
PHYSICAL RE VIE% 0 VOLUME 18, NUMBER 12 15 DECEMBER 1978

Structure of the gauge theory vacuum at finite temperatures
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The space of moduli, i.e., the space of field configurations modulo gauge equivalence is constructed for
calorons (self-dual gauge fields on R 'X S ') with vanishing topological charge. Such calorous represent
vacuum field configurations at a finite temperature. It is found that, unlike its zero-temperature counterpart,
this space of moduli is nontrivial, being, in fact, a one-dimensional manifold.

I. INTRODUCTION

It is well known' that the space of moduli of all
self-dual SU(2) gauge fields on R' with topological
number q &0 is an (8q —3)-dimensional manifold.
This result has been obtained by the use of the
Atiyah-Singer index theorem' on S', which is the
unique conformal compactification of Euclidean
spacetime R'. Moreover, all these pseudoparti-
cle solutions have been explicitly constructed. '

Calorons have been introduced by Harrington
and Shepard"' as the analogs of pseudoparticles'
at a finite temperature. The transition from zero
to a finite temperature T is generally effected'
by the substitution x0 —ix„where x0 is the real
time and x4 is an angular variable which ranges
from 0 to P =1/teT (h is the Boltzmann constant)
and covers simply an S'. This substitution applied
to the generating functional for Green's functions
yields the partition function, which in the case of
an SU(2) gauge theory is given by'

8
Z = (dA) exp —S(A)+ dx, d'x Tr(j„A,} .

0

In this formula the fields are defined on R'&&S',
where one also performs the spacetime integra-
tions. The metric is Euclidean, p. =1,2, 3, 4, j„
denotes an external current, and

with charge q ~ 0 is a self-dual field configuration
A„(~F„„=F„„)on R'xS' which minimizes the ac-
tion S(A) in the sector of gauge fields with topolo-
gical number q. Such configurations have been
shown to exist' for every q ~ 0.

Pseudoparticle solutions are believed to be
fundamental in understanding the problem of
color confinement. Should this prove to be the
case, calorons would possibly provide us with a
mechanism of thermal color liberation. While a
very restricted class of caloron solutions is
known, ' it is certain that any realistic calculation
would necessitate a much deeper understanding,
involving the study and construction of the spaces
of moduli M(q} for each q. In particular, the di-
mensionalities of these spaces must be found.
However, one is faced here with a serious diffi-
culty. 'The Atiyah-Singer index theorem, which
worked well for the case of pseudoparticles, can-
not be directly applied here, because the unique
conformal compactification of R' && S' is singular'
and, further, it cannot accommodate even the
already known caloron solutions. In spite of
this, the space of moduli M(0) for q = 0 ctstt be
explicitly constructed. It is found that, unlike its
zero-temperature counterpart, it is nontrivial
and, in fact, it is a one-dimen, sional man, ifold.
This is a first indication of an essential differ-
ence between the zero- and finite-temperature
cases.

S(A) =—, d4x Tr(F„„F„„),1

ax S'
(1.2)

II. THE VACUUM AT FINITE TEMPERATURES

whereg is the coupling constant and F „=8 A„
—B„A +[A,A„] with A„(o' /2t')A» an SU(2)
gauge field on R' x S' and o„(ot =1,2, 3) the Pauli
matrices. Field configurations on R' x 8' with
finite action S(A) can be classified' in terms of
the topological number'

q =—, d'x Tr(eF„„F„„},
A&gj

(1.3)

where F„„=--,'&,„„,E„, is the dual of F„„. A caloron

In the following, SU(2)' denotes the Lie algebra
of SU(2). A. = A,dx, and F = s F,„dx,*dx„=d A
+ sA nA are SU(2)'-valued forms on R'x S' with
d the exterior differentiation and + the exterior
multiplication defined as AAA= [A„,A„]dx„*dx„.

Any self-dual SU(2) gauge field configuration on
R' x S' with vanishing topological number (q = 0)
~ust have vanishing action and thus be a vacuum
configuration (F=O). We will now seek to con-
struct the space of moduli for F=0, i.e. , the
space of al1A's with F =0 modulo gauge equiva-

18 471D



18 STRUCTURE OF THE GAUGE THEORY UACUUM AT FINITE. . . 4711

lence. Consider the obvious vacuum configuration
A =0 and any infinitesimal variation 5A thereof,
such that F =d(5A) = 0. We consider these varia-
tions modulo the infinitesimal gauge transforma-
tions of A = 0 which are given by 5A= d(68), where
58 is an infinitesimal SU(2) -valued 0-form on
R' x S'. Thus 5A belongs to&k„i+,(R' x S'), the first
cohomology group of SU(2)'-valued forms on R'
&&S'. Pne can easily see that the space of 5A's
i.s three-dimensional. This foll.ows from the
fact that

dime]ups (R' x S') = 3 dim ff'(R' x Sj)

= 3 dim H'(S') = 3,
where H' denotes the first de Rham cohomology
group. ' Noticing further that dx4 is a closed but
not exact one-form on R' x S' we can write 6A
=i5$,o dx4 Mo. reover, it is not difficult to see
that the fields

A = tdx4=i(, o,dx4. (2.5)

Finally, to exhaust the remaining gauge free-
dom, let us consider the gauge transformations
g =@(x4) which preserve the form of A in Eq. (2.5).
From

A = t'dx4-A' =g 'Ag+g 'dg

homomorphism is not one-to-one. A constant
gauge transformation g applied on A = gdx4 yields
A' =g 'A g = g '$ gdx4 = $'dx4 with I

(' I
=

I ( I, where

I&I'= —2Tr(& ~ g), I(l &0.

Clearly then every element $ of SU(2)' lying on
the iwo-sphere I ( I = const corresponds to the
same point of M(0). It will thus suffice to con-
sider only those $'s which belong to a one-dimen-
sional linear subspace of SU(2)' and, without loss
of generality, assume that

A=i) ogx4=—(dx4 (2.1)
= $'dx4 =i $,'o—,dx4, (2.6)

are also vacuum configurations for any real con-
stants $ .

We will now prove that any vacuum configura-
tion A=A„(x)dx„on R4 x S' can be gauge trans-
formed to a configuration of the form (2.1). To
this end, we consider the gauge transformation

Q

g(x) =P exp A, (y)dy,
{Xj) J

(2.2)

where i,j= 1, 2, 3 and the integral is path-ordered
along any path in R' connecting the point fx,f with
0. This is a well-defined gauge transformation on
R'xS' since R' is simply conn. ected and F=O.
Now it is not hard to see that the gauge-trans-
formed field A'=g 'Ag+g '4g is of the form
A'=A4(x, )dx4. There remains, however, a free-
dom for gauge transformations, which depend
only on x4. Exploiting this, A' can be brought
into the form of Eq. (2. 1) by the well-defined
gauge transformation on R' x S',

p

g '(x,) = P exp A,'(y, )dy,
x4

it follows that

e.g(x4) = —$g+ak',

whose general solution is

g (x,) = e '"4g,e'"4,

(2.7)

(2.8)

For e4'~4-'+1, Eq. (2.9) implies

AQ+2+ +~+3 +~ +2 +0+~ 0
q

which admits the following two solutions:

QQ= Q~=0

and

(2.10)

(2.11)

n, —n, —0. (2.12)

From Eq. (2.9) and each of (2.11) and (2.12) we
have exp [P(g + $')]= 1. respectively, which implies

]+)'=np, n =0 +1, . . . , (2.13)

where g, = u, +iu o (u„u„=1) is any element of
SU(2). A necessary condition for g(x4) to be weil
defined on R' x S' is g(0) =g(P), which gives

(2.9)

(x4xexpI ——'
P

(2.3)
where p=ip, o, and p, =2v/P. The gauge transfor-
mation in Eq. (2.8) reduces to

e-(44V)x4+ e~px4g (2.14)
where (&SU(2)' is given by

0

exp(t) = P exp A,'(y,)dy, (2.4)

We have, so far, established a homomorphism
of SU(2)' onto M(0), i.e. , to every element g=i$~
of SU(2)! we have associated an element of M(0)
represented by A in Eq. (2.1). However, this g(x4) = exp(t' —t')x4 = exp(n' —n) px, . (2.15)

which, by virtue of Eq. (2.13), is well defined on
R'xS'. For e' 4=~1 we have g'=n'p and $'=(n'
+-,)p, respectively, and Eq. (2.&) implies e44= +1,
i.e. , $=np and g=(n+~)p, respectively Then.
Eq. (2.8), with&4=1, reduces to the well-defined
gauge transformation
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A~g 4g, (2.16)

We thus have found that the only gauge fields A
of the form given in Eq. (2.5) which are gauge
equivalent are the ones for which Eq. (2.13)
holds. In other words, for every A. '= $'dx, cor-
responding to an element ('=i),'o, of the one-
dimensional linear subspace of SU(2)', there al-
ways exists a gauge equivalent field A = i/, v,dx,
with $, restricted to the interval [0, n/P]

To summarize, the sPace of moduti M(0) is
isomorphic to the D' submani fold of SU(2)' de
fined by )=i],o, with 0&), &n/p=wh'T. At the
zero-temperature limit, M(0) reduces to a
point, as expected.

We would like to conclude with a comment, to
which the above result has led us. Consider a
general gauge field configuration A on R' x S'
with F-0 as r'=x, '-oo. It has been assumed in
the literature' that

A ~g (i$'G'dX4)g+g dg (2.17)

with 0& $, &nhT and, again, g:S'xS'-SU(2); The
topological number q of A can now be written'"
as

1
q =, do„e ~"Tr(A„A'A, )

7r S2XSl

1
24m' do, e ~"'Tr(g 's„gg 'a„gg '. s,g)

2ysl

(2.18)

and the relation q= —degree(g) still holds. For
the defin. ition of the degree of a map see, e.g. ,
Ref. 9.

where, g is a map S'xS'-SU(2). However, it
should be clear now that this is not quite the case.
Instead, we have
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