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Note on a classical solution for the 't Hooft monopole and the Juha-Zee Dyon

C. H. Ob
School of Physics, University of Science of Malaysia, Penang, Malaysia

{Received 24 January 1978)

A real stable solution for the SU{2) Yang-Mills field coupled to the Higgs field is constructed from a
complex sourceless solution of the Yang-Mills equation. It has the same properties as the Prasad-
Sommerfield solution except for a singularity at the origin.

I. INTRODUCTION

It has been noted' that complex solutions in the
Minkowski space for the sourceless Yang-Mills
(YM) equations can be understood as real solutions
for the YM field coupled to the Higgs fie1d in the
limit that the self-interaction potential of the Higgs
field vanishes. 'The converse is also valid. Thus
one readily obtains the Prasad-Sommerfield real
solution' from the Hsu-Mac complex solution' for
the sourceless YM field. In this paper we present
another exact solution for the 't Hooft-Polyakov-
Julia-Zee dyon from a complex solution4 for the
sourceless YM equation. The solution has the
same finite energy, same electric and magnetic
charges as Ref. 2, and is stable. However, it
has a pole at the origin.

II. SOLUTIONS

The Lagrangian density for the SU(2) YM field
coupled to the triplet Higgs field is

L «Eo~ Epo 2DpPD2$ +2g Q
—«AQ, (1)
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III. CHARGES AND MASS OF THE DYON

If we follow the 't Hooft definition' of the elec-
tromagnetic field &&„, the field strengths are

Here 8, y are arbitrary parameters, and P, r, are
constants. The solution of the 't Hooft model'
corresponds to y=0. The vanishing of W(r} and

r, in Eq. (6} reduces to the Prasad-Sommerfield
solution. If P-O, Eq. (6) becomes
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For arbitrary ro, solutions (6) and (7} have singul-
arities. For solution (6) with ro=0, Q' and A; are
regular everywhere, but A& is singular at r =0.

and
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The ansatz for the solution takes the form4

K(r) -1. , W(r)e jabro + (rjr«5i«er er

A,'=r'J(r)/er, P'=r'H(r)/er

where r"'r"'=1, and the field equations are'
» —K(W2 «.K2 1) +K(H2 ~) (5a)

r'W" = W(W'+K' —1) +W(H' —J'), (5b)

(8}

= r", sinhy [(1 —K' —W')/er') .
We now restrict our discussion to Eq. (6} with
ro=0 and call it Eq. (6'). Then (K'+W'}
-1+0(r') as r-0, and from Eqs. (8} and (6') we
readily see that the solution represents a point
monopole with strength 4'= -4w/e which is sur-
rounded by a cloud of electric charge (4m/e)sinhy.
The energy or mass is given by

re» 2 J(K2 +W2) (5c)

rH" = 2H (K'+ W') + (A/e')H(H' -p,'e'r'/A. ) . (5d)

Comparing Eqs. (5a) and (5b}, K(r} is proportional
to W(r) From Ref. 4. and in the limit X-O, we
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Using expression (4) and after some calculation,
we find

4 ~ 2+W2 ] 2

dr K" +W" +
0

F~(J~+W ) (rH' -II)

tric and magnetic charges and same mass M as
those of Ref. 2 in spite of the fact that A', here
has a pole at r =0 whereas A', in Ref. 2 is non-
singular. That the properties are the same is
due to the fact that (K'+W ) here is same as the
If' in Ref. 2. Furthermore, solution (6') is also
stable. Following Ref. 7, solution (6'} will be
stable if M' = Q'+4' where Q and 4 are respect-
ively, the electric and magnetic charges as de-
fined in Ref. 7. We have explicitly carried out
the calculation for solution (6') and find

M =(4v/e')pcosh'y. (12)

For solutions (6) and (7) M diverges; but for so-
].ution (6'} we obtain Q = (4v/e')P sinhy coshy,

4 =(4w/e')pcoshy, (13)

Note that M vanishes identically for complex
sourceless solutions of the YM.equation. '4

IV. STABILITY AND CONCLUSIONS

From the above, solution (6') has the same elec-

thus verifying the stability of solution (6'). Solu-
tions (6) and (7) are unstable.

Note added. While this work was being com-
pleted, we received a report' containing a general
solution from which Eq. (6) here could be derived.
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