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We report on the study of a class of SO(N) grand unified gauge theories that truly have only one coupling
constant in the theory. The Yukawa and the different quartic self-coupling constants in the Higgs potential
are totally fixed by the eigenvalue conditions required for asymptotic freedom. %e discuss briefly the
phenomenological implications of a particular SO(12) solution which, at the first stage of the hierarchy of
spontaneous symmetry breakdown, exhibits a U(2) )& So(8) residual symmetry, which contains
SU(2) X SU(4) X U(1) X U(1).

I. INTRODUCTION H. SO(N) GAUGE THEORY

In this paper we report on the study of a grand
unification of strong, electromagnetic, and weak
interactions that truly has only one coupling con-
stant in the theory. This comes about through the
imposition of eigenvalue conditions' 4 on all the
other coupling constants of the theory, i.e., Yuk-
awa as well as the different quartic self-coupling
constants in the theory. As a result of the eigen-
value conditions, the grand unified theory is as-
ymptotically free."

The new features of our grand unification scheme
that emerge from our study are the following:

(i) The number of carbon copies of the basic
v, e family is limited. That is, the sequence of
leptons (e, p, , 7, v, r', . . . }mustend. Theactualnum-
ber depends on the particular SO(N) group desired.

(ii) Each fermion multiplet belonging to the spin-
orial representation of the SO(N) group unifies the
light fermions (tr, d, v, e, .. .} with superheavy ferm-
ions (U, D, . . .). The superheavy fermions have
masses that are of the order of the superheavy
gauge boson masses. Since the superheavy ferm-
ions are in the same representations as the lep-
tons, the number of carbon copies of the super-
heavy fermions is similarly limited.

(iii) Even though SO(12) contains SU(4) XSU~(2)
x SUn(2), the structure of the vacuum that emerges
from our study indicates a breakdown 6f manifest
left-right invariance, already at superhigh ener-
gies. Our interest in SO(N) gauge groups stems
from the previous attempts at an SO(10) grand uni-
fication scheme. ' The assignment of fermions
there to a spinorial representation unifies left- and
right-handed fermions in the same multiplet. The
resulting structure of Higgs scalars, necessary
for phenomenology, is quite irregular and the
asymptotic freedom of the theory is not clear.

The gauge bosons, in the adjoint representation
of the group, will be denoted by

Ap j Ap j p
S~pg =1y ~ ~ ~

(4)

Finally, the fermions, in the spinorial represen-
tation, will couple to both gauge and Higgs bosons
according to

=rt»[&. - ( »-s) go&rt. le-14 nlrbtrr»
where trrr are the generators of SO(N) in the spin-
orial representation, satisfying the algebra

[«r trsrl =r (~ts&tr &;i&is+-~rrtrrs -~rstrtr).

The 0,&
can be very simply constructed in terms

of the matrices, n, , obeying the Clifford algebra~

(n, , }n=20, , .
For SO(2n) groups, the n, , in the irreducible rep-
resentation, are 2" '-dimensional matrices, while
for SO(2n+1) groups, the n, are 2"-dim. ensional
matrices.

and the gauge-invariant field strength is given by

~j.,~ =~t Av~~ -~.Aj ~~

p i A ti gA ps' A 's .
The gauge-invariant pure Yang-Mills'0 Lagrangian
is

~YM s (Grit)r v

The Higgs system" for Q in the adjoint repre-
sentation is given by
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HI. RENORMALIZATIONWROUP EQUATIONS

For our analysis, we allow for n~ identical ferm-
ion multiplets. There are, in other words, n~
carbon copies of the basic family (u, d, v„e, . . . ),
so that we have (c, s, v„, p, , ... ) and possibly higher
families involving even more heavy leptons. The
fermions do not interact directly with each other.

We take a single Higgs boson multiplet which
couples universally to all the n~ fermions univers-
ally. At superunification energies, all the e, p,
families are degenerate in mass. The mass dif-
ference between e, p, , v, v', . .. of the order of
several GeV will not be significant at superunifi-
cation energies of the order of 10»' GeV.

With these qualifications, we are now ready to
write down the renormalization-group equations. ' "
For clarity, we list down first, in the Landau
gauge, the wave-function renormalization constants
for the gauge boson, fermion, and the Higgs bos-
ons (nn =dimension of the spinorial representation):

gauge boson

I(t}=Kg(t},
~(t ) =Kg'(t), (10)

A(t) =Ag'(t).

With h, X, A as numbers, these are special solu-
tions to the coupled set of differential equations.
This reduces them to a set of coupled algebraic
equations, which can be solved. The results are
summarized in Table I.

IV. STRUCTURE OF THE VACUUM

As has been pointed out before, the presence of
the h' term in the dX/dt and dA/dt equations is
absolutely crucial. It is a large negative term
which helps bring about the needed negative con-
tribution to the equation.

The strategy for the solution is as follows. We
assume that eigenvalue conditions exist to the
equations, viz. ,

A unique feature of an asymptotically free grand
unified theory is that all the coupling constants of
the Higgs potential as well as the Yukawa coupling
constants are predicted. It is at once a highly re-
strictive theory. The pseudomass term of the
Higgs scalar is not restricted and is used to set
the scale for the masses in the theory.

Another feature of this kind of asymptotically
free grand unified theory is that the hierarchy of
symmetry breaking is dictated by the theory.
There is no longer room to declare a range of
quartic self-couplings so as to choose one vacuum
versus another. At the superunification energies
the structure of the vacuum that develops spon-
taneously" are given in Table I. To follow the
successive breaking of the symmetry down to
energies of 100 GeV or so requires a study of
the t dependence of the Higgs p,

' parameter, which
we have not done. It is, however, certainly a
subject worthy of further investigation.

——', (N —2) lnA, (8a}

(8b)Z„. ..„=1 —
16 2 [2N(N —1)] lnA,

Z„, =1+,[12(N —2)] lnA

(Bc)(4n~ n~} lnA,

16m' =-g ['3'(N-2) —BnznD -—,'(N-2)]

(9a)0

—6g k(N —2) —gsg h [(N —4) —N],
(9b)

16g' =h' [2nz n~ + ,'N(N 1) + (N ——4)' —N]—dt

161ra =X2 [4N(N —1)+64] +LA(16N —8)dt

+12A' 24(N - 2) g'X+18g'

—en~n~h +Sn~n~&h,

16m =A'(8N —4) + 96XA —24(N —2) g Adt

+6(N 8)g —24n~n-~h

+Sn n Ah'.

(9c)

(91)

V. SO(12) GRAND UNIFICATION

In this section we explore the phenomenological
implications for a particular SO(12) solution. It
looks the most promising as a minimal candidate
for grand unification. In any case, it has the pro-
totype features common to all the higher SO(N)
solutions.

The discussion is simplest in the explicit rep-
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TABLE I. Structure of all the SO(N) gauge theories that are asymptotically free. The fer-
mions are in the spinorial representation and the Higgs bosons are in the adjoint representa-
tion. For an explanation of the notation, see text. Here a and & are the square of the vacuum
expectation value (VEV) of the Higgs field and the number of them which develop a VEV, re-
spectively, as in Ref. 14.

N NE Structure of vacuum

10 10 0.1658
10 10 0.1658
11 5 0.1764
11 5 01764
12 6 0.1853
12 6 0 1853
12 5 0.1880
12 5 0.1880
12 4 0 1916
12 4 0.1916
12 4 0 1916
12 3 0.1968
13 3 0.1962
13 3 0.1962
13 3 0.1962
13 2 0.2056
13 2 0.2056
13 2 0 2056
13 1 0.2238
14 3 0.2077
14 3 0.2077
14 3 0.2077
14 2 0.2198
14 2 0.2198
14 2 0.2198
14 1 0.2421
15 2 0.2100
15 2 0 2100
15 2 0.2100
15 1 0 2338
15 1 0.2338
15 1 0.2338
16 2 0.2202
16 2 0.2202
16 2 0.2202
16 1 0.2474
16 1 0.2474
16 1 0.2474
17 1 0.2304
17 1 0.2304
17 1 0.2304
18 1 0.2406
18 1 0.2406
18 1 0.2406

-0.0329
-0.1991

0.0112
-0.2464

0.0591
-0.3378

0.0368
-0.2730

0.1313
-0.1911
-0.0007

0.1244
0.1513

-0.3446
0.0713
0.1795

-0.2251
0.0293
0.1321
0.1994

—.0.3488
0.0810
0.2045

-0.2454
0.0480
0.1599
0.2021

-0.4264
0.1057
0.2209

-0.2581
0.0609
0.2334

-0.4204
0.1100
0.2321

-0.2659
0.0704
0.2534

-0.4145
0.1137
0.2671

-0.4084
0.116'8

0.9719 5
1.0680 2
0.9340 5
1.0671 2
0.9158 6
1.0835 1
0.9168 6
1.0606 1

-1.1184 5
1.0238 2
0.9254 6

-0.8368 4
-1.6648 6

1.0720 1
0.9127 6

-1.1750 4
1.0319 2
0.9133 6

-0.5701 3
-1.7136 5

1.0661 1
0.9159 7

-1.2185 3
1.0380 2
0.9137 7

-0.6072 2
-2.1860 6

1.0744 1
0.9267 7

-1.2548 3
1.0449 2
0.9208 7

—2.2196 5
1.0727 1
0.9361 8

-1.2841 3
1.0526 1
0.9316 8

-2.2474 5
1.0746 1
0.9477 8

-2.2711 5
1.0792 1
0.9606 9

0.7778
1.8425
0.4782
6.1241
0.3077
1.2257
0.3680
0.9716
2.5650
1.9263
0.5450
3.1603
3.3278
1.3061
0.2827
l.9144
3.8029
0.3952
2.2453
1.7819
1.3566
0.2440

56.9865
8.8480
0.3154

15.4098
2.0861
2.2571
0.2078
7.0812

40.0752
0.2819
4.3659
2.1563
0.1854
4.6044
0.9599
0.2430
l.7471
2.0348
0.1807

'

1.2487
1.9053
0.1632

-0.9722
-0.9213'
-0.5977
—.3.0620
-0.4615
-0.3064
-0.5520
-0.2429
-3.2062
-0.9632
-0.8175
-3.1603
-4.9917
-0.3265
-0.4240
-1.9144
-1.9015
-0.5928
-1.6840
-2.2273
-0..3391
-0.4270

-42.7399
-4.4240
-0.5520
-7.7049
-3.1292
-0.5643
-0.3637
-5.3109

-20.0376
-0.4933
-5.4574
-0.5391
-0.3709
-3.4533
-0.2400
-0.4860
-2.1839
-0.5087
-0.3614
-1.5609
-0.4763
-0.3673

U(5)
U(2) x So(6)
u(5)
U{2) x So(7)
U(e)
U(1) x SO(10)
v(e)
U(1) x SO(10)
U(5) x U{1)
U(2) x So(8)
v(e)
U(4) x So(4)
u(e)
U(1) x So(ll}
U(e)
U(4} x So(5)
U(2) x SO{9)
U(6)
V(3) x SO(V)

U{5)x SO(4)
U(1) x SO(12)
v(v)
U(3) xSO(8)
V(2) x So(10)
U(7)
U(2) x So(10)
U(6) x So(3)
U(1) x So(13)
U(7)
V(3) x SO(9)
U(2) x So(11)
v{7)
V(5) x SO(e)
U(1) x So(14)
U(8)
U(3) x SO(10)
V(1) x SO(14)
U(8)
U(5) x SO(V)
U{1)x So(15)
U(8)
U(5) x SO(8)
U(1) x So(16)
v(9)

resentation of the Clifford algebra,

(yi ——g~X giX IX IX IX g2 =g~Xg XIXIXg Xg =g~X g~x].X IX g X g

~4 = g&X g2X IX IX g X I =g~XgiXIXIXg Xg (y =g~Xg2XIXIXg~Xg2

(y7 = g2X IXg~x IX IX I +8 g2x Ixg, x Ix IXI =g XIXg g XIXI

(y~o = g~ X g X IX I X I X I (y~~ =g X IX g Xg~XIX I =g I g g XIXI X =g XIX].XIX1xg.
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y is the chirality operator which splits the 64-
dimensional representation into two irreducible
32-dimensional representations.

ln this basis, the fermion representation reads

g=—~(1+y}4=(u, d, U, D, B, T, b, t),

where u, d, U, D transform as the 4 representation
of the 80(6) subgroup(i. e., under o~, a, b=1, . .., 6)
while t, Q, T, B transform a,s the 4~ representation
of 80(6). Here, we have in mind (1x1 o,x o,) xo, xl x I (16)

and for k = 2 the classical potential is certainly
stable. Quantum loop corrections around this
vacuum are positive and maintain the stability of
this vacuum. ~' The classical value for the mini-
mum of the Higgs potential is

(Q = -0.9622p'/g'.

If we choose (Q, „)=+(Q»») the resulting mass
operator for the fermion becomes proportional to
(in the 32-dimensional space)

u =(~, , us, uo, us),

(e dR do da)
(12)

and it is easy to see that at this initial stage of
superheavy energy scales, u, d, t, 5 will remain
massless, while U, D, T, & acquire superheavy
masses.

The structure of the vacuum after spontaneous
symmetry breakdown is, at this first stage,

while U, D will be superheavy fermions, and simi-
larly for the t, b, T, B family, with ~ replacing the
electrons.

The SO(4) subgroup (i.e., o~, with A, B= 9, . . . , 12)
splits into two commuting SU(2) subgroups, given
in the 32-dimensional representation by

SU(2), . —,'(Ix] go, xo,)xo xlx1,

so that u, d, b, t transform under SU(2), , SU(2)
as (2, 1) while U, D, B, T transform as (1, 2). Un-
der the SO(2) subgroup generated by o», the
u, d, T, B have +F charge, while t, 5, U, D have -F
charge.

The charge matrix reads

U(2) x 80(8) .
This is encouraging since-jt includes as a sub-
group U(1}x SU(2) x SO(6) x SO(2) -SU(2) x SU(4)
XU(1)x-U(l). Of course it is only with further
study of the p,

' dependence on energy scale through
mass renormalization that we can make definitive
statements about hierarchy of breakdown.

The mass spectrum for the gauge bosons can
easily be derived. The massive bosons are

a=II, , 8, 2=9, ... , I2

$9» plo 12 ( $6 ~ » /l», »}l t (19)

3(a» +34 56)»s» ' (14)
with masses satisfying, respectively,

The U, D fermions acquire a superheavy mass
as a result of the spontaneous symmetry break-
down. For this discussion we take for consider-
ation the 80(12) solution with

s~ =4

h =0.19].eg2,

X = -0.1911g,
A = 1.0238g2,

(4.,")'= (4..,.)' = I 926~v'/g',

all other (Q,, ) =0.
The negative value for ~ does not destabilize the

structure of the vacuum around k =2, where k is
the number of the vacuum expectation values that
are nonzero in the sense of Ref. 14, The classical
stability condition reads

(16)

(mass)' for W„,„=g'(Q, „)',
(ma, ss)' for I'„=4g (P, »)'.

The remaining 32 bosons have, at these superuni-
fication energies, zero mass. They will acquire
mass as we go down in energy. The precise me-
chanism awaits further study of the renormaliza, -
tion-group equations.

Note added in Proof. The table circulated in pre-
print form was incorrect. The table in this pub-
lished form is the corrected one.
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