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Forms of gauge fields aud pure gauges
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An Ansatz of the form eA'„= —kd'~ v"(x)f)„v'(x) for the SU{2) Yang-Mills field can be treated as the
gauge transform of the vacuum for k = 2.

A'=0 A'=B' Q'=iB'Oy

where the B'„are as given by Ref. 3. In other
words, Hsu's complex solution for the sourceless
YM field is actually a real solution for the YM
field and the Higgs field with the complex Bo
traded for real g'.

Recently another form of solutions was proposed'
for the SU(2} sourceless gauge field

A'„= -e 'e 'lu(x)
I

'u'(x)

= -e 'q'"'v"(x)& v'(x) (3)

where u'(x) is real and single valued, u'(x)u~(x)
= ~u(x) ~', and v~(x) =u~(x)~u(x)

~

'. Expression (3)
could be understood as a result of requiring the
isotopic magnetic field to be given by the co-
variant derivative of the pseudoscalar field u'(x). '
We now point out that solutions of the form similar
to Eq. (3) could be treated as pure gauge terms.

Under the SU(2) gauge transformation &o(x}, the
gauge field A'„ transforms as follows:

T 7"
A„" —' = (o(x)A'„ —' (o(x) ' + —&„(o(x)(o(x) ',

(4)

Solutions of the classical Yang-Mills (YM} fields
can take different forms if different Ansatze are
used. ' For the sourceless YM field A'„(with com-
pact gauge groups} Coleman' has shown that in
three spatial dimensions the only nonsingular fi-
nite-energy solutions are gauge transforms of A'„
=0. The solution obtained by Hsu and Mac' is non-
singular as well as of finite energy. This does
not contradict Coleman's result since the classical
gauge field must be real, whereas their solution
is complex. In fact Hsu's complex solution for
SU(2) can be converted into real gauge fields for
the noncompact group SL(2, C).4 Alternatively, we
can regard Hsu's solution for sourceless YM fields
as a real solution for the SU(2} YM field A'„coupled
to an SU(2} Higgs field Q' with the Lagrangian

& F a F awe B yaDoya

such that

where the 7,'s (a= 1,2, 3) are the Pauli matrices.
Choosing &o(x}= v'(x)7'„we see that ~ is equal to
its inverse and is self-adjoint. Substituting this
expression for &o(x) and putting A'„= 0 in Eq. (4),
we have

—'3"v' = je v 7' g'8 zru b

8-&~ ebc7 ~be ~c
a

which is of the same form as Eq. (3}. In fact, if
v'(x) =x'/r, and one substitutes A'„= -ke 'e'~'v~8„v'
into the YM field equation, then k can take values
1 and 2 only. ' Thus solutions in the form such as
(5) are gauge transforms of A'„=0. Complications
arise if the gauge transformation ~(x) is such that
the last term on the right-hand side of Eq. (4} has
a singularity. As an example, when v'(x) = x'/r,
then expression (5) has a singularity at the origin
in comparison with the vanishing gauge field A„
=0. The same situation occurs also in Ref. 8,
where the singular gauge transformation when ap-
plied to the 't Hooft nonsingular monopole solution
results in the introduction of a string-type singu-
larity for A'„. This means that one has to be care-
ful in dealing with singular gauge transformations
as they may be unacceptable physically. We re-
mark that (i) if v'(x) =x'/r, then

w = exp(-in/2) exp[i(v- Q)r, /2) exp(i8&, )

x exp(i p&, /2),
where P = arctan(x'/x'), 8 = arccos(x'/r); (ii) as
expression (5) is a pure gauge term in the nonsin-
gular case, one immediately has the result that
exp(ie PA'„&,/2dx") = 1 without going through the
argument in Ref. 5; (iii) Hsu' has shown that solu-
tions of the form (3) have magnetic charges. Ac-
tually the magnetic charge has nothing to do with
expression (3) but is due to the topological struc-
ture of v'(x). Following Ref. 8, one can define the
't Hooft "electromagnetic" field tensor E„„as

F„„-M„„+H„„,
with
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and

+- ~ abc&a8 &bg +c
PV V

the term H„„only. With 4'„ taking the form (3) or
(5), M„„vanishes identically, and E„„is the same
as the f,„of Ref. 5. Thus M,„does not contribute
to the magnetic charge density.

Provided A'„ is nonsingular, then whatever its form
may be, the magnetic charge density arises from
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