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Upper bound on the color-confining potential
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Under rather general assumptions it is shown that the (suitably defined) potential between color charges
cannot rise faster than linearly with distance. The main ingredients are the existence of a positive
Hamiltonian and invariance under 90' Euclidean. rotations. In order to be on firm ground mathematically,
the discussion is carried out for lattice theories; the role of the lattice, however, is purely technical.

INTRODUCTION
(t„,e '" t)=(Pexp(i/A dx l)„, (4)

We discuss two cases: pure Yang-Mills theory
with "heavy external charges" and lattice quantum
chromodynamics (QCD) .

We use the setup of lattice gauge theories de-
scribed in Refs. 1-4; the lattice constant is de-
noted by &. . There is a transfer matrix T obeying
0&T &1 which we write as e '~. ' '

I. PURE YANG-MILLS THEORY

In this theory it is possible to define a Hilbert
space containing "charged" states (see Ref. 4) by
working in the axial gauge A0=0. These states
are not invariant under (time- independent) gauge
transformations; this noninvariance corresponds
to the presence of "external" charges. Let (R de-
note any such state containing just two such
charges separated by a distance R (total charge
0). We can define

V(R) —= inf inf spec Ht(R (1)

(that is, the lowest energy present in any of the
admissible trial states $R). A particularly simple
trial state is the "string"

tz-=YrItexp i] A, (o, x)dx, GI,
pR

0
(2)

where 0 isthevacuum, I' is a path-ordering sym-
bol, and A„=+A'„X' where @')is a basis of the
Lie algebra (in some faithful representation) of the
gauge group.

The integral in (2) actually reduces to a sum on
the lattice. By construction [(QR](= l. (The reader
who wants to check this should use the version of
the reconstruction given in Ref. 3, where t = 0 is
a lattice hyperplane. ) Now let f be any integer
multiple of &. Clearly,

where the integral on the right is over a lattice
rectangle of sides R and t and the angular brack-
ets denote the average in the gauge-invariant mea-.
sure (Refs. 3 and 4). By performing now a 90'
rotation and going to the axial gauge A, =0 again
we obtain

(y„e '"yR) =(y„e ""yt)

(a relation of this type is known in constructive
field theory as Nelson's symmetry).

Using now the spectral decomposition of 0 and
Holder's inequality, it is straightforward to see
that

V(R) ~ ——ln(g„e RHgt)
1

R~ ——ln(g„e 'Hgt)

R= ——ln(g„e tHQ, )

& ——,ln()„e '"Q, ),

which is the desired bound.
Rensaxk. This argument also shows that the

Wilson loop cannot have more than area decay,
l.e. )

(y e tHy ) ~ -Ret/6 (y e-H@ )

(an upper bound of the same form was proved in
Ref. 4 for strong coupling). For the Abelian case,
such a bound is proved in the second paper of
Ref. 2.

II. LATTICE QCD

V(R) ~ ——ln(&f& Re tHQR)

The right-hand side can be rewritten in gauge-
invariant fashion in terms of the Wilson loop:

(3)
Here it would be unsuitable to define the poten-

tial as in Sec. 1 (even though it would be easy to
prove a bound for it), since the states considered
usually have overlap with all sorts of low-lying
states: This can be seen easily in the Schwinger
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model where, however, the avex'age energy
((~,Hg~) shows the linear Coulomb potential.

On the lattice the closest thing to the expectation
of H is

be simply a constant, but 0&N(R) & const. As
before, however, (g~, e '"$„)N(R)2 can be inter-
preted as (a finite sum of) expectations of e ~".
Proceeding as before, we obtain

V(R) - ——ln (Q„e ""Q,)
1 „„N(e)'"

Again we choose simple normalized trial states:

R

x P exp i A, 0, x dx, I' * 0, R, 0, 0 0
0

(I' may be any Dirac matrix). N(R) is a normal-
ization which in the framework of Ref. 4 will not

~ ——1n(g„e '"Q,)+ —ln
R,„2 N(R)

e N(e)

~+ RC~+ C2

with two constants c„c, (c,&0).
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