
string interpretation also requires that the effect-
ive planar coupling N, g'be large. Thus we may
characterize our calculational scheme more con-
cisely by saying that we are working in the limit
of an infinite number of colors at fixed couPling.

In the N, -~ limit, the spectrum of the lattice
theory is expected to be well approximated by that
of planar fishnet graphs of transverse gluons in-
te racting at four- point vertices. The space-time
structure of such graphs is identical to that of the
corresponding graphs in neutral Xp theory and re-
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produces the transverse excitations of the conven-
tional string in the continuum limit. For 1V,-~,
color excitations are "frozen" out and quark loops
are suppressed, so that the only internal degrees
of freedom of the corresponding strings are those
deriving from the gluon spin. The dynamics of
gluon-spin excitations of the N, -~ QCD string is
identical to that of one of the two-dimensional
ferroelectric models discussed by Giles, McI er-
ran, and Thorn' in connection with the string rep-
resentation of charged &ti' theory.

For large N, and N~, ', only states corresponding
to closed strings (pure gluon) and open strings
terminated by quark-antiquark interactions have
finite energy in the continuum limit. The closed-
string spectrum is identical to one of the spectra
derived in Ref. 3. The effect of quarks on the ends
of an open string is to polarize the spins of the
neighboring gluons in such a way that the total spi. n
of the ground state is zero. This state is a chiral
doublet with tachyonic mass. This suggests the
possibility of chiral- symmetry breakdown. The
excitation spectra of both closed and open strings
have linear Regge trajectories and are typical of
a dual model in the zero-width approximation.

Just as in the generalized Veheziano model and
the Neveu-Schwarz-Ramond model, our QCD string
has a "graviton" in the closed-string sector and a
"photon" in the open-string sector. The graviton
is a spin-two state with no helicity+1 components
and the photon is a spin-one state with no helicity-
zero components, and I orentz invariance demands
that both these states be massless. If interactions
are ignored this requirement fixes possible con-
stants added to all (mass)' values in either sector.

We expect, however, that the breaking and join-
ing interactions allowed to first order in 1/N, will
not be consistent' unless this additive constant is
that determined by duality'*' or by a careful zero-
point-energy calculation. ' This value is propor-
tional to the number of sets of bosonic oscillators
characterizing the string spectrum. Unfortunately,
the graviton and photon will be massless only if
there are six sets of oscillators, whereas QCD in
the N, - limit in four space-time dimensions
yields only three: two for the transverse coordi-
nates plus one for the gluon spin. Our interpreta-
tion of this inconsistency is that the N, - limit
has frozen out too many degrees of freedom. For
finite N„some degreees of freedom will presum-
ably melt. It is also conceivable that another
large Nlimit such a-s the limit N„N&-~ with N, /
N& fixed, ' where N& is the number of light flavors,
may be consistent in four space-time dimensions.

The rest of this article is organized as follows:
In Sec. II, we present and discuss the Feynman
rules for QCD in the light-cone gauge. In Sec. III,

we calculate the appropriate fishnet graphs for
closed and open strings in QCD and present a dis-
cussion of the spectra in the two sectors. In Sec.
IV we present concluding remarks.

II. FEYNMAN RULES FOR QCD IN LIGHT-CONE GAUGE

In this section we give the Feynman rules for
QCD in a form most convenient for the null-plane
lattice formulation of the theory that follows. Two
ingredients are crucial: (i) The color indices for
the SU(N, ) gauge group are arranged so that the
powers in 1/N, correspond to the dual topological
classification of diagrams as emphasized by 't
Hooft4 and Veneziano, ' and (ii) the standard Iight-
cone variables

(2.1a)

x, =(x', x') (2.1b)

where

G,„=—B„A„—s„A„+g,[A„,A„t,
—= 9„+g A.„,

(2.3)

(2.4)

(2.5)

and for the quark q„. (and antiquark q") fields
with color indices (i,j =1, . . . , N, ) and flavor in-
dices (g =1, . .. , N&). To facilitate 1/N, counting,
the trace A„~~ is treated as an auxiliary (free)
field that is explicitly decoupled by the use of

1
pi i y

C

(2.6)

in the definition of D .
We now present the Feynman rules quantized in

the light-cone gauge

A+
v'2

(2.7)

which follow from a by-now-standard procedure. '
Following 't Hooft, ' the color indices can be. dealt

with immediately. The (planar) gluon propagator
is diagonalized in the color indices

(2 6)

as represented in Fig. 1a by the two solid lines
(or strip). Similarly the (planar) quark propagator,

are used to make contact with the quantized string
(in & =ix', o = P' variables) of GGRT. '

We begin with the standard QCD Lagrangian

(2.2)

for the anti-Hermitian matrix (i,j = 1, . . . , N, ) gluon
field
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~ .(P),(,. P"g"'+P"g "
z(~ P+m)
P —I +ze

(2.10)

(2.11)

where &"'=0 due to our choice of gauge. These
propagators couple to the standard vertices [Fig.

I/ pp

b) D(p, rn() )
2

P.yPfT
V4

a, z' . (p) = 6,"6. u(p') (2.9)

is diagonal in color (solid line) and flavor (da, shed
line) indices (see Fig. lb). Likewise, (planar)
vertices have oriented indices connected by Kron-
ecker I5 s. The indices are indicated in Fig. 1c-e
for the four-gluon (V,), the three-gluon (V,), and
the one-gluon-quark (V, ) vertices. The singlet
gluon-quark piece of V, removes the trace A„
field, but it is nonleading in 1/N, .

A consequence of utilizing these planar vertices
and propagators is that for each Feynman diagram,
we must add up all the interchanges of the indices
(twists) to get the full contribution. H'owever, gauge
invariance only requires that each color line is
connected to form a closed loop or trace. Thus we
see, as noticed by 't Hooft, that the only effect of
color and flavor for a diagram with c closed color
loops and f closed flavor loops is an extra factor
of (N, )'(iV&) ~. As discussed in the literature, the
dual topological classification of diagrams is an
immediate consequence. ' For our purposes we
only need to notice that for a given order in g,'
the dominant diagram as N, -~ is planar with eo
internal quark loops.

The momentum dependence of the propagators is

V, =ig, y„.
(2.12b)

(2.12c)

%e may also separate the gluon into its transverse
(A, , i=1, 2) and longitudinal (A„, Zz =+) pieces.
Since 6 ' '= 0 and g„=0, we see that the four-
gluon vertex never transmits longitudinal gluons,
and thus

(—z)
P'+i &

(2.13)

is the only term in the propagator which couples
to these vertices.

For the analysis of Sec. III, we need the Feyn-
man rules expressed in the variables 7'= ix', P',
x, i..e., we must Fourier transform the variables
P and P. The gluonic fishnet graphs we calculate
in Sec. III involve only transverse gluons and the
V4 vertices. Since there are no factors of mo-
mentum either in the V~ vertices or in the trans-
verse gluon propagator enumerators, ,for these
graphs this transformation is precisely the same
as in neutral scalar theory':

,, g(P'T) P' P+

(2.14)

As we shall see in Sec. ID, the gluon-spin depen-
dence of these graphs will yield a 6-vertex ferro-
electric model ~

'
The transformation to light-cone variables for

the fishnet graphs involving quark lines is more
complicated, because the fermion propagator has
momentum factors in the numerator. In particular
there is a P, , P independent piece of the fermion
propagator whose fourier transform is propor-
tional to

l(c) -(d)]:
V =zg, '(2g, „g —g„,g„-g „g„), (2.12a)

V, =i g, [gp„(k q)1 +gp „(P 0)—„+g„„(q—P)p],

V 6(~)6(x,), (2.15)

p, k v, S

= v""p

I

I pi p.= Vi
Ng '

I

which, when sandwiched between two transverse
gluon vertices, gives a "seagull"-like structure.
In Sec. III, we shall see that the strong-coupling
fishnet diagram involving one quark line and one
antiquark line contains only these seagull ver-
tices. The only. nonzero piece of a fermion pro-
pagator sandwiched between two such seagull ver-
tices is the piece

FIG. 1. The "planar" propagators and vertices with
clockwise orientation of color flow. Solid bnes indicate
Kronecker (5 functions 6,' for color and dashed lines
indicate Kronecker (5 functions 6 ~ for flavor.

iy P'
P' —M2+ iq ' (2.16)

so for these graphs the transformation to 7, x,
variables again is very like A. P4 theory.
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In order to systematically carry out the trans-
formation for quark lines, it is easiest to go back
to the Lagrangian and recognize that the quark
field can be written

9'= 0 +9' (2.17a)

(2.1Vb)

/+am
q(+)

2 (2.17c)

g effective
&

(- )t + ~ (- )9
gUBIks 2 g + s +

i ( )t , . - 1 (1 1)
+ —q' 't(iV'8~ —ig, 1'. A+M) —

~

———
~22/ s)

&& (i &'
Bq +ig, & ~ A+ m) q' '. (2.18)

From this effective Lagrangian we read off the
(two component) quark propagator

+i2P'
&' —m'+ iq

(2.19)

and the quark-antiquark seagull vertex (see Fig.
2)

(2.20)

The q" variables do not involve derivatives with
respect to x', so they can be explicitly integrated
out."

The result of this procedure is an effective quark
Lagrangian involving only the two component q( '

fields:

where Q' is the total Q' carried by the quark and

adjacent gluon. %e also observe that the trilinear
quark-antiquark-gluon vertex involves transverse
coordinate derivatives, and we do not extract its
structure, a,s it will not be needed in the remain-
der of this paper.

The spin structure of the quark seaguB vertex
is amusing in the limit N, -~. First, notice
that there can be no flip of S ~between the gluon
line and the qQ.ark line. This is obvious because
the gluon spin flip must be +2 units and the quark
spin flip must be +1 units. Secondly, in quark-
gluon scattering in the N - limit, the dominant
seagull vertex is the one where the quark and in-
coming gluon are adjacent in the sense of order-
ing of y matrices [see Fig. 2(b)j. Clearly, this
vertex will be nonzero only if the incoming quark
and gluon spins are antialigned: the interaction
involving parallel incoming spins is down by
1/N, since the gluon must couple to the nonadja-
cent y matrix.

%'e close this section with a brief discussion of
the remaining vertices, which will not occur in
the leading fishnet graphs calculated in Sec III.
The trilinear vertex involving three transverse
gluons'will be complicated by transverse coor-
dinate derivatives but is otherwise straightfor-
ward. The one involving two transverse and one
longitudinal gluons requires a bit more discus-
sion, because the propagator for the longitudinal
gluon

(2.21)

has a piece independent of P, and P . Thus, its
Fourier transform will be proportional to

5(~) 5(x,), (2.22)

)
2

p ( p++ p+)
f't f

p +

p+

(b) ]

FIG. 2. (a) The planar representation for the quark-
gluon "seagull" for light-cone quantization. (b) Two
seagull contributions to quark-gluon se attering. %hen
inserted in larger graphs, the second wiQ be order
1/N~ compared to the first.

so that two three-gluon vertices joined by this
piece of the propagator will have the space-time
structure (in x' and x, ) of the four-gluon inter-
action. In fact, in a similar fashion as in the
treatment of the corresponding problem in the case
of fermions, the easiest way to handle systemat-
ically the longitudinal gluon is to go back to
the Lagrangian and recognize that it is free of x'
derivatives of A. , so A can be integrated out. Al-
ternatively, one can identify the induced vertices
by separating from our propagators [Eqs. (2.10)-
(2.11)] the "instantaneous" pieces that contribute
as I' -~. It is useful to note that the induced
four-gluon and 2g-two-quark vertices only involve
transverse gluons and not P~ factors. This gives
a decoupling of the spin and orbital dependence in
a particular Lorentz frame which accounts for
the factorization of the spin dynamics from the
orbital dynamics. Moreover, no higher-point
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vertices are induced.
Vfe shall not go into the details of this procedure

except to mention a caveat associated with the
spurious singularities at P '= 0 in this gauge.
These singularities are gauge artifacts and are
presumably not present in gauge-invariant quan-
tities. This has been demonstrated in great detail
in the case of two-dimensional QCD, " and we ex-
pect no special trouble in four dimensions. It is
important, however, in a specific calculational
framework, which uses non-gauge-invariant quan-
tities in intermediate stages of the calcuLations,
to regulate these singularities in a systematic
manner. One possibility is a principal-value
prescription. " Qur calculational framework util-
izes a lattice inP', so we have a natural regu-
lator, namely simply to exclude the P'=0 mode.
But this we describe in more detail in the folLow-

ing section.

III. THE SPECTRUM OF BARE STRINGS IN QCO

The string representation of QCD emerges clear-
ly when the field theory is regulated via the intro-
duction of a two-dimensional lattice in the light-
cone coordinates v' and P'. In each graph, we re-
place integrals over & and P' by sums ove.r dis-
crete variables:

7'=ka, k =I, 2, . . . ,

P'=lb, l =1,2, . . . .
As was the case in the P' theory discussed in Ref.
2, this prescription results in quark and trans-
verse-gluon propagators and vertices which are
dependent only on the ratio of lattice spacings T,
=-b/a, which wi22 be identified as the string ten-
sion 2/2na'.

In A. P' theory, the exclusion of r = 0 and P' = 0

from the lattice sums served as ultraviolet and in-

frared cutoffs, respectively. In particular, the

exclusion of P' =0 can be seen to correspond, in

the continuum limit, to a principal-value prescrip-
tion for performing integrations over the light-
cone measure dI /I . In the scalar theory, the

correct field-theory infrared structure is re-
covered in the continuum limit as an effect due to

the summation over large numbers of lattice modes

near P'=0.
The P'=0 singularities of the @CD Feynmanrules

are more severe and more subtle. As we have

seen in See. II, the longitudinal gluon propagator
has an extra factor 2/P' relative to that of the

transverse modes. It can readily be seen that this
is related to our incomplete specification of gauge
(A' =0), which leaves a. residual group of x'-inde-
pendent gauge transformations. In our Fourier
representation these affect only the longitudinal

P+ =0 mode. For the present, we exclude P' =0
longitudinal exchanges from the lattice theory.
The question of whether, by summation over modes
near P'=0, we recover the correct residual gauge
invariance in the continuum limit is not fully an-
swered. "

In the cutoff lattice theory we have now defined,
we note that, as discussed in Ref. 2, there are on-
ly a finite number of graphs for any Green's func-
tion. carrying finite P' over finite 7. Because each
propagator is Gaussian in the transverse coordi-
nates of its end-point vertices, integrals over the
transverse coordinates are finite. Therefore, the
lattice theory has no divergences.

For N, ~, g, ' fixedonthe lattice, the dominant

graphs are those with the maximum possible num-

ber of gluon four-point vertices arranged in a pla-
nar configuration. Each gluon line carries the min-
imum P'=b and propagates the minimum time ~7
=a. Graphs with three-point vertices or closed
quark loops are all down by powers of N, . Within

the set of dominant fishnet graphs, at a given total
P' =I&, there are several topologies which are of
the same order in ~,. These correspond to the

propagation of one or more disconnected cylindri-
cal fishnet graphs or of a planar fishnet graph ter-
minated by quark-antiquark interacting with the

gluons via the seagull graph discussed in Sec. II.
Planar fishnet graphs terminating in gluons are
suppressed by one power of N,I„'per time step.

The Feynman amplitudes corresponding to cylin-
drical and planar gluon fishnet graphs are inter-
preted as functional integrals describing the prop-
agation of bare (noninteracting) closed and open

strings (see Fig. 3). Graphs in which disconnect-
ed fishnets merge or in which a fishnet splits are
down by a power of N, for each point of splitting or
joining and will be considered as interactions
among the strings described. Each such amplitude

is a product of integrals over the transverse co-
ordinates of vertices and sums over the color and

spin degrees of freedom of the gluon "1inks" of the

fishnet. The factor arising from transverse co-
ordinate integrals is precisely that encountered in

g, g (e+t) a

FIG. 3. A fishnet graph reprsenting the propagator
of a single closed string. Vertices on the lines labeled
"A" are to be identified.
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(a)

(b3

FIG. 4. The spin-vertex weights of the @CD fishnet
graph. The four vertices in (a) have net polarization in
a planar channel, those in (b) do not.

Q4 theory and describes the propagation of a neu-
tral string. Because the N, -~ limit freezes out
the color degrees of freedom and leads only to an
overall factor N, where A is the number of unit
cells in the fishnet, the only nontrivial internal
symmetry structure is that due to excitations of
the transverse gluon spin degrees of freedom.

Each link has two possible transverse spin states.
Four spins are coupled at a vertex with the factor

& (r
«133 «2«4 2 «1«2 «3«4 «1«4 «2«3

It is convenient to characterize the spin state of a
link by its ~ component and to represent the two
possible orientations of each link by an appropri-
ately directed arrow. The possible vertices and
their associated weights are as shown in Fig. 4.

' Note that, aside from the negative sign of some. of
the vertex weights, the internal spin dynamics are

, identical to those of the statistical-mechanical "I"
model"" (see Fig. 5), the analysis of which has
been done in Pef. 5.

For the closed string, all negative signs cancel,
and we can simply quote the spectrum of the closed
string from Ref. 5, Eq. (5.7), by setting «1 =0:

degrees of freedom are fermionic variables and
contribute together only one bosonic degree of
freedom. Thus f=3 for four dimensions. The os-
cillators a, a' carry 1 units of J„ the oscilla-
tors b, &' carry none.

The Fock space defined here contains too many
states since they are defined with respect to an
arbitrary choice for the origin of the o coordinate
of the closed string. The generator for transla-
tions in o is

Q (a „a„+b„b„—a, '„a„'—b'„f1'„) —kl, (3.3)

and only states annihilated by this operator are
phys ical.

Before turning to a detailed analysis of. the spec-
trum of closed strings, we consider the effects of
the charge conjugation and parity operations on
string states. The states of the field which the
fishnet graphs propagate correspond to an oriented
sequence of transverse gluons at various points in
x~. The orientation of the sequence may be de-
fined, for example, by fo1.lowing the linking of
qua. rk (lower) indices to a,ntiquark (upper) indices
of the gluons A~. Under charge conjugation C, each
gluon in the state is reproduced with the same spin
and x, but with phase -1. 'The orientation of the
string is reversed, because quark and antiquark
color indices. are transposed. Therefore, the top-
ological quantum number E, which was defined in
Ref. 2 as a winding number of an effective boson
field, is also reversed.

Parity is a little more delicate. This is because
the light-cone dynamics do not admit a good parity
operator:

(M'"'")' = 2««T (&'+ &')—
6

P(P')P ' =P (3.4)

+ 4««T, Q (a „a„+a'„.a„'4 f« „b„4-b' f«' ),
(3.2)

where the a, a' are transverse coordinate os-
cillators and b, b' represent spin excitations
with the total spin S'=0. & and & take the values
0, +1, +2, . . . . The total & component of spin for
the state is 2k, and l is a topological quantum num-
ber. f is the total number of bosonic degrees of
freedom: for four dimensions the two gluon spin

(a3

so a "momentum" I is interchanged with the Ham-
iltonian I' . However, the intrinsic parity of a
state may be determined by its properties under
reflection Ao in the && plane:

—e off 47 y+0 (3.5)

which leaves I'„, P', and x' invariant, but reverses
the signs of I', and J,. A state at rest of spin-par-
ity ~Z, m, + & satisfies

a, ~z, m, +&=~( )™~z,m, +&. (3.6)

Now let us consider the first few states in the
closed-string sector. We label the oscillator vac-
uums by the ket ~k, & ). The lowest state is for k
=l =0, for which (1/2««T, )M2= f/6. Since there-
are an even number of gluons in this state, and no
topological quantum number, its charge conjuga-
tion is +1. Its parity is +1, .so we have

FIG. 5. The vertex weights of the statistical-mech:—
anical I model. The weight v is an arbitrary para-
meter.

M2gP C 044
2m'To 6 (3.7)
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M
27t Tp

J PC

'I

TABLE I. & assignments of the lour-lying states of
the @CD string.

tioned, a string may a priori terminate on either
quarks or gluons, As discussed in Ref. 2, the en-
ergy difference between the gluonic open string and
the gluonic closed string has a term

Closed
—(lnN, g, ' —C), (3.6)

Open

p++

2++ P++ P+t

4++ 3 2++ y P++

4++ 3 2++ 2++ 2+ y P++ P +

p++ p + p+

1+,1

2++, 2 +, 2, 2

2++ 2 + P++. P +

where C is a pure number. Thus, for ln, N,g, '
—C & 0, this energy difference will be infinite as

Thus, for sufficiently large N, g, ', the glu-
onie open strings will not be in the finite energy
spectrum, This is in fact one necessary condition
for confinement since the gluonic open strings
would have nonet color quantum numbers.

Ther'e remains the possibility of terminating the
open string on quarks. Since the quark fields are
fermionic it is natural to assign quark lines half-
integral units of P':

P;„„„=(k + —', ) aT, , k = 0, l, 2, . . . .

The next excited states are 4' = +1, I = 0, and & = 0,
& =+1. The first states have helicity +2, even
charge conjugation, and even parity. The second
have helicity 0, even parity, and opposite charge
conjugations. Since there are no helicity +1 states,
Lorentz invariance requires this state to be mass-
less, which would be the case iff were 6 rather
than 3.

The higher states (see Table I and Fig. 6) do not
seem to have incomplete rotational multiplets even
in four dimensions. The connection between the
zero-point energy and f is only important when in-
teractions are considered, so for the noninteract-
lng approximation, %'e may regald 'the zero-point
energy as an adjustable parameter fixed to be 1 by
the requirement of Lorentz invariance.

Next we turn to open strings. As we have men-

7fith this choice, the open string diagram in Fig. 7
has the same number of couplings +g,' per unit
time as the closed gluonic string. Thus there will
be no lying, ' contribution to the open-string—
closed-string energy gap. However, a quark bare
mass will contribute to the energy gap and can be
adjusted so that the pp open string has a finite ex-
citation energy above the closed gluonic string. If
we assign quark lines integral units of P', the gaps
will have the lnN, g, ' contribution as well.

The leading quark-gluon coupling is the planar-
seagull type coupling shown in Fig. 2. This vertex
separately conserves the quark and gluon spin; the

J
3

(b)

0 I 2 4 5
m2

2' To

FIG. 6. Closed-string trajectories.

7 8
FIG. 7. Open fishnet graphs terminated by qq for (a)

an even number of gluons and (b) an odd number of glu-
ons.
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+2@1', a ~ a +b b (2.10)

where J' is the total z component of spin including
both quarks and gluons:

J =S ~„„+S,;. (3.11)

According to the arrangement of quark spins, there
are four classes of trajectories:
Each of these classes contains identical mass
spectra and J' assignments. The parity and
charge conjugation assignments will be different,
however.

The antiparallel quark spin states occur in an
unphysical propagator. The lattice propagator has
a factor (-1)", where N is the number of time
steps (see Appendix). In the continuum limit N-~,
there is a rapid oscillation which may effectively
damp out the propagation of these states. We
might hope that they will disappear from the fi-
nite energy spectrum. However, the correct in-
terpretation of these lattice time oscillations will
require a study of the effects of interactions, i.e.,
a study of 1/N, corrections, which have not yet

coupling of a spin-up quark to a spin-up gluon is
zero. Thus the boundary condition is that the gluon
adjacent to a quark end has its spin antialigned
with the quark spin and neither spin flips through-
out the diagram.

Just as in Befs. 2 and 5, the simplest way to cal-
ulate the open string spectrum is to calculate the
partition function and rotate it by 90' so it is a
closed-string propagator between definite initial
and final states. Iri the Appendix we use this trick
to calculate the open-string spectrum. The result-
ing spectrum can be summarized by writing

Jg 2
(M"'")' = 2vr—'2 24

V2Jpc=0++, 0 +, 0', 0
27Tp

(3.12)

The first excited states for the open string cor-
respond to J'=+1, which can be realized with S,',-

Lorentz invariance requires that this state be
massless (f=6 as in the closed-string ease). The
charge conjugation of this state is -1 (the gluons
are even and the qq system odd under C), and it
may be easily seen that sums and differences of
the two states at fixed J' have opposite intrinsic
parity, thus the assignments

M27 c= 1 I+ t =1-—=0.
6

been pursued. Henceforth we shall restrict our
attention to the parallel quark spin states which
have good physical propagators.

There is one more doubling that is a consequence
of the structure of the diamond lattice. The funda-
mental transfer operator spans two time units. As
can be seen by inspection of the fishnet graph for
an odd number of particles [Fig. V(b)], any two-
step slice is not symmetric under the interchange
of roles of the two ends. Since we are interested
in the classification of eigenstates of the two-step
transfer operator we must distinguish between the
qq state, where the q is at one end, from the one
where it is at the other. Charge conjugation clear-
ly takes the first case into the second. By taking
sums and differences of these two states one gets
states of opposite charge conjugation. Note that
for an even number of particles, the two ends are
indistinguishable and this extra doubling does not
occur.

The lowest state has J'= 0 and no oscillators ex-
cited. Since we are considering only S,~ = +1, we
must have S'„„,„=+1, and hence an odd number of
gluons. Because of the extra doubling for an odd
number of particles, the charge conjugates of
these states are distinct states. Also the null-
plane reflection operator interchanges the two spin
configurations. Thus by taking linear combina-
tions, we see that the quantum number assign-
ments of these states is

I 2
M

2~ To

FEG. 8. Open-string trajectories.

We refer the reader to Table I for a listing ef
quantum number assignments for some of the high-
er excited states (see also Fig. 8).

We close this section with the observation that
these spectrum calculations preserve chiral sym-
metry. In our approximation, the chiral charge
Q, is simply proportional to the total quark spin
S,,-. Thus we can understand the parity doubling as
a consequence of chiral symmetry. It is an in-
triguing possibility that the tachyonic mass of the
spin-zero chiral doublet 0", 0 ' may be responsi-
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ble for the spontaneous breakdown of this ehiral
symmetry. If the vacuum is a condensate of the
0" particles, the "pion" 0 ' would be a Goldstone
boson at zero mass.

IV. CONCLUSION

In this paper we have carried out a calculation
of the spectrum of @CD in the dual string approx-
imation following the methods outlined by one of
us." This approximation is characterized by the
limit N, — with g,2 fixed. The resulting spectrum
is that of a heretofore unknown dual string model
which we call the @CD dual string. All states lie
on linear Regge trajectories. Open strings are
terminated by a, quark and antiquark, and their
Hegge trajectories all have the same universal
slope n'= l/2mTo. Closed strings have trajectories
with slope &

n'. The calculational procedure is not
manifestly Lorentz invariant, so it is nontrivial
that the spectrum is consistent with Lorentz in-
variance, even though this consistency demands a
massless spin-two particle in the closed-string

-sector, and massless spin-one states in the open-
string sector.

Our limit is also chirally invariant, but this chi-
ral symmetry is realized in a linear way with par-
ity doubling. This linear realization of chirality
may be a reflection of an inappropriate bare vac-
uum, since among the spin-zero tachyons there is
a, Z~c= (0 ', 0") chiral doublet, suggesting that a
better vacuum may lead to spontaneous breakdown
of chira, lity.

In addition to the virtues of dual models, our re-
sults also share the flaws of previous dual models.
We have mentioned tachyons and the graviton-pho-
ton problem. Another potential problem is con-
nected with duality. The zero-point energy calcu-
la,tion in the manner of Brink and Nielsen ' is not
consistent with Lorentz invariance unless there
are three additional sets of boson oscillators over
and above the two sets- corresponding to transverse
coordinate exeitations and the one set correspond-
ing to gluon-spin excitations. Thus it is likely that
the interactions corresponding to breaking strings
will not be consistent with duality unless one in-
creases the number of degrees of freedom, e.g. ,
by increasing the space-time dimension: our N,- ~@CD string does not have a critical dimension
of 4.

We, of course, anticipated these dual model
problems since our calculational procedure builds-
in typically "dual model" approximations: most
importantly planarity, and the absence of finite
momentum constituents —' th'ere are only "wee" par-
tons in our limit. Our limit almost certainly en-
forces the conditions which Mueller has shown lead

inevitably to the graviton-photon problem. " And
then it is hardly surprising that some of the daugh-
ter trajectories which have positive intercept have
tachyons as their lightest members. Indeed, it is
encouraging that the highest trajectories —those of
the graviton and photon themselves —do not have
such tachyons.

Now, ha,ving identified in a precise controllable
way the "dual limit" of QCD, we may try to iden-
tify the features left out of our approximation and
to assess whether they have a chance of solving
the problems of our limit.

We would like to begin this discussion by return-
ing briefly to the caveat associated with our lattice
regularization of the P'=0 singularities due to the
exchange of longitudinal gluons. As we have men-
tioned, these singularities are gauge artifacts.
When we set up our lattice we simply excluded the
troublesome points. We could, for example, have
chosen to retain a finite P' = 0 contribution to the
induced four-gluon vertex. Such a choice would
not alter Feynman graphs with finite numbers of
vertices in the continuum limit, and represents
an inherent ambiguity in setting up our lattice ver-
sion of the field theory. However, such vertices
would contribute to the leading fishnet graphs and
lead simply to a, modification of some of the ver-
tex weights of Fig. 4. The resulting six-vertex
model for the spin degrees of freedom has the
long-wavelength structure of the anisotropic Hei-
senberg antiferromagnet, with anisotropy propor-
tional to the strength of the induced vertex. For
the closed string, the only place this anisotropy
shows up in the spectrum is in the coefficient of
the terms k' and f' [see Eq. (3.2)]:

(4.l)

A little experimentation reveals that unless n =0,
there are incomplete rotational multiplets at more
than one mass value, so one cannot have Lorentz
invariance unless & = 0. Thus, the n = 0 regulation
procedure is the only one of this class which gives
physically consistent results in the leading-order
lattice calculations and is therefore to be pre-
ferred. We suspect that the problems of the dual
limit are associated with the ~,- ~ limit itself and
not with the regulation procedure we have chosen
in order to define this limit.

We turn first to the old "kinematical" problem
of the critical dimension. As we have mentioned,
duality argument suggest @at we need three more
sets of boson oscillators than our limit has allowed
to survive. This is certainly an improvement over
the 22 extra sets the generalized Veneziano model
requires ox the nine extra sets the Neveu-Schwarz-
Hamond model requires, but it is still not very
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'FIQ. 9. The insertion of a single quark loop {solid
line) in the fishnet.

satisfactory. We suspect the resolution to this
problem may be that our limit has frozen out the
quark-spin degrees of freedom. The limit N, - ~
with Nz/N, fixed suggested by Veneziano' does not
have this feature. In this different planar limit,
internal fermion loops are included. The oriented
color flow orients the quark loops so the only new
degree of freedom is the quark helicity. The in-
ternal quark loop must close immediately in a
single diamond as indicated in Fig. 9. The sum
over all flavors enhances the loop by a factor

4%IX mf (4.2)
f

which is not small compared to 3, the number of
colors.

The presence of quark degrees of freedom
changes the internal symmetry model from the F
model to a more complicated vertex model. There
are now four spin states (s 1, s &) which couple to
each other through the vertices given by the Feyn-
m3n rules. To our knowledge this model has not
yet been solved, but there is a chance that this
modified large-N limit will help with the critical
dimension problem.

The problems of tachyons, absence of hard-par-
ton structure, Bnd the graviton-photon, may be re-
garded as dynamical in the sense that we expect
their resolution to lie, if at all, in a nonperturba-
tive departure from the dual limit.

It is possible that the tachyons are associated
with a bad guess for the bare vacuum. We hope
that, starting with a better vacuum, the 1/N, ex-
pansion will be well defined, and tachyons will be
absent. This resolution has been suggested by
Bardakci Bnd Halpern, "Bnd is particularly appeal-
ing since it could explain the origin of the spon-
taneous breakdown of chiral symmetry. Since we
have at hand the full QCD Hamiltonian, this ques-
tion may be pursued using variational or other
nonper turbative techniques.

On the other hand, the absence of hard-parton
structure and the graviton-photon problem, are
directly linked to the dual approximation we have

g
2

y Strong Coupling

~

Limit

I

I

l

)

X) Dual Limit

't Hoott Expansion
l

I

&c

I'IG. 10. Three regions of the g~2, Ã~ plane in which
the nonperturbative structure of @CD has been studied:
the strong-coupling limit {vertical line), the 1/N, ex-
pansion of 't Hooft {hyperbola with g~ N, = constant), and
the present dual expansion {horizontal line).

I3 =g(N ) Tos, (4.3)

mhere g- as N, —~ and is in principle calcula-
ble. We would naturally expect such nonplanar ef-
fects to be most important for low-lying states.

It should be mentioned in this context that bary-
ons do not have a simple planar description.

made to QCD, and these difficultieswillnot be re-
solved without a rather drastic departure from our
dual limit. It is he 1pful in this regard to compare our
limit to 't Hooft's N, - ~ limit at fixed N, g,s (Hef.
4) (see Fig. 10). Both limits have planar topology
and no internal quark loops. In 't Hooft's limit,
at least for small N, g,', confinement is lost, but
there is a hard-parton description. Our limit is
large N, g,' and maintains confinement but loses
hard-parton structure. The real hadron structure
is undoubtedly determined by intermediBte N, g, ,
which is a very hard region to reach calculation-
ally. Again we may hope that a variational ap-
proach guided by both small and large N, g,' re-
sults may yield an approximate picture with both
confinement and hard partons. "

By the same token, one may hope to. take nonpla-.
nar effects into account. This would give thickness
to the string since the gluon quanta can leave the
"world sheet" of the planar diagram. We might
thereby make contact with bag model phenomeno-
logy. The thickness p of a long hadron in the bag
model" is characterized by the bag constant p-8 '~'. In our model the thickness would be char-
acterized by 1/N;. p-f(1/N, )T, ' ' with f(0) =0.
Thus me expect a relation of the form
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Briefly, the "baryon" state for SU(N, ) must have

N, quarks. Thus, the physically interesting case
for baryons is N, =3, for which nonplanar effects
presumably cannot be neglected.
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APPENDIX: DETAILED CALCULATIONS

A. The spin transfer matrix for the closed string

The propagator for the closed string is repre-
sented by the fishnet graph of Fig. 3. Since the
four-gluon vertices have no transverse-momentum
dependence, the propagator is a product of space-
time and color-spin. factors. The space-time fac-
tor gives the usual transverse excitations of the
relativistic string . The color degrees of freedom
are frozen out by the N, - ~ limit, so that only the
spin structure is nontrivial. In this appendix we

analyze this spin structure.
We first represent the possible vertices using

the 8'basis for the spins of incoming gluons. We

use an upward-pointing arrow to indicate spin up,
a downward one to indicate spin down. The con-
straint of spin conservation is just that two arrows
enter and two arrows leave each. There are six
possible vertices as shown in Fig. 5. The relative
weight associated with each vertex is determined
from the Feynman rules; those in Fig. 5(a) have
weight o =&, those in Fig. 5(b) have weight -1.
The spin factor for the fishnet graph is just equal
to the sum over all allowed arrangements of ap-
propriately weighted vertices. This counting prob-
lem is identical to the well-known statistical-me-
chanical F model, ' which has been studied in this
context previously. '

This F model may be solved by diagonalizi. ng the
corresponding transfer operator. This is the 2~

x 2 matrix describing the propagation of a rom of

During a single time step the gluons interact in
independent pairs. The interaction of a pair i, i+ 1
is described by the matrix

-1+v 1+vr,. = —+ +v((T o' i+0 o i), (A1)

where o',. =-, (o",.bio', ), o',. are P.auli matrices acting
on the ith gluon spin. For QCD, v =2, but we keep
the formulas more general. Our vertex weights
are not positive definite and do not correspond to
physical Boltzmann factors. However, the trans-
fer matrix T'. , with weights +1, v, is simply re-
lated to (Al):

(A2)

The full transfer matrix for two steps is simply
a product of factors like (Al). The pairing is al-
ways 0, with a„,. In the first step i is odd, in the
second z is even:

r= II r, IIr,. = II. o,r' IIo., (A3)
i even i odd i even i even

where T,. is the pair transfer matrix involving Oi

and 0,.„, and T has positive-definite weights.

8. Partition functions for open strings in terms of
closed-string propagators

By rotating the fishnet for an open-string parti-
tion function by 90', we see that it is identical to
a closed-string propagator between definite states.
When the open string terminates on quarks, the
end gluons are completely polarized and we identi-
fy four open strings with end gluon spins 4k, 44,

The partition functions for the last two are
simply related to the first two. One also has dif-
ferent boundary conditions depending on whether
the total number of gluons M is even or odd.

Consider first an even number of gluons IFig.
7(a)]. The partition function Z„„(00)for antiparal-
lel end g&uons can be represented, with obvious
notation by

M spins over a single "time" step and is the lat-
tice analog of the operator e ~, where H is the
Hamiltonian of a one-dimensional quantum-spin
system. There are two alternating inequivalent
horizontal rows of vertices on the diamond lattice,
so we focus on the transfer operator which propa-
gates over two time steps. The amplitude for prop-
agation over N time steps is

g„„(0f)= 000k''' 00 II r (r)" ' ' 0kf4 4t =(-1)~~' tt0t 00 II r', (r')~~' '
i Odd Odd

(A4)

(where the arrows in the bra and ket vectors denote N spins) whereas the partition function for
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parallel end gluons is agonalizing the Hermitian operator

z„„(H)= kfkt ' 0t II T, (T).~/2 '
Odd

II T 0(T 0)~ /2 '
odd

(A5)

To P (To)1/2 II TQ II (TO)1/2
f pdd f even f pdd

which has the same eigenvalues as T'.

The expressions for an odd number of gluons are
slightly different:

~ ~

I

'"-"'I ~

( 1)" '(004k k0 I(T')'" " 'Itkfk'''tk&

and these can be chosen orthonormal. Then the
eigenstates of T' are

I»= II(T') "'I»'

(A6)

z„,(44) =(tk0k 0k IT'" " 'I4k44

(yy)) .y) I(TO)((2 1)/2 It)y). .. yy& (A7)

For M-~, only the largest eigenvalues of the
transfer matrix are important. First imagine di-

The identity may the be resolved:

I= XHgA. = Tf '
A. A T

f odd f pdd

Using (A8), (A4) —(A7) may be written

(A8)

0z....((((=(-(("*P~,
"'- (~~" t( ff z; ~ ~ fl z; ~i" ~i),

f odd
, f pdd

z...„((4)=Q t,"~* ' a( (( ll z", x x T', (( (4),
f pdd pdd

z ((i)=(-1)"~'Q t '" "~'(k(k0 (( z)(x fit", (( (t),pdd
f pdd

z „((i(=g ~,
'"- ~1'(~~(( ~~ ~)(~ fir", &( &i);pdd

,
f odd

(A4')

(A5')

(A6')

(A7')

and we see that only t~ such that

t /t &oonstsnt /2(
p

need be considered.

I

The proportionality factor in (A10) follows from a
diagonalization of T' using the Bethe ansatz. The
quantization (A10) corresponds to a, restriction on
the admissible wave functionals: they must satisfy

C. The form of Z determined by the Bose-Fermi equivalence

27T
e[y(v)]=@ y(o)+ (A11)

As discussed in Ref. 5, in the continuum limit,
lnT is equivalent to the Hamiltonian for a free
boson field defined on a cylinder. Thus one may
think of the closed-string propagator as a function-
al integral:

T P+/ Tp

Dp exp ——' dr ((t1'+ Q"), (A9)
0 0

z

where the conditions on (t at 2' = 0, and 2 = T are
appropriate to the initial and final states. In this

0

equivalence, (t1 is essentially the spin-wave density.
Its integral must assume the quantized values (pro-
portional to the total spin) (with -cosy, = 1 —1/2v2):

P /Tp ~

T, (((1do =i'2[2(2/ —p, )TO]t/2 k =0, +1,+ 2, . . . .
0

(A10)

2@i
,(P'/T, ) = (t1,(0 (A12)

and we must accordingly write (A9) as
P+/ Tp ~g e"' DP, exp —' d d&(jb, 2+ (tt, 2)

l 2 0

(A13)

where 8, depends on the initial and final states.
Now different l sectors are related by a simple
shift of Q:

2&l vT0
41( t ) 40( t )

[2( )T ]1/2 Ps

For the closed string, this quantization admits a
topological quantum number l, which characterizes
the boundary condition at o=P'/TO:
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and (A13) becomes D. The Bethe ansatz for the diamond lattice

)g
' 2p Tp 2e &exp —

( )2~, I &
One works within the sector with m &N/2 down

spins. Denote their locations by x; so a particular
state may be represented by

T T P+/ Tp

exp —— d& do' +
p p

(A 14)

The Bose-Fermi equivalence does not tell us the
phases e„and we must obtain &hem from the or-
iginal transfer matrix. All the initial a,nd final
states in (A4) —(A7) correspond to locally zero
spin-wave density, i.e., they are characterized by
dt), (o, 0) = @,(o„T)= 0, and these conditions complet-

elyy

determine the functional integral in (A14). In-
spection of (A4') reveals that each term is positive
definite, so for this case, 8, = 0, and the partition
function can be immediately written down:

00 00 ]
rreven ~ (1 xn)mi-~ ti dal

(A15)

where x = e ' " and we have dropped bulk and
boundary terms. [We remind the reader that in
(A15) we have performed the Jacobi-imaginary
transformation which effects the rotation back 90'.]
To calculate the other partition functions we need
to know more about the form of the wave functions.

The generalized Bethe ansatz for the eigenfunctions
of T is

e

l A k(ap( y )+]+ ~ + Erp(m)xm)P
&].CA2(e 0 0 C Xm

rl(kp(g))!x), xn). . . .x ),
steven

(A16)

where I' is a permutation of 1, . . . , m. It must be
shown that the set of momenta [k~] and the coeffi-
cients Q and phases )7(k) can be chosen such that

! A ) is in fact an eigenstate of T. This has been
done" in the case of a, rectangular rather than
diamond lattice. The principal new ingredient on
the diamond lattices are the phases rl(k) which re-
flect the differences in even and odd sites. These
phases are determined by the requirement that the
transfer operator reproduce the terms in (A16)
with down arrows more than three sites apart.
The AP's are determined in such a way that terms
with adjacent down arrows are reproduced. The
momenta fk&] are constrained by a consistency
condition deriving from the overall periodic boun-
dary conditions. The values of p for each set of
k's may be obtained by considering an isolated
down spin:

v" '[!x) +v(!x —1)+ IX+1))+v'!x+2)], x odd

v" '[!x) + v(!x —1) +!x + 1)) + v'!x —2)], x even

T' g e'""IX)+)l(k) p e'"" Ix) =v" ' (1+v'e "' +v2q cos k) ge'~IX&
Y Odd x even X Odd

+ [yv so en+ O(1+v'e"')] g e"*le)I + boundary terms.
x even

Thus the interior terms will be reproduced only if

q' —2iv sinks —1= 0

sign:
/

)l(k) = iv sink+ (1—v' sin'k)'~', (Al'7)

or

7i=iv sink+ (1-v' sin'k)'t',

with corresponding eigenvalue for T':

t = v"[cosk + (1/v' —sin'k)' ~ ']' .

If we allow k the range —n &k &m, then only one of
the solutions for q and t need to counted. (They
are independent only if 0&k&7).) We pick the+

t(k) -=[cosk+ (1jv' - s in'k)'t ']'. (A18)

We have divided t by its value on the state with all
spins up, namely v". That is, t in (A18) is the
"excitation" t value for a single spin wave.

For the general case of nz down spins the ex-
pression (A17) it still true for each k„and the
"excitation" eigenvalue of the transfer matrix is

m

'(' [cosk, + (1/v' —sin'k, )'t']'. (A19)
iLi ).
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All the complications are in determining the A~'s
and k's in such a way that all boundary effects
cancel. In the continuum limit, we do not need to
know the solution of this problem in detail because
we know. so much about the structure of the solu-
tion on general grounds. We need only pick out the
phases in (A14), and because we know the phases
for one case (A15) we only need the relative
phases for different choices of boundary condi-
tions.

So let us consider some matrix elements:

f odd
; ~ -?~[[1+ 7l( ) '"']f (k),

(tt&& ~ ~ ~ && I&) = II 7i(k;)e "~fn(k),

(i 0 i 0 ~ ~ ~ i 0 I x) = f, (k) .

A little algebra yields

e'nrem(k)+ v= e "[vcosk+ (1- v' sin'k)'t']

T. g
k

4 odd

1+vg(k)e'n = q(k)[v cosk+ (1 —v'sin'k)'t'].

So (A4') (A7') become

z (f4) =(-1)"'g t ~ n
I
fIn' (A4")

z (&s) =g t ""If, I' g [q(k )e '"i] (A5 ")

z,ds(f4)= (—1)" ' p t '" " ' ' [v cosk, + (1 —v'sin'k. )'t']
I f I'

~infix
(A6")

z,nn(f0) =P t, '" '' ']$ [v cosk, + (1 —v'sin'k, .)'i']
I f, I'. (A7")

The largest eigenvalue t, corresponds to the k's
distributed between -(ii' —p) and (v- ii), for which
the factor [v cosk+ (1 v'sin'k)' ']/v is always
larger than 1. For low-lying states these factors
will always be greater than zero, so we can write
unambiguously

?

'
[v cosk, + (1 —v'si kn, )'i']=t 't'.

E

We finally evaluate the va.rious phases in
(A4")-(A7"). First of all, we recall' that

limit, the local structure of this vertex model is
isotropic and we therefore expect that in this limit
the equations for the k's will be identical to those
for the diamond lattice. In their notation, for k's
of a low-lying sta, te,

t b2

k,. =— dn kn Rn
1T b

with 6, large and ti, large and negative. R(ei) sa-
tisfies an equa. tion of the form

OO

R(o.) = R,(a) — de, (n —P)R(P)

where / is the topological quantum number of
(A12). Now

~(k) ei sin s sinn

ff V(k ) =sxn ' P six 'v siss).

To evaluate this factor we turn to the analysis of
Yang and Yang. " They use the Bethe ansatz to
diagonalize the Hamiltonian for the anisotropic
Heisenberg ferromagnet, which has identical
eigenstates to the vertex model transfer operator
on a rectangular lattice. In the long-wavelength

dN. (~ P)R(P), —

where R, (o.) corresponds to the ground state. Then

=2r
N

dof(k(o. )I(&) =—— f(k,')

dnf(k (a)

x dPJ, (n —P)R(P)

i bg

+ dpi, (oi —P)R(P)
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Now J'o(x) - e ' ' as n - a ~, so we have

dnf(k(n))R(n) —=—Q f(k,')
l

—l&,f(~ —g)+f( (~ —-v))&,j.

Q I.f(k ) -f(k';))=2, If(~- V)&,'+f(-(~- u))&,'].

Now

sin v sin(n —IIJ,) = sin
j. —cosy p,

2 2'
hence

. l~ t'p,
q(k, ) - exp iJsJs 7j pi 2

and so

For our case, f(k,)= —f(-k, ) and+, f(k', )=0
=Q, ko„so we have simply

Qf(k;) f( „)
z (f$)=(—j)+ P t 2( f )

or z,~~(44) =g t~"~'
( f„('e px+

gf(k&) =f(~- V)«— For QCD, p, = 0, and we infer the. results quoted
in the text.
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