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Very accurate eigenvalues of the two-well oscillator (H(k, k) = p —kx + Ax ) are obtained by a
nonperturbative method. The splitting between the pairs of lower eigenvalues is found to be remarkably well

estimated by the WKB approximation. It is observed that the scaling properties of the exact eigenvalues with
'respect to the parameters in the Hamiltonian are retained in the WXB approximation.

I. INTRODUCTION

Anharmonic oscillators with nearly degenerate
lowest states are receiving a considerable amount
of attention. ' The most studied among these is
the two-well oscillator described by the Hamil-
tonian H(k, X) =P2 —kx +Xx4, P = —id/dx (k, X)0).
The feature of its eigenvalue spectrum is that the
lower eigenvalues are closely bunched in pairs if
the two wells are sufficiently separated. The
characteristic quantities to be calculated are the
splittings between these pairs of energy levels as
a function of the separation distance between the
two wells [- (k/X)' 2].

This problem does not admit a straightforward
perturbative solution. The perturbation expansion
of the eigenvalues E„(k,X) in powers of the para-
meter X is divergent for all X&0.3 This may be
seen qualitatively in the fact that the addition of
the term Xx4 turns a completely continuous eigen-
value spectrum of P —kx into a completely dis-
crete spectrum bounded from below. The alterna-
tive perturbation expansion in the parameter k (as-
suming the spectrum of P2+ Xx4 to be known) is un-
likely to be useful since the perturbation becomes
too large for small X, which is the regime of in-
t;crest. A nonperturbative treatment is therefore
necessary. The WKB method is well suited for
this purpose. The accuracy of the WKB approxi-
mation in thise case' ' is therefore a matter of
considerable interest, especially since it is applied
here for the lower eigenvalues. In this work we
obtain the energy eigenvalues of the two-well os-
cillator by a nonperturbative method capable of
arbitrarily high accuracy. We also obtain a WKB
formula for the splitting between the pairs of lower
eigenvalues. A comparison shows that the WKB
estimates are remarkably accurate in this case.
Finally, we comment on the analytic behavior of
the eigenvalues E„(k,X).

From the scaling (x ax, P a 'p) properties of
the Hamiltonian H(k, X) it follows that H(k, X) and
a 2H(a4k, a6X) are unitarily equivalent and therefore

have the same eigenvalues. Hence E„(k,&}

E„(1,X'), X'=k 3 2X. It is seen that the ef-
fective single parameter in this problem is 0 3 2X.

Thus it is sufficient to consider the eigenvalue
problem of the reduced Hamiltonian H(1, X}=p2
—x +Ax.2 4

II. NONPERTURBATIVE METHOD

A nonperturbative method'6 for eigenvalue prob-
lems, capable of arbitrarily high accuracy, is
applied here. The eigenfunctions are expanded in
the form

4„(X)=e " Qa„x (1)
m=0

where n =n(n, A} is a'scaling parameter to be set
appropriately according to the oscillation proper-
ties of the eigenfunction in the required regime of
values of the quantum number n and the anharmon-
icity X. The expansion (1) on substitution into the
Schrodinger equation H(1, X}g„(X}=E„P„(X}yields
a four-term linear recurrence relation in the ex-
pansion coefficients (aj:

4am + 2n —E 4a2+ 1
(m+1)(m+2) ~ (m+1)(m+2)

(m+1)(m+2) 4

For the self-consistency of the resulting infinite
set of linear homogeneous equations, the charac-
teristic, infinite determinant &(E) is set equal to
zero. The roots of b(E) =0 are the eigenvalues.
It may be shown that the various order truncations
of 4(E) satisfy an exact four-term recurrence re-
lation,

(m+1)(m+2)a„,2(E)+(4nm+2o. —E)& (E)

+ (4n'+1)a, (E) + Xa, (E) =0, (3)

where &,2 is the determinant obtained by omitting
all rows and columns of h(E) beyond the mth. With
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&p —1 normalization the determinants up to any
even order may be obtained successively from the
recursion (3); for odd orders the initial conditions
are bo —0, 6& —1. The zeros of &„(E)are ob-
tained numerically by Newton's method which re-
quires both 6 (E) and &'(E); the latter is obtained
by differentiating the recursion (3) with respect to
E and computing recursively. Both the recursions
are numerically stable and the zeros of 4~(E)
stabilize for large m to the required eigenvalues. '
The eigenvalues obtained by Newton's method were
checked and in the process upper and lower bound-
ed by computing a sufficiently large-order deter-
minant 6„(E)from the recursion (3) for two neigh-
boring E values. Opposite signs of &u(E) for the
neighboring E values indicates that an eigenvalue
lies in between. The appropriate value of the
scaling parameter n is & in the (small n, small
A) regime since in this regime the eigenvalue spec-
trum may be understood as the splitting of nearly
harmonic levels. The lowest four eigenvalues of
H(1, X) for various values of A, are given in Table
I. All significant figures quoted are claimed to
be accurate. Eigenvalues of such accuracy are
computed for the first time in this work.

Eigenvalues in any regime of values of (n, X),
the corresponding eigenfunctions and the trans-
ition moments~ of high accuracy may be obtained

by this method. The results will be reported in
due course.

III. WKB APPROXIMATION

For any symmetrical two-well oscillator let
E„bean energy level in one of the wells assuming
no tunneling. Then for a smaIl probability of tun-
neling the splitting of this level in the %KB approx-
imation is given by'

(4)

where +x(} and +x, are the four classical turning
points. Expressing the above integrals in closed
forms in terms of the elliptic integrals" we obtain
from Eq. (4) the WKB formula

a'"[2(1+u)]'"
fc(q)

W2 u'~'
&& exp (1+u)'~2[E(t} —ujf'(t}] ~,3 i

(5)

where t=[(l —u)/(1+u)]' ', q =[2u/(1+u)]' ', u

=[4&~'„(&)]''/k, e'„(k)= E'„+(k'/4X), K(s) and E(s)

TABLE I. Eigenvalues of the two-well oscillator in the small-X regime. &„(A)are the com-
puted exact eigenvalues of the energy-shifted operator H(1, X) + (1/4X), which is positive def-
inite.

fp

0.01

0.02

0.03

0.04

0.05

0.07

0.10

0.15

0.17

0.20

1.404
1.404
1.393
1.393
1.382
1.382
1.371
1.371
1.358
1.360
1.323
1.343
1.234
1.346
1.062
1.421
1.007
1.464
0.941
1.535

048 605
048 605
527 585
527 587
601 444
605 783
122 236
308 461
422 103
133 597
374 074
365 616
507 162
940 868
499 247
086 890
165 158
225 132
750 342
530 204

297 7
297 7
044 2

151 0
053 8
831 4
557 5
612 9
747 8
773 3
208 5
287 4
786 0
922 5
956 5
539 3
778 7
421 2

076 9
085 8

4.170 193 605 999 3
4.170 193 605 999 3
4.092 028 112 820 5
4.092 028 608 428 7
4.006 049 199 465 7
4.006 655 466 749 5
3.901 359 951 813 1
3.918 263 337 997 1
3.746 917 080 727 9
3.848 838 300 057 4
3.342 216 720 258 7
3.833 129 937 607 9
3.009 488 545 436 2
4.043 546 039 767 6
3.033 667 276 570 6
4.589 838 495 543 4
3.118 337 642 119 7
4.816 923 221 196 9
3.270 377 801 715 3
5.148 274 740 096 0

Since near the minima the potentail function 2x + O(A. x ), cp W2 {ground-state energy
in a potential 2x ) as A, G. We find &p(A, = 0.001)=1.413211965792.
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TABLE II. Splitting of the n = 0 level. A comparison
between the exact values and the "modified" WEB val-
ues.

(~ ~ )exacti 0

& )modified %KB1
i 0

0.02
0.03
0.04
0.05
0.07
0.10
0.15
0 17

1.005
1.006
1.007
1.008
1.006
0.975
0.934
0.940

~ (ei —zo)'""' values are obtained from the Table I.
b (gi ~ )modified ~B ~E~ frOm fOrmula (5) multi-

plied by (z/e) / .
'For A, Z 0.17 the number of turning points reduces to

two in the n = 0 case.

are complete elliptic integrals of the first and the
second kind, respectively. Equation (5), obtained
by using the linear (Airy function) connection for-
mulas, is referred to as the "standard" WKB re-
sult. Upon using the more correct quadratic con-
nection formulas the standard WKB result for the
n =0 case is modified by a factor of (v/e)'
(Refs. 1 and 12); this is referred to as the "modi-
fied" WKB result. In Table II the splitting be-
tween the lowest pair of eigenvalues for various
X, obtained from the exact values of the previous
section, are compared with the corresponding
modified WKB estimates. It is seen that the modi-
fied WKB values are in closer agreement with the
exact values than the corresponding standard %KB
estimates. In obtaining the WKB values from Eq.
(5) the unperturbed energy Eo is assumed to be the
mean of the corresponding split pair of eigenvalues
listed in Table I (col. 2). The accuracy of the
modified WKB estimates for the splittings is quite
impressive.

j

It is illuminating to examine the WKB formula
(5} in the small-X regime which contains the char-
acteristic features of this eigenvalue spectrum.
In this regime the elliptic integrals may be ex-
panded" for u- 0, t-1, q-0. Since the tunnel-
ing probability approaches zero in this limit, the
unperturbed energies become harmonic-oscillator-
like corresponding to a potential 2x2 (Ref. 13):
Hence e„(k}=Wkc„(1)and e„(1)=v2 (2n+ I), and the
limit u 0 implies k 3 X 0. Introducing all of
this in formula (5) and retaining the highest-order
terms, we obtain for the nth unperturbed level

~3/2 (2n+1)/2
bEwKB ~~ 2(14n+13)/4

m i(2n+ I)

x exp ———
3

(6)

The n =0 case of Eq. (6) was obtained recently by
Gildener and Patrascioiu' [their Eq. (5.61)] except
for a missed factor of }t&p, in their result. Formu-
la (6} clearly manifests the scaling properties of
the WKB eigenvalues. We observe that

bE„*(k, X) =uk bE„(l,k 3 X) k 3i X 0

which is precisely the same as the scaling relation
satisfied by the exact eigenvalues'~: E„(k,a)
=~RE„(l,k 3~ X). In view of the above it is pos-
sible to construct the analytic behavior of E„(k,X)
from the corresponding WKB expression. Thus
from (6) it follows that bE„(k,A) and hence E„(k,X)
have an essential signularity at ~ =0 whenever
there are four classical turning points. The pos-
sibility of establishing the analytic properties of
the eigenvalues from the WEB analysis of the same
problem may have more general applications.
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