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Some remarks on Adler's classical algebraic chromodynamics
I
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A simple method for constructing Adler's algebra with N quark source charges is
presented. As a byproduct one obtains some interesting properties of direct products
of U(n} X matrices. It is shown that already for N = 3 Adler's "trace" condition is not
satisfied.

I. INTRODUCTION

In a very interesting paper' Adler has presented
an extension of the equations of U(n) chromo-
dynamics introducing classical, noncommuting
source charges (if the charges are regarded as
c numbers, in color-singlet states they lead to a
Coulomb force law'). In this approach the alge-
braic properties of the theory depend on the num-
ber and type of the sources, and Adler has illus-
trated in detail the quark-quark and quark-anti-
quark cases.

In this note we first reformulate the algebraic
structure of Adler's theory thereby clarifying,
at least in our view, its physical content. We
next consider the problem of N noncommuting
quark sources. It turns out that finding Adler's
algebra for N quarks amounts to solving an amus-
ing mathematical problem concerning the proper-
ties of tensor products of N+1 A. matrices. This
problem is formulated in Sec. III and solved for
the ¹1,2, and 3 cases.

II. OVERLYING ALGEBRAS

In our understanding the essence of Adler's idea
can be rephrased as follows. I et us assume that
we have a system with P sources Q&'», Q('», . . . , Q&~)

(a=0, 1, . . . , n' —1) corresponding to various rep-
resentations of U(n) [U(n) is called the under
lying algebra],

[Q(of)s Q(tx)] if Q(n) )

[Q(') Q('8)] =

Qy P ly ~ ~ ~ p I
where f'~ is totally antisymmetric and f'~ = 0.
The Eqs. (1) define a U(n)$ U(n)&& 6) U(n) (P
times) algebra. In the U(3) case, for example,
Q~» may correspond to the three-dimensional
(quark) representation, Q&'» to the three-dimen-
sional (antiquark) represen(ation, Q(',) to the nine-
dimensional (adjoint) representation, etc. A
system with N quarks and N antiquarks only (N

+N=P) will be denoted by (N, N).
We now define a new algebra called the over-

lying algebra. Consider two sets of matrices u'
and v' (a =0, 1, . . . , n' —1). Their product is
another set of matrices w' defined as

iv' =P'(u, v) = —P'(v, u) =g'~ (u'v' —v'u'),

where

gQoc dobe + ifcbc

(2)

(A 8 denotes the direct product of the matrices
A and J3), we have

(8)

and thus the product P'(u, v) is replaced by the

[d'~ is a totally symmetric tensor with d'~ = (2/
n)'~'5~ and equal to the usual SU(n) d symbol
otherwise]. The product defined by Eq. (2) satis-
fies a Jacobi=type identity:

P'(u, P(v, u)))+ P'(iv, P(u, v) }+P'(v, P(iv, u)) = 0.
(4)

Assuming that the overlying algebra closes, let
us take a bas is z ', (i = 1, 2, . . . , q; a = 0, 1, . . . , n' —1)
for it (q denotes the number of generators of the
algebra, (I~ P) and write

P'(z;, z, ) = C';,z;.
If the sources Q&„) can be expressed as a linear
combination of the generators z;, the structure
constants C&, define the overlying algebra corres-
ponding to the sources Q&„).

Let us observe that the overlying algebra is a
Lie algebra. ' In order to show it, we take into
account that the U(n) )(' matrices satisfy the
identity

~a~ 5 abc gc

and multiply Eq. (2) by A.'. With the notation
(repetition of an index implies a summation over
it)
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S(u, v) =
b

(u'v'+ v'u'), (9)

usual commutator, and the substitution of Eq. (5)
into Eq. (4), gives the standard Jacobi identity
for the structure constants of a Lie algebra.

We denote the minimal overlying Lie algebra
corresponding to the sources (1) by Lo. For dif-
ferent sources Q(„& one obtains, of course, dif-
ferent algebras Lo. Since the matrices Q(„& are
given once we specify the sources, by definition
one deals with a certain representation 8 of L~.
As shown in Ref. 1 a classical gauge theory with
noncommuting sources with gauge fields corres-
ponding to the adjoint rePresenfation of Lo [not
U(n}] can be constructed if for the representation
8 of Lo the generators Z; =)}.' ~ s', ([Z;,Z&] =Cb(&zb)

satisfy a "trace" condition. Taking for the defi-
nition of the "trace"'

[)((p})p )}.(p})] 2' )((p ) p

[)}.(~), )(.((})]= 0 (n, i&
= 1, . . . , N),

(16)

where the U(n) A. matrices close under the usual
multiplication of matrices:

)(a ~b g abc) p (17)

We also take another set of A. matrices that we
denote by A(p).

In order to construct the overlying algebra, we
consider the matrices

Z, —)}.(p) )}(y) i Zp )((p} X(p}& ~ ~ ~ i Zs )((p) )((s}i

(18)

and look for the matrices Z„„,. . . , Z, such that
the matrices Z, (i= 1, . . . , q) closeunder theproduct
defined by the commutator'.

one requires
[ (~ j] (19)

S(u, P(v, u )}=S(P(u,v), u ). (10)

Notice that the "trace" S is not a c number, but a
matrix. In order to cast the "trace" condition in

the language of the generators (7), we define the

3 operation on a matrix S'=A.' K' as

S (W) = S ()}.
' u}') = (tr)(.')u}' .

We then have

S(u, v) =-,'S(]U, V]), (12)

where (U, V)= VV+ VU, and the condition (10)
reads

SKU [V IVD-([U V] IV])=0.

This is a straightforward but tedious exercise
which implies repeated use of Eq. (17)and of known
identities for the g'~ symbols. ' The Lie algebra
(19) depends not only on the number of quarks N,
but also on tile choice of the underlying U(n). Once
the structure constants C;; are computed, a second
and even more laborious calculation is needed to
find to which specific Lie algebra they correspond
(the I ie algebras one obtains are reductive, not
simple).

We have found that an enormous simplification
of the calculations is obtained from the following
two observations.

(a) The matrices
In the special ease (this applies to the examples

of the next section) in which the matrices Z; cor-
responding to the R representation of L~ close
not only under the Lie product but also under the
Jordan product,

X = A(p)+ )((,)+ ~ ~ + A(}}}) (a = 0, 1, . . . , np —1)

which generate a U(n) algebra

[x',x'] =if'"x'

(20)

(21)

[Z(, Zg] = C;gzb, (Z;, Zg) =A",~Z,
Eq. (12) is equivalent to

(14) commute with the matrices Z&.'

[x', z,.] =0. (22)

(c,'bw'„c,',&b,)s(z,)-= 0. (15)

III. ADI.ER'S ALGEBRA FOR N QUARKS

A. Formulation of the problem

We now specialize to the case in which the
sources in Eq. (1) are N quarks (Q( ) =-,'&((„),' a
=0, 1, . . . , n' —1):

In the next section we present the method of
finding the L~ algebras in the case of N quark
sources [this is the (N, O) case inAdler'slanguage].

(b) The )}(p) matrices play the same role as the
matrices )((„) (()(= 1, 2, . . . , N). Thus the gen-
erators Z, [which are scalars under the U(n) alge-
bra (21)] can be arranged into multiplets which

correspond to different representations of the

permutation group of N+ 1 objects, S„„.
We are now in the position to formulate our

mathematical problem'.
Take N+ 1 sets of U(n) X matrices )}(„)(n

=0, 1, . . . , N; a =0, 1, . . . , n' —1) and nb matrices
X' defined by Eq. (20); consider the matrices Z;
constructed out of direct products of )((„)matrices,
which commute with X'; and find the Lie and

Jordan algebras generated by the Z& matrices.
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abc gaogbc + gbogac + gcoyb 2gaogbogco+

where ~' is totally antisymmetric and

(23)

As one can notice we have asked also to find the
Jordan algebra (the product in this case is defined
by the anticommutator (A, B)=AB+BA) generated
by the matrices Z;. We have done so because the
A. matrices close under both the Lie product and
the Jordan product and the same remains valid
for the Z; matrices.

We certainly did not solve the problem in its
full generality, although we guess that the result
would be very neat. For %= 1, 2 we treat the U(n)
case, while for %= 3 we present in detail the U(2)
ease. For U(2) the number of independent tensor
products which are scalar under the U(2) algebra
given by the X' generators (a =0, 1, 2, 3) is smaller
and the overlying Lie algebra may have fewer
generators.

The coefficients g'~ in Eq. (17) are, for U(2),

The Lie algebra is

[z„z,]=o,
and the Jordan algebra is

(z„,z&= sz„(z„z&=2z„(z„z&=2Z,.

If we make the transformation

A ~ Z~+ 2 Z2 y
B ~ Z~+ 2 Z2

we have

[A, B]=0, (A, B)=0,

(A, A) = 2A, (B,B)= 2B .

(29)

(3o)

(31)

(32)

Thus, the Lie algebra is U(1)$ U(1) and the Jordan
algebra splits into the sum of two one-dimensional
algebras. With the definition given by Eq. (25) this
is a A(1)@A(l) algebra. Notice that the "trace"
condition (15) is satisfied since the structure con-
stants C";& vanish.

~ Obc p ~ 123 (24) C. Two-quark algebra

At this point we introduce a definition which will
be useful in further developments. Let us assume
that we have a set of matrices A" (r = 0, 1, . . . , )n' —1)
and B' (.s =0, 1, . . . , n' —1) satisfying the relations

We have

~(o)+ ~(i)+ ~(2) ~

and the matrices which commute with X' are
a ~ G a . a a . a

Za ~(o) (o) ~ Z2 —
X(o) A(o) ~ Zs = h(o)' ~(3) t

(33)

[A~1 A 2] = 2gf+1~2 3A+3

[Bs& Bs&] 2' syssssBss

[A",B'] =0,
(A" ~,A"') = 2d'~'&sA" s,

(Bs1 Bs2) = 2dsls2ssBS3

(A" B')=o.

(25a)

(25b)

The matrices A." and B' are a representation of
the Lie algebra U(m)8) U(n) given by (25a) and of
the Jordan algebra (25b). We will denote the al-
gebra (25a) and (25b) by A(m)@A(n).

We now present the solution of our problem for
%=1, 2, and 3. The "trace" condition (10), (15)
is discussed in each ease separately.

Zs f X(o) A(()) )((o) p Zs 1 (34)

U, = —,
' (Z„+Z, —2Z,),

representation (3)

U= —,
' (Z, +Z, +Z, ) .

representation (1') (35)

At this point it is useful to arrange the matrices
Z; into multiplets corresponding to irreducible
representations' of S, (the group of permutations
of three objects):

representation (2, 1)

U, = (z, -z,),1

412

In this case
X' = )((' ) + )(( ),

B. One-quark algebra
1

i 12
Z4 p

representation (3),
and there are two independent matrices Z, and Z2
which satisfy the condition

i

Y= —'Z

[x', z,] = o.
We have

zl (0) (1) & 2

(27)

(28)

One uses now the properties of the Clebsch-
Gordan series for 83 to find the Lie algebra in a
transparent form. For instance, from the branch-
ing rules
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(2, 1)8 (2, 1)= 1'8 ~ ~ ~

1'Cs (2, 1)= (2, 1),
(36)

as follows:

representation (2')

[A', A ]=2ie' 'A', [A', B]=0,
(A' A)=2d'"A' (B B)=2B (A' B)=0.

(33)

The Lie algebra is U(1)6 U(2), and using the
definition given by Egs. (25), it is a A(1)8 A(2) al-
gebra. The "trace" condition (15) is satisfied
since

s(A.') = [s(z,) —s(z, )]
1

12

1
[(tlX'(p))X'g, —(tran'{, &)A. '&2

& J = 0
~12

s(A') =s(A') =0.

where the discarded terms do not appear in the
antisymmetric form (a commutator gives only
antisymmetric combinations), we have

[U2, UJ =2iW, [U„W] = 2iU2, [w, U2] =2iU, ,
(37)

[v, UJ = [v, Ud = [v, wl = [r, UJ = [1', U.l
= [1', w), = [1,vl = 0.

It is now convenient to make the transformations

A =P- V, A = U„A =S', A = U, ,

B=V,
and one obtains

1
Qi = (2H~ + 2H6 —H2 —H3 —H» —H~),

82 =
g (H2 + H, —H3 —H~);

representation (3, 1)

1
(H~+H, —H, —H,),I2

(2P, —2H, +H, +H, -H, —H,),1
4 5

1
(H, —H6+ H2+H~ —H~ —H,);4 I

representation (2, 1')

6~ = (I3+I~),4v'2

(I,-2I, -IJ,1
4 6

1
(I, —3I, -I,-I,);Bq3

(41)

D. Three-quark algebra

In the three-quark case

X A (0) +A, (1) +X (2) +X (3) ~

The matrices which commute with X' are'

~ (0) ~ (l)t +2 ~ (0) ~ (2) & +3 ~ (0) (3)

(39)

representation (2')

g)~ = (2K~ —K2 —K3),
1

1

~, =-,'(K, —K,);

representation (1'}

g =-,'(I, I, +I, -I,);-
Q4 —g (1) g (2)p +5 g (1) X (3)y H6 A (2) X (3) p

CIy=f' A'(0) A. (x)'X(2)~ I2=f' X'(0)'&(i)'&(s) ~

(40)

representation (4)

5 = (P~+H2+H3+H~+H~+H8);

ab a, b ~ c abc a ~ b ~ c
(0) &2) (3)' 4 f (&) (2) (3)

a, a, b, b a ~ a, b ~ b
Kl ~ (0) ~ (1) ~ (2) ~ (3)& K2 ~ {0) ~ (2) ~ (1) ~ (3)

K =I, ( )'A, '( 'A. )'A. ( ), L= 1 .

These matrices can be arranged into S, multiplets

representation (4}

9 = (Kg+K, +K,) .

The commutation relations of the matrices (41)
are.
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[n„n,]=2iv3 8, [u„u,]=o, [&, n~]=o

(o., P =1,2),

[S,m.]=0 (&=1,2), [g, n, ]=Siia{n, u, ),

[h, n, ]=si&&(~,-n, ), [g, 8,]=[@., $,]=0

(i =1,2, 3),

[8,, 8,.]=i~„.,e, (i =1,2, 3), [$„$,]=-ie„

[$„$,]=i 8„[$„$]3=ie„

[C„$,] = 2z(vY 8, + e,},

A =8, A. = ~+ ~ (&2$, —S),

A'= — 8, — (~2$, S,),1

2 2 23

A'= — — 8, — (W2$, -~,), A.'=$„1

(43)

[ni, $,] = 2j ex, [ni $s] = -2iM2 8„ a =
~~ 9+2 L —~~&, a —

g~ (n~ —$~),

[C„$,] = 2i e„

[C,$ ]=2i&28 -8 ), [c,$ ] =-2iv 2 8

[&., $;1= [C., $,] [~., 8,1= [n., e, l,
(&=1,2; i=1, 2, 3),

[81)$j] 2 ~+2$ [8 2$ $21 2~+2i

[8.,$.]=0, [8„$.]=i$.--' ~„

{42}

a'=
3

(n, -n, ), a'=
4 3 h,

1

1 1C= ia S.+4S 8 —41- ~

The matrices A' (a=o, . . . , S), a'(b=o, . . . , 3}, and

C close under both the I ie product and the Jordan
product:

[A",A']=2if"A', [a', a']=2if' a',
[A', a'] = [A', c]= [B',c]=0, (44)

{A' A }=2d'( A', (B', a }=(2d' B', f C, C}=2C,

(A', B'}=[A',c}=[a',c}=0,

[e„$,] = -z$, +
~&

5)„[8„$,]= i$, —-'.-zm, ,

[8„$,]=i$,+ ~ &„[8„$,]=-i$, —~ &„

[8,$.] =i$—

where the f and d symbols are the U(n) symbols
(n=3 for the A' matrices, n=2 for the B'
matrices). The Lie algebra in Eq. (44) is U(3)
(s U(2) 8 U(1), and in the language of Eq. (25) we

have a P(3)a A(2)e P(1) algebra.
%e now show through a counterexample that the

tra"ce co"ndition (15) is not satisfied. Using Eq.
(44), the trace condition (15) for the matrices
A' reads

[e„n,]=2i($, -&&$,), [e,, n, ]=2i$, ,

[e„n,] = 2i&2$„[e„n,] = 2i$„

[e„n,] = —2i(v 2 $ +$,), [8,n, ] = 2ivY$, .

(fabed cde ydacd cbe)S (A ) 0

Since

8(a,) = (tr)(t»))((» = 2 etc. ,

we have
1

S(A ) = ~ [1 —x(~) ~ )(,(3)

(45)

(46)

p, 9, and 1. commute with aQ the other genera-
tors. An inspection of the commutation relations
(42) suggest the following transformations:

2 ~(1) ~(3) + 2 ~(1) )((2)]~0 ~ (4~)

If we take a= 1, b = 2, and 0= 5 in Eq. (45), the
left-hand side does not vanish.
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