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Late terms in the asymptotic expansional for the energy levels of a periodic potential
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We obtain a general formula for the late terms in the perturbation expansion of the energy levels of a
periodic potential and compare it with the computed values for the first one hundred terms.

I. INTRODUCTION

The equations we shall discuss are
k'y" + p+, cos2pxIy=0, M2P'

and
k'

y" + p' —,cosh 2Px y=0, M'.

The former is Mathieu's equation and the latter
is the modified Mathieu equation. ' They have a
number of applications in theoretical physics:
Apart from being the separated form of Laplace's
equation in elliptic coordinates, M is the Schro-
dinger equation for the simple pendulum or a par-
ticle in a periodic potential. The relation P as
a function of P for the smallest periodic solution
of M is also the exact solution of the statistical
mechanics of the one-dimensional Coulomb gas. '

Our interest in. the problem stems from the re-
cent discovery of vacuum periodicity in Yang-Mills

theory, ' and we hoped to discover what connection
there is between the "instanton" governing the
band width and the high-order behavior of the
perturbation theory.

The periodic-potential problem in quantum me-
chanics has many of the features of the Yang-
Mil. ls problem and we hope to gain some insight
from its solution.

The values of P for which M has solutions of
period 2v/P (i.e. , the top and bottom of the "al-
lowed" bands) are called the characteristic values
of M, while M' can be discussed as a Sturm-
Liouville problem (with y = 0 as x -+ ~ as the boun-
dary conditions) defining the eigenvalues P'. When
P-0 (or k - ~) both M and M' reduce to the har-
monic oscillator, and one can use perturbation
theory about P= 0 to obtain a series expansion for
P or P'. In the case of the ground state one can,
for example, use the Feynman-diagram expansion
for a one-dimensional field theory. For M, one
obtains

P' P' 6P' 53P' 594P" 7922P" 121454P"
2P 2 4 24k 27k2 210k3 $13k4 216k5 219k6

2 095 501P -"

40114410P"
225 k8

843 289 718P"
2"k'

19343 816 948P
231 k10

478 935 069 186P"
23~ k" ~ ~ ~

and so on until the calculator runs out of digits or
one tires of the labor. The series for the eigen-
values of M' is obtained by replacing P'- —P'
throughout. The terms up to k ' were obtained in
the 1920's by the authors of Refs. 4 and 5 (although
the published k ' values differ from source to
source). We believe we are the first to obtain
new values since then.

Certain general features show up in these first
few terms:

(1) All the coefficients consist of an integer di-
vided by 2". This may easily be shown to be a
general result (see Appendix A).

(2) Despite the factors of 2, the numerator
blows up and the series is at best asymptotic.

(3) In the case M, all the late terms have the
same sign, which means that the series is not
Borel summable an.d is also an. indication that we
a,re on a, Stokes line.

Since, in general, a power series has a radius
of convergence equal to the 'distance of the nearest
singularity, and our series is divergent, it must
necessarily follow tha, t P=O is in. some sense
singular. The nature of this singularity is in-
timately connected with the late terms in the ex-
pansion which govern the divergence. ' In the
subsequent sections we will discuss the singularity
and exhibit the limiting form of the coefficients
for the general band (level). We show in Appendix
A how the coefficients may be computed and com-
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pare our estimates with the first one hundred or
so terms in the expansion.

II. ANALYTICITY PROPERTIES OF p'(P' ).

~- (0/g )coshx (2.1)

In order to keep the same solution as P' becomes
complex and therefore to extend p' analytically
we must vary the boundary conditions with P
so that y-0 a,long curves in the x plane on which

By letting P-+iP, one obtains equation M from
M' and vice versa. The eigenvalues and charac-
teristic values, however, are defined by the bound-
ary conditions or periodicity conditions imposed
on the solution of these equations. So, while such
a substitution alters the equation, it does not
correctly transform the problem of computing
eigenvalues of M' into that of finding the char-
acteristic values of M, because the boundary
conditions are radically different in the two cases.

It is a measure of the incompleteness of infor-
mation in the perturbation expansion (it misses
the band splitting) that such a substitution does
convert the series for the two problems into each
other.

We will make a choice and start from M' be-
cause the Sturm-I iouville problem is conceptually
simpler than the periodicity problem. We will
extend the boundary conditions so as to continue
p' into a function analytic on the P plane eut from
0 to ~. When arg p'= +m, we find the equation
M but with non- self- adjoint boundary conditions so
that p'(- p') has an imaginary part. This gives
the discontinuity across the cut (Schwartz re-
flection principle). The methods we need are
those of Bender and Wu' who were the first to
obtain such high-order behavior in perturbation
theory. In their case and that of other recent
work in qua. ntum mechanics and field theory' the
imaginary part has been clearly interpretable in
terms of a quantum-mechanica, l metastability
due to the decay of the relevant state into a con-
tinuum. In the present ease there is no meta-
stability even though probability can leak away
because the continuum is needed for exponential
decay —not discrete degenerate levels.

When x-+ , the appropria, te solution of M is

2
p =o

2]9 = n)~

%P

Agp -g-

7Tx= + —+i oo arg P
p 7

x= + — i ~ arg p'=+ v.
p

(2.3)

We now use the WEB expression and the method
of matched a,symptotic expansions to compute the
imaginary part of P' for these boundary conditions.

Put (IP I
= 1)

y = 4, + i 4, (4„4,c S. a,nd 4, «4,),
E = E, + i E, =P +k'/2,

so that M becomes

$2
4,"+ E, + eos2x —1 4, =E, 4, ,2

4,"+ E, + —cos2x —1 4, = —E,4, ;

(2.4)

(2.5)

for x small and E, -O these take the form of Whit-
taker's equation'

4-+(n+-,' —,'z')4 =0, z =&ax

E/2k = n+ —,', (2.6)

with solutions D„(+4),D „,(+iz).
For the harmonic oscillator the usual solution

is D„(z),n cZ, so that

FIG. 1. A dual purpose diagram: It shows contours
on which (e/P )(coshPz -1)e 0 and tends to ~. They are
(i) the curves on which the boundary conditions (2.3) for
the differential equals are to be applied and (ii) the con-
tour on which the toy integrals of Appendix B are to be
evaluated for various values of P.

j. —~ cosh Px (2.2)
E, = 2k(n+ z) . (2.7)

rema, ins real and tends to ~. We exhibit such
curves for various values of arg P in Fig. 1.

When arg p'= +m, the bounda, ry conditions be-
come y- 0 at

We will now concentrate on the effect that the
second valley at x = w has on the ground state
(n = 0) of this system. The situation is sketched
in Fig. 2.

In B and C the WEB method yields'
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C, at C gives

so

e kr 2/2

4 2e1 x

A=2iv2k e 2

kr 2/

v' 2k

(2.15)

l

D C B A 8
0

FIG. 2. The different regions for the matching of the
asymptotic WEB formulas.

so

i/2
ie -iC e'e " '/'-A — e ""'/'

oC 2 2

A =2i v'2k e ",
C, =2&k v n e-". (2.16)

C, - C,(e "'"")/cos(x/2),

C, - C,(e " ")/sin(x/2) .
Matching at B to

4, = Do(v 2k x) = e

(2.8)

(2.9)

Now we come to the difficult part the chief
achievement of Bender and Wu. This is the prob-
lem of handling the subdominant, imaginary term
in A B so as to find out how large E, has to be in
order to produce C, and thus allow the boundary
conditions to be satisfied.

Using (2.16) and matching at B, we obtain

yields

C, =e ' (2, 10)

ekr2/2
e -4Wkvs e-4"

2 near B; (2.18)

Near C but still in BC (x'= x- w), we have

4 -e "e~'"/-,'x'
(2.11)

X =4, +F. (2.19)

E, is of the same order of magnitude (i.e. , 8-'~), so
Bender and Wu put

pc~=AD, (i V2kx') (2.12)

In the region CD, the equation again takes the
form (2.6), but the boundary condition (2.3) ne-
cessitates the solution

then, treating it as a perturbation expansion, we
get to zeroth order

4,"+(E,—k'x')4, =0,

and to first order
to be chosen as only this has the correct behavior
as x'-i~.

Now

D, (i 92k x) = ~ [D ~(&2kix')+D, (—42kix')]

C,"+(E,—k'x')4, =-E24, ,

provided X satisfies

X"+(E, + E, —kx')y = 0.

(2.5)

(2.20)

+ —,
' [D,(W2k ix') —D, ( @2kix')];—

the first two terms become'

(
w'" & Z/2

D (v 2kx').- — e ~ ~' (purely real)
2 ' 3

(2.13)

and the last tyro terms become
ekr~--i (purely imaginary) .
2kx

(2.14)

Identifying these real and imaginary parts with 4 „

We seek a symmetric solution for the ground
state, and this is

—,
'

[D~ y, » ( v' 2k x) + Ds,y,„(-v 2k x)] .
When E, =0 this reduces to CO=DO(E2kx), as it

should according to (2.19). We extract 4 from it:

84 2
= E2 e

—[Ds g2» ( ~2k x) + D~g2, (-v'2k x)] .
2

(2.22)

Near B the dominant contribution comes from the
second term

D (-&2k x) es "'(&2k~-) '" 2'"e'* '- v'2ir
z2/2k I"(-E,/2k)

(2.23)
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so

1 &2n e' i
2 2k &2k x (2.24)

and comparison with (2.16) gives

E2~ =16k'e '" .
For the general level we would obtain

26v+ 4k 2v+ 2

@ (v)

( ul)'

(2.25)

(2.26)

Twice this is then the discontinuity across the cut.
Restoring P shows it to have the form

~- &/8 26 +
ImE- (~!)

2

III. DISCUSSION

so the discontintuity has an essential singularity
at P'=0.

Expressing 8(P') as a dispersion relation about
the cut (with the requisite number of subtrac-
tions —finite) and locating the coefficient of 1/k",
we find that the coefficient for the vth level of
M' is

1 n I'1
n„"=(-1)",—— (2 v+ 1+n)! 1+OI—(v!)' n 4

This is our main result and may be compared
with the data in Tables I and II. The good agree-
ment indicates that we have made the correct
analytic continuation.

do because the imaginary part is the result of an
obvious instability of the theory (it is also a con-
sequence of analytic continuation of the boundary
conditions, as Bender and Wu's work shows).
This instability shows up in the functional integral
as a negative eigenvalue for the small oscillator
sums requiring one of the integration variables to
be continued into the complex plane. " The choice
of continuation corresponds to the choice of
branches of E for P' negative. This does not ob-
viously happen for degenerate minima because the
periodic potential is quite stable, and so the way
to continue the domain of the functional integral
to obtain nonstandard solutions to the associated
Schr6dinger equation is not obvious. " The basic
philosophy behind this approach is illustrated by
a toy integral in Appendix B.

We do, however, find empirically a relation be-
tween the imaginary part for P'( 0 and the splitting
between the top and bottom of the bands

n
~ft+ y +f1 ~ top of band ~bottom of band

k '/' (8k)""
jr n!

[This was proved by Goldstein in 1929 (Ref. 5). In
the case n =0 it is most easily derived by using
the method of steepest descents about the kink

TABLE II. Values of b2= -a&+~ X 4 /(l + 1)f, where the
a& are the coefficients in (A21) for the ground state
(v = 0).

We had hoped to be able to derive this result by
applying the method of steepest descents to the
functional-integral form of the quantum-mechani-
cal problems. For the various &y' theories con-
sidered by previous authors this is very easy to

TABLE I. The first seven coefficients, C„of the ex-
pansion

p=-k2/2+aok —(a02+ 1)/2~ kg C,/k2 2+ 2,

l=2

where ap—- 2v+ 1, viz.

C2 ——ap(ap+ 2)

C3 ——5ap + 34ap2+ 9

C4 ——ao (33a(+ 410a02+ 4057)

C5 = 252ap + 5040ap4 + 11772ap + 1944

Ce ——ap (2108aep+ 62 468a4p + 276 004ap + 166 428)

C7 = 18 774ap + 77 560ape + 5 691796ap + 8 043 768ap

+ 1013958

br

0.125 000 00
0.125 000 00
0.138020 83
0.154 687 50
0,171918 40
0.188 262 64
0.203 014 65
0.215 907 34
0.226 94144
0.236 268 01
0.244 10671
0.250 693 07
0.256 248 32
0.260 965 23
0.306 990 19
0.307 149 07
0.307 303 55
0.307 453 81
0.307 600 02
0.307 742 34
0.307 880 92
0.308 01591

1
2
3
4
5
6
7
8
9

10
11
12
13
14
70
71
72
73
74
75
76
77

0.308 147 46
0.308 275 68
0.308 400 70
0.308 522 64
0.308 641 62
0.308 757 74
0,308 871 09
0.308 98179
0.309 089 93
0.309 19558
0.309 298 83
0.309 39978
0.309 498 48
0.309 595 02
0.309 689 47
0.309 78189
0.309 872 35
0.309 960 91
0,310 047 63
0.310 132 56
0.310 215 77
0.310 297 30

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
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APPENDIX A: GENERATION OF THE ASYMPTOTIC SERIES

FOR THE CHARACTERISTIC VALUES OF MATHIEU'S

EQUATION

Mathieu's equation M written in standard form
1S

y" + (p —2q cos2x) y= 0 . (Al)

We seek a solution for the characteristic value
valid for large q. Firstly we transform (Al) by
substituting

y =exp(k cosa.)u(x)

and assuming the expansions

and

u(x) = gu, (x)/k'
l=p

P=k'/2+k Q u, /k',
l=p

(A2b)

where k' = -4p. Then equating coefficients of k '

results in the set of equations

2 sinxu, ' +(cosx- a,}uo = 0,
n

2 sinxu', +(cosx- ao)u, =u, , + a& u. ..
=1

l =1, 2, ... .

(A3a)

(A3b)

The condition that P be a characteristic value re-
stricts the value of ap and the forin 2v+1, where
v=0, 1, 2, . . . . The solution of (A3a) is

solution interpolating between two potential mini-
ma. ] The fact that up to a constant factor the dis-
continuity is the square of level splitting is highly
suggestive,

It is possible that the explanation is to be found
in the last reference cited in Ref. 8, but there
appear to be ambiguities in the approach of that
paper which we do not understand —regarding the
integration over the separation of the two kinks.

We hope to fi.nd a convincing argument for this
observation which can be generalized to give a
formula for the high-order behavior of Yang-Mills
theory using the computations of the steepest-
descent integrals about the Polyakov instanton. "

Note added in proof Afte. r the appearance of this
article as a preprint Professor H. J. %'. MMler
kindly pointed out to us that he and Professor, R. B.
Dingle had earlier investigated the problem by
linear izing the recurrence relations. The results
of their work are published in J.Reine Angewandte
Math. 216, 123 (1964). Another article by the
same authors which is of considerable interest to
those using Mathieu functions appears in the same
journal, Vol. 211, 11 (1962).

u, = sin" (-,'x)/cos"'(-,'x) . (A4)

(Constants of integration can be set equal to zero
without affecting the result. ) Equation (A3b) is
simplified by substituting

u, =[sin'(-,'x)/cos "'(-,'x)] v, (x),

giving a set of equations for the v&, viz,

2 sin x.v,' = v,",+(ao —cosx) v&', /sinx

+ [(b, -a, cosx)/sin 'x —b,/2] v~,
1

+ g a,.v. . . (A5)

where bp = v'+ v+1. The e, can be expressed as a
finite series in sin2x, i.e.,

2

v, = P(A,'. +B; cosx)/sin' x . (A6}

+[(2j —1)'+(2j —1)+b /2]B,' '- ga„B' "

(AVa)

4j B~ =2(2 j+1)B,'., —2a,j B,' '+a, (2j —1}B,'

—[4j(j —1)+ b, ]A,
' , + [(2j)'.+ 2j+ b,/2] A,

'

—g a„A,'. ". (A Vb)
n =-2

The initial conditions are&~=1 and Bp=0, and the
required coefficients a„are obtained from (AVb} by
setting j =0 (giving a„=2B,').

The form of the expansion (A6) is that obtained
by Goldstein. Unfortunately equations (AV) are un-
stable and could reliably give only the first ten or
so terms of (A2b}. We were, however, able to
find a general form for the first seven terms of
(A2b) as shown in Table I. It is worth mentioning
that A. and & could be identified as simple fractions
for «7 in general. This information could be used
to relnltiallze (AV) and so ln principle arbitrarily
high order in & could be reached in the expansions
of u(x) and P. The asymptotic form (2.2V) for the
values of v considered (v- 9}had only just been
reached by the 10th term, so the general analysis
of Sec. II was verified to two significant figures
only.

For v=0 and v=1, however, the form (A6} for
&& can be replaced by

Putting the form (A6} for the v& in equation (A5)
and equating coefficients of sin "x and cosxsin "x
gives a coupled set of recursion relations for the
A's and B's of (A6), namely,

4jA,'=(2j —1)a A'. '-[4j(j —1)+b ]B' ~
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APPENDIX 8: TOY INTEGRAL

We give here an elementary discussion of a toy
model for the way one might expect a functional-
integral approach to this problem to go.

Consider

&(p') ~-g/8 )(cosgx-y)d @ Z2 2 z 2

p 0 pR

(Ko is the Bessel function of the third kind. 's) By
expanding about the saddle point & =0 we can com-

cos & 2. A8

The resulting recursion relations for the A.
&

are

4jA ~ 4(-j +l)A ~, +j (j +v —2)A~ ,'
1

—[j(j +1}+&,/2j&q '+ Q&„A~ ', (A9)
n=2

and -M, =+~. The advantage of this form is that
the relations (A9) are stable for &=0.

The first one hundred terms & of (A2b) (suitably
scaled) are presented in Table H. Following the
analysis of Bender and Wu we find numerically
the asymptotic forms for the late nth term of (A2b):

1 1 5 7
& =0: coeff —„=-—1 0-—+ -+' ' '

8~2
x (n +1)!4 ",

1 4 21 125v=1 coeff -—„=-—1.0 ——+ +' '
2+ 6@2

x(n+S)!4 ".

pute the usual asymptotic expansion

~2 ]12 -
P2 1 1 222 P

4 122252P6
$(P~) = — 1 ———+ + ~ ~ ~

z z S 2!(Sz)' 3!(Sz)'

„rn+-,' ~

By distorting the contour into the complex plane
we can continue to a function analytic in the cut
plane. (Ko is well known to have a logarithmic
branch cut. ) The integrals for arg p'=+& are

~- f!/g + ~/8 m/8H~

p( p) ( ~f 8(.ifP)&a.-)~
-m/g& $~ -m/8 ~/6

and the contour has hit two additional saddle points
at & =+m/p, each of which contributes one half a
Gaussian integral —this is the genesis of the Stokes
phenomenon and is a good counterexample to the
common belief that one must always add the contri-
butions from all saddle points in sight. An excel-
lent discussion of this type of calc'ulation is given
in Ref. 14.

The discontinuity

2m ~2
K (z/P')e '~+-2ie "+—

is exponentially suppressed as is the "instanton"
contribution. For the path integral, the formula

gg s'2 e-~s/8'
coeffP'" in S'(P}=— 2

2 „~, &P
W

x[1 +0 (1/n)]

may be checked by Stirl. ing's formula.
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